A CLASS OF CAYLEY DIGRAPH STRUCTURES INDUCED BY LOOPS

ANIL KUMAR V1, PARAMESWARAN ASHOK NAIR2,∗

1Department of Mathematics, University of Calicut, Malappuram, Kerala, India 673 635
2Mannaniya College of Arts & Science, Pangode, Trivandrum, Kerala, India 695 609

Abstract. In this paper, we generalize the results in [8] to produce a new classes of Cayley digraph structures induced by loops.

Keywords: Loops, Cayley digraph, Digraph structure, Cayley digraph structure.

2000 AMS Subject Classification: 05C25 (20N05)

1. Introduction

A binary relation on a set V is a subset E of $V \times V$. A digraph is a pair (V, E) where V is a non empty set (called vertex set) and E is a binary relation on V. The elements of E are called edges. Let V be a non empty set and let E_1, E_2, \ldots, E_n be mutually disjoint binary relations on V. Then the $(n + 1)$-tuple $G = (V; E_1, E_2, \ldots, E_n)$ is called a digraph structure[8]. The elements of V are called vertices and the elements of E_i are called E_i-edges. The following definition were introduced in [8].

A digraph structure $(V; E_1, E_2, \ldots, E_n)$ is called (i)$E_1E_2 \cdot \cdot \cdot E_n$-trivial if $E_i = \emptyset$ for all i, and E_i- trivial if $E_i = \emptyset$ (ii)$E_1E_2 \cdot \cdot \cdot E_n$- reflexive if for all $x \in G$, $(x, x) \in E_i$ for some i, and E_i- reflexive if for all $x \in V$, $(x, x) \in E_i$(iii) $E_1E_2 \cdot \cdot \cdot E_n$- symmetric if $E_i = E_i^{-1}$ for

∗Corresponding author

Received May 4, 2012
all i, and E_i-symmetric if $E_i = E_i^{-1}$(iv) $E_1E_2\cdots E_n$-anti symmetric, if $(x, y) \in E_i$ and $(y, x) \in E_i$ implies $x = y$ for all i, and E_i- anti symmetric if $(x, y) \in E_i$ and $(y, x) \in E_i$ implies $x = y$(v) $E_1E_2\cdots E_n$-transitive if for every i and j, $E_i \circ E_j \subseteq E_k$ for some k, and E_i transitive if $E_i \circ E_i \subseteq E_i$(vi) an $E_1E_2\cdots E_n$ hasse diagram if for every positive integer $n \geq 2$ and every v_0, v_1, \ldots, v_n of V, $(v_i, v_{i+1}) \in \cup E_i$ for all $i = 0, 1, 2, \ldots, n - 1$, implies $(v_0, v_n) \notin E_i$ for all i, and E_i-hasse diagram if for every positive integer $n \geq 2$ and every v_0, v_1, \ldots, v_n of V, $(v_i, v_{i+1}) \in E_i$ for all $i = 0, 1, 2, \ldots, n - 1$, implies $(v_0, v_n) \notin E_i$(vii)$E_1E_2\cdots E_n$-complete if $\cup E_i = V \times V$, and E_i complete if $E_i = V \times V$.

A digraph structure $(V; E_1, E_2, \ldots, E_n)$ is called (i) an $E_1E_2\cdots E_n$-quasi ordered set if it is both $E_1E_2\cdots E_n$-reflexive and $E_1E_2\cdots E_n$-transitive (ii) an $E_1E_2\cdots E_n$-partially ordered set if it is $E_1E_2\cdots E_n$-anti symmetric and $E_1E_2\cdots E_n$-quasi ordered set. Similarly, we can define E_i quasi ordered set and E_i partially ordered set as in the case of ordinary relations.

An $E_1E_2\cdots E_n$-walk of length k in a digraph structure is an alternating sequence $W = v_0, e_0, v_1, \ldots, e_{k-1}, v_k$, where $e_i = (v_i, v_{i+1}) \in \cup E_i$. An $E_1E_2\cdots E_n$-walk W is called a $E_1E_2\cdots E_n$-path if all the internal vertices are distinct. We use notation $(v_0, v_1, v_2, \ldots, v_n)$ for the $E_1E_2\cdots E_n$-path W. As in digraphs, we define E_i-walk and E_i-path. For example, an E_i-path between two vertices u and v consists of only E_i-edges.

A digraph structure $(V; E_1, E_2, \ldots, E_n)$ is called (i) $E_1E_2\cdots E_n$-connected if there exits at least one $E_1E_2\cdots E_n$-path from v to u for all $u, v \in V$, (ii)$E_1E_2\cdots E_n$-quasi connected if for every pair of vertices x, y there is a vertex z such that there is an $E_1E_2\cdots E_n$-path from z to x and an $E_1E_2\cdots E_n$-path from z to y, (iii) $E_1E_2\cdots E_n$-locally connected iff for every pair of vertices $u, v \in V$ there is an $E_1E_2\cdots E_n$-path from v to u whenever there is an $E_1E_2\cdots E_n$-path from u to v and (iv) $E_1E_2\cdots E_n$-semi connected for every pair of vertices u, v, there is an $E_1E_2\cdots E_n$-path from u to v or an $E_1E_2\cdots E_n$-path from v to u.

