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Abstract. Several mathematical models have been designed to understand the dynamics of cholera epidemic from

which some models considered direct and indirect transmission. In this study a system of ordinary differential

equations is developed by splitting the class of infected individuals into symptomatic and asymptomatic infected

individuals with the incorporation of water treatment as a control strategy. Theoretically, the developed model is

analysed by studying the stability of equilibrium points. The results of the analysis shows that there exist a locally

stable disease free equilibrium point, E0 when R0 < 1 and endemic equilibrium, E∗ when R0 > 1. Numerically,

the identifiability of parameters is done by least square and Markov chain Monte Carlo methods. Both methods

are used as tools to analyze the developed model. The results show that the parameters are identifiable.
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1. Introduction

Cholera is a living testimony of poor sanitary conditions. It is a severe water borne infectious

disease caused by the vibrio cholerae bacterium [25]. Cholera has short incubation period, from

less than one day to five days. It is characterized by severe watery diarrhoea caused by the

production of cholera toxin by vibrio cholera bacteria in small intestine and it can cause death

within three to four hours if untreated. It is caused by eating food or by drinking unsafe water

which are contaminated with vibrio cholerae. It has been proved that pathogenic vibrio cholerae

can survive refrigeration and freezing in food supplies [24].

Cholera has been declared by World health organization (WHO) as the public health problem.

Hence, there is a need of finding better ways of dealing with cholera so as to reduce cases of

cholera in different countries in the world. According to WHO report, about 1.4 to 4.3 million

cases of cholera are reported each year worldwide and more than 140,000 deaths per year are

reported due to cholera. The cholera outbreak in Tanzania which began in August 2015 has

resulted in over 24,000 cases as of 20 April, 2016 and caused 378 deaths [27]. There are

several