A digraph structure $(V; E_1, E_2, \ldots, E_n)$ is called E_i-connected if there exits at least one E_i path from v to u for all $u, v \in V$. Similarly we can define E_i quasi connected, E_i
-locally connected and E_i - semi connected digraph structures.

The $E_1E_2\cdots E_n$ - distance between two vertices x and y in a digraph structure G is the length of the shortest $E_1E_2\cdots E_n$- path between x and y, denoted by $d_{1,2,3,\ldots,n}(x,y)$. Let $G = (V; E_1, E_2, \ldots, E_n)$ be a finite $E_1E_2\cdots E_n$- connected digraph structure. Then the $E_1E_2\cdots E_n$ diameter of G is defined as $d(G) = \max_{x,y\in G}\{d_{1,2,3,\ldots,n}(x,y)\}$. Similarly we can define E_i distance and E_i diameter as in digraphs.

Two digraph structures $(V_1; E_1, E_2, \ldots, E_n)$ and $(V_2; R_1, R_2, \ldots, R_m)$ are said to be isomorphic if (i) $m = n$ and (ii) there exists a bijective function $f: V_1 \to V_2$ such that $(x,y) \in E_i \iff (f(x), f(y)) \in R_i$. This concept of isomorphism is a generalization of isomorphism between two digraphs. An isomorphism of a digraph structure onto itself is called an automorphism. A digraph structure $(V; E_1, E_2, \ldots, E_n)$ is said to be vertex-transitive if, given any two vertices a and b of V, there is some digraph automorphism $f: V \to V$ such that $f(a) = b$. Let $(V; E_1, E_2, \ldots, E_n)$ be a digraph structure and let $v \in V$. Then the $E_1E_2\cdots E_n$ out-degree of u is $|\{v \in V : (u, v) \in \cup E_i\}|$ and $E_1E_2\cdots E_n$ in-degree of u is $|\{v \in V : (v, u) \in \cup E_i\}|$. Similarly we can define the E_i out-degree and E_i in-degree as in the case of digraphs.

Let $(V_1; E_1, E_2, \ldots, E_n)$ be a digraph structure. A vertex $v \in G$ is called an $E_1E_2\cdots E_n$ -source if for every vertex $x \in G$, there is an $E_1E_2\cdots E_n$ - path from v to x. Similarly a vertex $u \in G$ is called an $E_1E_2\cdots E_n$ - sink if for every vertex $y \in G$ there is an $E_1E_2\cdots E_n$ - path from y to u. As in digraphs, we define E_i - source and E_i - sink. Let $(V_1; E_1, E_2, \ldots, E_n)$ be a digraph structure and let $v \in G$. Then the $E_1E_2\cdots E_n$ reachable set $R_{1,2,3,\ldots,n}(u)$ is $\{x \in G : \text{ there is an } E_1E_2\cdots E_n - \text{ path from } u \text{ to } x\}$. Similarly, the $E_1E_2\cdots E_n$ - antecedent set $Q_{1,2,\ldots,n}(u)$ is defined as

$$Q_{1,2,\ldots,n}(u) = \{x \in G : \text{ there is an } E_1E_2\cdots E_n - \text{ path from } x \text{ to } u\}.$$

As in the case of digraphs, we can define the E_i- reachable set and E_i- antecedent set of a vertex.

A non empty set G, together with a mapping $*: G \times G \longrightarrow G$ is called a groupoid. The mapping $*$ is called a binary operation on the set G. If $a, b \in G$, we use the symbol
ab to denote $*(a,b)$. A groupoid $(G,*)$ is called a quasigroup, if for every $a, b \in G$, the equations, $ax = b$ and $ya = b$ are uniquely solvable in G [6]. This implies both left and right cancelation laws. A quasigroup with an identity element is called a loop. Observe that a loop is a weaker algebraic structure than a group.

A subset A of a loop G is said to be a right associative subset of G (\mathcal{R} associative), if for every $x, y \in G$, $(xy)A = x(yA)$. This means, if $x, y \in G$ and $a \in A$, then $(xy)a = x(ya')$ for some $a' \in A$. Observe that the \mathcal{R} associative law not only allows to interchange the positions of parenthesis, the two elements that are on the left should be in G and they will be same on both sides, the rightmost element in the left hand side is in A and is changed to another element $a' \in A$ as the right most element in the right side [12].

Here we have the following result:

Theorem 1.1. ([9]) Let A and B be \mathcal{R} associative subsets of a loop G. Then AB is also \mathcal{R} associative.

3. Cayley digraph structures induced by loops

In [11] the authors introduced a class of Cayley digraph structures induced by groups. In this paper, we introduce a class of Cayley digraph structures induced by loops. These class of Cayley digraphs structures can be viewed as a generalization of those obtained in [11]. Further, many graph properties are studied in terms of algebraic properties.

We start with the following definition:

Definition 2.1. Let G be a loop and S_1, S_2, \ldots, S_n be mutually disjoint \mathcal{R} associative subsets of G. Then Cayley digraph structure of G with respect to S_1, S_2, \ldots, S_n is defined as the digraph structure $X = (G; E_1, E_2, \ldots, E_n)$, where

$$E_i = \{(x, y) : z \in S_i\}$$

where z denotes the solution of the equation $y = xz$.

The sets \(S_1, S_2, \ldots, S_n \) are called connection sets of \(X \). The Cayley digraph structure of \(G \) with respect to \(S_1, S_2, \ldots, S_n \) is denoted by \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \).

In this paper we may use the following notations:

1. Let \(S_1, S_2, \ldots, S_n \) be subsets of a loop \(G \), then we may define the product \(S_1, S_2, \ldots, S_n \) as follows:

\[
S_1S_2\ldots S_n = \{(((s_1s_2)s_3)\ldots)s_n : s_i \in S_i, i = 1, 2, \ldots, n\}.
\]

If \(S_1 = S_2 = \cdots = S_n = S \), we denote the above product as \(S^n \).

2. Let \(A_k \) be the union of set of all \(k \) products of the form \(S_{i_1}S_{i_2}\cdots S_{i_k} \) from the set \(\{S_1, S_2, \ldots, S_n\} \). Then \(\bigcup_k A_k \) is denoted by \([S]\).

3. Let \(D \) be a subset of \(G \). We define \(D_\ell = \{z_\ell : z_\ell z = 1 \text{ for some } z \in D\} \), where 1 is the identity element in \(G \).

4. Let \(A \) be a subset of a loop \(G \), then the semi group generated by \(A \) is denoted by \(< A >\).

Theorem 2.2. If \(G \) is a loop and let \(S_1, S_2, \ldots, S_n \) are mutually disjoint \(R \)-associative subsets of \(G \), then the Cayley digraph structure \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is vertex transitive.

Proof. Let \(a \) and \(b \) be any two arbitrary elements in \(G \). Define a mapping \(\varphi : G \to G \) by

\[
\varphi(x) = (b/a)x \text{ for all } x \in G.
\]

where \((b/a)\) denotes the solution of the equation \(b = za \). This mapping defines a permutation of the vertices of \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \). It is also an automorphism. Let \(x, y \in G \) such that \(y = xz \). Note that

\[
(x, y) \in E_i \iff z \in S_i \text{ for some } i.
\]

The equation \(y = xz \) can be written as

\[
(b/a)y = (b/a)(xz)
\]

\[
= ((b/a)x)z' \text{ for some } z' \in S_i.
\]
The above equation tells us that \(((b/a)x, (b/a)y) \in E_i\). That is, \((\varphi(x), \varphi(y)) \in E_i\). Similarly, assume that \((\varphi(x), \varphi(y)) \in E_i\). Then \((b/a)y = ((b/a)x)z\) for some \(z \in S_i\). This implies that \((b/a)y = (b/a)(xz')\) for some \(z' \in S_i\). By left cancellation law, we obtain \(y = xz'\). This tells us that \((x, y) \in E_i\). Also we note that \(\varphi(a) = (b/a)a = b\). Hence \(\text{Cay}(G; S_1, S_2, \ldots, S_n)\) is vertex transitive.

Proposition 2.3 \(\text{Cay}(G; S_1, S_2, \ldots, S_n)\) is an \(E_1E_2 \cdots E_n\)-trivial digraph structure if and only if \(S_i = \emptyset\) for all \(i\).

Proof. By definition, \(\text{Cay}(G; S_1, S_2, \ldots, S_n)\) is \(E_1E_2 \cdots E_n\)-trivial if and only if \(E_i = \emptyset\) for all \(i\). This implies that \(S_i = \emptyset\) for all \(i\).

Proposition 2.4 \(\text{Cay}(G; S_1, S_2, \ldots, S_n)\) is an \(E_i\)-trivial digraph structure if and only if \(S_i = \emptyset\).

Proposition 2.5 \(\text{Cay}(G; S_1, S_2, \ldots, S_n)\) is \(E_1E_2 \cdots E_n\)-reflexive if and only if \(1 \in S_i\) for some \(i\).

Proof. Assume that \(\text{Cay}(G; S_1, S_2, \ldots, S_n)\) is an \(E_1E_2 \cdots E_n\)-reflexive digraph structure. Then for every \(x \in G\), \((x, x) \in E_i\) for some \(i\). This implies that the equation \(x = xz\) has a unique solution in \(S_i\) for some \(i\). That is, \(1 \in S_i\) for some \(i\).

Conversely, assume that \(1 \in S_i\) for some \(i\). This implies for each \(x \in G\), \((x, x) \in E_i\) for some \(i\). That is, \((x, x) \in \bigcup E_i\) for all \(x \in G\).

Proposition 2.6 \(\text{Cay}(G; S_1, S_2, \ldots, S_n)\) is \(E_1E_2 \cdots E_n\)-symmetric if and only if \(S_i = S_i^\ell\) for all \(i\).

Proof. First, assume that \(\text{Cay}(G; S_1, S_2, \ldots, S_n)\) is an \(E_1E_2 \cdots E_n\)-symmetric digraph structure. Let \(a \in S_i\). Then \((1, a) \in E_i\). Since \(\text{Cay}(G; S_1, S_2, \ldots, S_n)\) is symmetric \((a, 1) \in E_i\). This implies that the equation \(1 = at\) has a solution in \(S_i\). That is \(a \in S_i^\ell\). Hence \(S_i \subseteq S_i^\ell\). Similarly, we can prove that \(S_i^\ell \subseteq S_i\).

Conversely, assume that \(S_i = S_i^\ell\) for all \(i\). Suppose that \((x, y) \in E_i\). Then the equation \(y = xz\) has a solution in \(S_i\). That is \(z \in S_i\). Consider the equation \(x = yt\). This equation
can be written as:

$$xz = (yt)z$$

i.e., $y = y(tz')$ for some $z' \in S_i$

i.e., $y1 = y(tz')$

i.e., $1 = tz'$ (by left cancelation law).

The above equation tells us that $t \in S_i$. Since $S_i = S_{it}$, it follows that $t \in S_i$. Hence the equation $x = yt$ has a solution in S_i. That is $(y, x) \in E_i$.

Proposition 2.7 Cay($G; S_1, S_2, \ldots, S_n$) is an $E_1 E_2 \cdots E_n$-transitive if and only if for every i, j, $S_i S_j \subseteq S_k$ for some k.

Proof. First, assume that Cay($G; S_1, S_2, \ldots, S_n$) is $E_1 E_2 \cdots E_n$-transitive. Let $x \in S_i S_j$. Then $x = z_1 z_2$ for some $z_1 \in S_i$ and $z_2 \in S_j$. This implies that $(1, z_1) \in E_i$ and $(z_1, z_1 z_2) \in E_j$. Since Cay($G; S_1, S_2, \ldots, S_n$) is transitive $(1, z_1 z_2) \in E_k$ for some k. That is $z_1 z_2 \in S_k$. Hence $S_i S_j \subseteq S_k$ for some k.

Conversely assume that for each i, j, $S_i S_j \subseteq S_k$ for some k. Let x, y and $z \in G$ such that $y = x t_1$ and $z = y t_2$. If $(x, y) \in E_i$ and $(y, z) \in E_j$, then $t_1 \in S_i$ and $t_2 \in S_j$. Note that the equation $z = y t_2$ can be written as:

$$z = (xt_1) t_2$$

$$= x (t_1 t'_2) \text{ for some } t'_2 \in S_j$$

$$= x t_3 \text{ where } t_3 = t_1 t'_2$$

Note that $t_3 \in S_i S_j$. Since $S_i S_j \subseteq S_k$, $t_3 \in S_k$. That the equation $z = x t$ has a solution t_3 in S_k. Hence Cay($G; S_1, S_2, \ldots, S_n$) is transitive.

Proposition 2.8 Cay($G; S_1, S_2, \ldots, S_n$) is $E_1 E_2 \cdots E_n$-complete if and only if $G = \cup S_i$.

Proof. Suppose Cay($G; S_1, S_2, \ldots, S_n$) is $E_1 E_2 \cdots E_n$-complete. Then for every $x \in G$, we have $(1, x) \in \cup E_i$. This implies that $x \in S_i$ for some i. This implies that $G = \cup S_i$. Conversely, assume that $G = \cup S_i$. Let x and y be two arbitrary elements in G such that
Proposition 2.9 \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is \(E_i \)-complete if and only if \(G = S_i \).

Proposition 2.10 \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is \(E_1 E_2 \cdots E_n \)-connected if and only if \(G = [S] \).

Proof. Suppose \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is \(E_1 E_2 \cdots E_n \)-connected and let \(x \in G \). Let \((1, y_1, y_2, \ldots, y_k, x)\) be a \(E_1 E_2 \cdots E_n \)-path leading from 1 to \(x \). Then we have, \(y_1 = z_1, y_2 = y_1 z_2, \ldots, y_k = y_{k-1} z_k, x = y_k z_{k+1} \) for some \(z_j \in S_{i_j}, j = 1, 2, \ldots, k + 1 \). Note that the equation \(x = y_k z_{k+1} \) can be written as

\[
x = (y_{k-1} z_k) z_{k+1} \\
= ((y_{k-2} z_{k-1}) y_{k-1} z_k) z_{k+1} \\
= (z_1 z_2) \cdots z_{k+1}
\]

The last equation tells us that \(x \in S_{i_1} S_{i_2} \cdots S_{i_{k+1}} \). This implies that \(x \in A \) for some \(A \in [S] \). Since \(x \) is arbitrary, \(G = [S] \).

Conversely, assume that \(G = [S] \). Let \(x \) and \(y \) be any arbitrary elements in \(G \). Let \(y = xz \). Then \(z \in G \) Then \(z \in S_i S_j \cdots S_k \) for some \(i, j, \ldots \) and \(k \). This implies that \(z = s_i s_j \cdots s_k \) for some \(i, j \ldots \) and \(k \). Then clearly, \((1, s_i, s_i s_j, \ldots, s_i s_j \cdots s_k)\) is an \(E_1 E_2 \cdots E_n \)-path from 1 to \(z \). That is, \((x, x s_i, x s_i s_j, \ldots, x s_i s_j \cdots s_k)\) is a \(E_1 E_2 \cdots E_n \)-path from \(x \) to \(y \). Hence \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is connected.

Proposition 2.11 \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is \(E_i \)-connected if and only if \(G = < S_i > \), where \(< S_i > \) is the semi group generated by the set \(S_i \).

Proposition 2.12 \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is \(E_1 E_2 \cdots E_n \)-quasi connected if and only if \(G = [S]_t[S] \).

Proof. First, assume that \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is quasi connected. Let \(x \) be any arbitrary element in \(G \). Then there exits a vertex \(y \in G \) such that there is a path from \(y \) to 1, say, \((y, y_1, y_2, \cdots, y_n, 1)\) and a path from \(y \) to \(x \), say,\((y, x_1, x_2, \ldots, x_m, x)\). Then we have
the following system of equations:

\[y_1 = yz_1 \text{ for some } z_1 \in S_{i_1} \]
\[y_2 = y_1z_2 \text{ for some } z_2 \in S_{i_2} \]
\[y_3 = y_2z_3 \text{ for some } z_3 \in S_{i_3} \]
\[\vdots \]
\[1 = y_nz_{n+1} \text{ for some } z_{n+1} \in S_{i_{n+1}}. \]

(1)

and

\[x_1 = yt_1 \text{ for some } z_1 \in S_{i_1} \]
\[x_2 = x_1t_2 \text{ for some } z_2 \in S_{i_2} \]
\[x_3 = x_2t_3 \text{ for some } z_3 \in S_{i_3} \]
\[\vdots \]
\[x = x_m t_{m+1} \text{ for some } z_{m+1} \in S_{i_{m+1}}. \]

Observe that equation (1) can be written as:

\[1 = y(w_1w_2 \ldots w_{n+1}) \text{ for some } w_k \in S_{i_k}, k = 1, 2, \ldots, n+1. \]

This implies that

(3) \[y \in [S]_{\ell} \]

Similarly, equation (2) can be written as:

(4) \[x \in [S]_{\ell}[S] \]

From equations (4) and (5), we have

(6) \[x \in [S]_{\ell}[S]. \]

Since \(x \) is arbitrary, \(G = [S]_{\ell}[S]. \)

Conversely, assume that \(G = [S]_{\ell}[S]. \) Let \(x \) and \(y \) be two arbitrary vertices in \(G. \) Let \(y = xz. \) Then \(z \in G. \) This implies that \(z \in [S]_{\ell}[S]. \) Then there exits \(z_1 \in [S]_{\ell} \) and \(z_2 \in [S] \) such that \(z = z_1z_2. \) \(z_1 \in [S]_{\ell} \) implies that there exits \(t_k \in S_{i_k} \) such that \(1 = z_1(t_1t_2 \ldots t_m). \)
That is, \(1 = ((z_1 r_1) r_2) \ldots r_m \) for some \(r_m \in S_{i_k}, k = 1, 2, \ldots, m \). This implies that \((z_1, z_1 r_1, z_1 r_1 r_2, \ldots, 1) \) is a path from \(z_1 \) to 1. That is,

\[(yz_1, yz_1 r_1, yz_1 r_1 r_2, \ldots, y) \]

is a path from \(yz_1 \) to \(y \). Similarly, \(z_2 \in [S] \) implies that there exits \(a_k \in S_{i_k} \) such that \(z_2 = a_1 a_2 \ldots a_m \). Observe that \((z_2, a_1 a_2 a_3, \ldots, 1) \) is a path from \(z_2 \) to 1. That is, \((z_1 z_2, z_1 a_1 a_2, a_1 a_2 a_3, \ldots, z_1) \) is a path from \(z \) to \(yz_1 \). That is,

\[(yz, yz_1 a_1 a_2, ya_1 a_2 a_3, \ldots, yz_1) \]

is a path from \(x \) to \(yz_1 \). This implies that the digraph structure \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is \(E_1 E_2 \cdots E_n \)- quasi connected.

Proposition 2.13 \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is \(E_i \) quasi connected if and only if \(G = < S_i > \).

Proposition 2.14 \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is \(E_1 E_2 \cdots E_n \)- locally connected if and only if \([S] = [S]_\ell \).

Proof.

Assume that \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is \(E_1 E_2 \cdots E_n \)- locally connected. Let \(x \in [S] \). Then \(x \in A_m \) for some \(m \). Then \(x = s_i s_j \ldots s_m \). Let \(x_0 = 1, x_1 = s_i, x_2 = s_i s_j, \ldots, x_m = s_i s_j \ldots s_m \). Then

\[(x_0, x_1, x_2, \ldots, x_m) \]

is a path leading from 1 to \(x \). Since \(\text{Cay}(G; S_1, S_2, \ldots, S_m) \)- is locally connected, there exits a path from \(x \) to 1, say:

\[(x, y_1, y_2, \ldots, y_m, 1) \]

This implies that

\[y_1 = xt_1 \text{ for some } t_1 \in S_{i_1} \]

\[y_2 = y_1 t_2 \text{ for some } t_2 \in S_{i_2} \]

\[\vdots \]

\[1 = y_m t_{m+1} \text{ for some } t_{m+1} \in S_{i_n} \]

This implies that \(1 = x(z_1 z_2 \cdots z_m) \) for some \(z_k \in S_{i_k}, k = 1, 2, 3, \ldots (m + 1) \). That is \(x \in [S]_\ell \). Hence \([S] \subseteq [S]_\ell \). Similarly, one can prove that \([S]_\ell \subseteq [S] \). Hence \([S] = [S]_\ell \).
Conversely, if \([S] = [S]_\ell\), one can easily verify that \(\text{Cay}(G; S_1, S_2, \ldots, S_n)\) is \(E_1E_2\cdots E_n\)-locally connected.

Proposition 2.15 \(\text{Cay}(G; S_1, S_2, \ldots, S_n)\) is \(E_i\)-locally connected if and only if \(<S_i>=<S_i>\ell\).

Proposition 2.16 \(\text{Cay}(G; S_1, S_2, \ldots, S_n)\) is \(E_1E_2\cdots E_n\)-semi connected if and only if \(G = [S] \cup [S]_\ell\).

Proof. Assume that \(\text{Cay}(G; S_1, S_2, \ldots, S_n)\) is \(E_1E_2\cdots E_n\)-semi connected and let \(x \in G\). Then there is a path from 1 to \(x\), say: \((1, x_1, x_2, \ldots, x_k, x)\) or a path from \(x\) to 1, say: \((x, y_1, y_2, \ldots, y_m, 1)\). This implies that \(x \in [S]\) or \(x \in [S]_\ell\). This implies that \(G = [S] \cup [S]_\ell\).

Similarly, if \(G = [S] \cup [S]_\ell\), then one can prove that \(\text{Cay}(G; S_1, S_2, \ldots, S_n)\) is \(E_1E_2\cdots E_n\)-semi connected.

Proposition 2.17 \(\text{Cay}(G; S_1, S_2, \ldots, S_n)\) is \(E_i\)-semi connected if and only if \(G = <S_i> \cup <S_i>\ell\).

Proposition 2.18 \(\text{Cay}(G; S_1, S_2, \ldots, S_n)\) is an \(E_1E_2\cdots E_n\)-quasi ordered set if and only if

(i) \(1 \in S_1 \cup S_2 \cdots \cup S_n\),

(ii) for every \((i, j)\), \(S_i S_j \subseteq S_k\) for some \(k\).

Proposition 2.19 \(\text{Cay}(G; S_1, S_2, \ldots, S_n)\) is an \(E_i\)-quasi ordered set if and only if \(1 \in S_i\), and \(S_i^2 \subseteq S_i\).

Proposition 2.20 \(\text{Cay}(G; S_1, S_2, \ldots, S_n)\) is an \(E_1E_2\cdots E_n\)-partially ordered set if and only if

(i) \(1 \in S_1 \cup S_2 \cdots \cup S_n\),

(ii) for every \((i, j)\), \(S_i S_j \subseteq S_k\) for some \(k\),

(iii) \(\cup (S_i \cap S_i^2) = \{1\}\).
Proof. Observe that

\[x \in \bigcup (S_i \cap S_{i\ell}) \iff x \in (S_i \cap S_{i\ell}) \text{ for some } i \]
\[\iff x \in S_i \text{ and } x \in S_{i\ell} \]
\[\iff (1, x) \in E_i \text{ and } (x, 1) \in E_i \]
\[\iff x = 1 \]

From these equivalences, the result follows.

Proposition 2.21 Cay(G; S_1, S_2, \ldots, S_n) if an E_i- partially ordered set if and only if

(i) \(1 \in S_i \)
(ii) \(S_i^2 \subseteq S_i \)
(iii) \(S_i \cap S_{i\ell} = \{1\} \)

Proposition 2.22 Let \(A_m (m \geq 2) \) be the set of all \(m \) products of the form \(S_{i1}S_{i2} \cdots S_{im} \). Then Cay(G; S_1, S_2, \ldots, S_n) is an \(E_1E_2 \cdots E_n \)- hasse diagram if and only if \(C \cap S_i = \emptyset \) for all \(i \) and for all \(C \in A_m \).

Proof. Suppose the condition holds. Let \(x_0, x_1, \ldots, x_m \) be \((m + 1) \) elements in \(G \) such that \((x_i, x_{i+1}) \in \bigcup E_i \) for \(i = 0, 1, \ldots, m - 1 \). This implies that

\[x_1 = x_0 t_1 \text{ for some } t_1 \in S_{i_1} \]
\[x_2 = x_1 t_2 \text{ for some } t_2 \in S_{i_2} \]
\[x_3 = x_2 t_3 \text{ for some } t_3 \in S_{i_3} \]
\[\vdots \]
\[x_m = x_{m-1} t_n \text{ for some } t_n \in S_{i_m} \]
The last equation can be written as:

\[x_n = ((x_{n-2}t_{m-1}))t_m \]

\[= ((x_0t_1)t_2) \cdots t_n \]

\[= x_0(z_1z_2 \cdots z_m) \text{ for some } z_k \in S_{i_k}, k = 1, 2, \ldots, m \]

\[= x_0t, \text{ where } t = z_1z_2 \cdots z_m \in A_m \]

Since \(C \cap S_i = \emptyset \) for all \(i \) and for all \(C \in A_m, (x_0, x_m) \notin \cup E_i \).

Conversely, assume that \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is an \(E_1E_2 \cdots E_n \)-hasse diagram. We will show that \(C \cap S_i = \emptyset \) for all \(i \) and for all \(C \in A_m \). Let \(S_{i_1}S_{i_2}S_{i_3} \cdots S_{i_m} \) be any element in \(A_m \). Let \(x \in S_{i_1}S_{i_2}S_{i_3} \cdots S_{i_m} \). Then \(x = s_{i_1}s_{i_2}s_{i_3} \cdots s_{i_m} \) for some \(s_{i_k} \in S_{i_k} \). This implies that \((1, s_{i_1}, s_{i_2}s_{i_3}, \ldots, x) \) is a path from 1 to \(x \). Since \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is an \(E_1E_2 \cdots E_n \)-hasse diagram, \(x \notin S_i \) for any \(i \). That is, \(A_m \cap S_i = \emptyset \) for all \(i \).

Proposition 2.23 Let \(A_m \ (m \geq 2) \) be the set of all \(m \) products of the form \(S_{i_1}S_{i_2} \cdots S_{i_m} \). Then \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is an \(E_i \)-hasse diagram if and only if \(S_i^m \cap S = \emptyset \), for all \(m \geq 2 \).

Proposition 2.24 The \(E_1E_2 \cdots E_n \) out-degree of \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is the cardinal number \(|S_1 \cup S_2 \cup \cdots \cup S_n| \).

Proof. Since by Theorem 2.2, \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is vertex-transitive it suffices to consider the out-degree of the vertex \(1 \in G \). Observe that

\[\rho(1) = \{ u : (1, u) \in \cup E_i \} \]

\[= \{ u : u \in S_i \text{ for some } i \} \]

\[= S_1 \cup S_2 \cup \cdots \cup S_n \]

Hence \(|\rho(1)| = |S_1 \cup S_2 \cup \cdots \cup S_n| \).

Proposition 2.25 The \(E_i \) out-degree of \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is the cardinal number \(|S_i| \).
Proposition 2.26 The \(E_1E_2 \cdots E_n \) in-degree of \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is the cardinal number \(|S_{1\ell} \cup S_{2\ell} \cup \cdots \cup S_{n\ell}| \).

Proof. Since \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is vertex-transitive it suffices to consider the in-degree of the vertex \(1 \in G \). Observe that

\[
\sigma(1) = \{ u : (u, 1) \in \cup E_i \} = \{ u : (u, 1) \in E_i \} = \{ u : 1 = uz \text{ for some } z \in S_i \} = \{ z_\ell : z_\ell \in S_{i_\ell} \text{ for some } i \} = S_{1\ell} \cup S_{2\ell} \cup \cdots \cup S_{n\ell}.
\]

Hence \(|\sigma(1)| = |S_{1\ell} \cup S_{2\ell} \cup \cdots \cup S_{n\ell}| \).

Proposition 2.27 The \(E_i \) in-degree of \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is the cardinal number \(|S_{i\ell}| \).

Proposition 2.28 For \(k \geq 1 \), let \(A_k \) be the set of all \(k \) products of the form \(S_{i_1}S_{i_2}S_{i_3} \cdots S_{i_k} \). If \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) has finite diameter, then the \(E_1E_2 \cdots E_n \) diameter of the Cayley digraph structure \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is the least positive integer \(m \) such that \(G = A_m \).

Proof. Let \(m \) be the smallest positive integer such that \(G = A_m \). We will show that the diameter of \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is \(m \). Let \(x \) and \(y \) be any two arbitrary elements in \(G \) such that \(y = xz \). Then \(z \in G \). This implies that \(x \in A_m \). But then \(z \) has a representation of the form \(z = s_{i_1}s_{i_2} \cdots s_{i_m} \). This implies that \((1, s_{i_1}, s_{i_1}s_{i_2}, \ldots, y) \) is a path of \(m \) edges from \(1 \) to \(z \). That is, \((x, xs_{i_1}, xs_{i_1}s_{i_2}, \ldots, y) \) is a path of length \(m \) from \(x \) to \(y \). This shows that \(d_{1,2,\ldots,n}(x, y) \leq m \). Since \(x \) and \(y \) are arbitrary, \(\max_{x,y \in G} \{ d_{1,2,\ldots,n}(x, y) \} \leq m \). Therefore the diameter of \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) is less than or equal to \(m \). On the other hand let the diameter of \(\text{Cay}(G; S_1, S_2, \ldots, S_n) \) be \(k \). Let \(x \in G \) and \(d_{1,2,\ldots,n}(1, x) = k \). Then we have \(x \in B \) for some \(B \in A_k \). That is, \(G = A_k \). Now by the minimality of \(k \), we have \(m \leq k \). Hence \(k = m \).
Proposition 2.29 If $\text{Cay}(G; S_1, S_2, \ldots, S_n)$ has finite diameter, then the E_i diameter of the Cayley digraph structure $\text{Cay}(G; S_1, S_2, \ldots, S_n)$ is the least positive integer m such that $G = S_i^m$.

Proposition 2.30 The vertex 1 is an $E_1 E_2 \cdots E_n$-source of $\text{Cay}(G; S_1, S_2, \ldots, S_n)$ if and only if $G = [S]$.

Proof. First, assume that 1 is an $E_1 E_2 \cdots E_n$-source of $\text{Cay}(G; S_1, S_2, \ldots, S_n)$. Then for any vertex $x \in G$, there is an $E_1 E_2 \cdots E_n$-path from 1 to x. This implies that $G = [S]$. Conversely, if $G = [S]$, one can prove that 1 is an $E_1 E_2 \cdots E_n$-source.

Proposition 2.31 The vertex 1 is an E_i source of $\text{Cay}(G; S_1, S_2, \ldots, S_n)$ if and only if $G = <S_i>$.

Proposition 2.32 The vertex 1 is an $E_1 E_2 \cdots E_n$-sink of $\text{Cay}(G; S_1, S_2, \ldots, S_n)$ if and only if $G = [S]_{\ell}$.

Proof. First, assume that 1 is an $E_1 E_2 \cdots E_n$-sink of $\text{Cay}(G; S_1, S_2, \ldots, S_n)$. Then for each $x \in G$, there is an $E_1 E_2 \cdots E_n$-path from x to 1. This implies that $x \in [S]_{\ell}$. Hence $G = [S]_{\ell}$. Conversely, if $G = [S]_{\ell}$, one can easily prove that 1 is an $E_1 E_2 \cdots E_n$-sink of the Cayley digraph structure $\text{Cay}(G; S_1, S_2, \ldots, S_n)$.

Proposition 2.33 The vertex 1 is an E_i sink of $\text{Cay}(G; S_1, S_2, \ldots, S_n)$ if and only if $G = <S_i>_{\ell}$.

Proposition 2.34 The $E_1 E_2 \cdots E_n$ reachable set $R_{1,2,\ldots,n}(1)$ of the vertex 1 is the set $[S]$.

Proof. By definition, $R(1) = \{x : \text{there exists an } E_1 E_2 \cdots E_n \text{-path from 1 to } x\}$. Observe that

$x \in R_{1,2,\ldots,n}(1) \iff \text{there exists an } E_1 E_2 \cdots E_n \text{-path from 1 to } x, \text{ say } (1, x_1, x_2, \ldots, x_n, x) \\
\iff x \in [S]$.
Therefore, $R_{1,2,3,...,n}(1) = [S]$.

Proposition 2.35 The E_i reachable set $R_i(1)$ of the vertex 1 is the set $<S_i>$.

Proposition 2.36 The $E_1E_2\cdots E_n$ antecedent set $Q_{1,2,...,n}(1)$ of the vertex 1 is the set $[S]_\ell$.

Proof. Observe that

$x \in Q_{1,2,...,n}(1) \iff$ there exits an $E_1E_2\cdots E_n$-path from x to 1, say $(x,x_1,x_2,...,x_n,1)$

$\iff x \in [S]_\ell$

Therefore, $Q_{1,2,...,n}(1) = [S]_\ell$.

Proposition 2.37 The E_i antecedent set $Q_i(1)$ of the vertex 1 is the set $<S_i>_{\ell}$.

References

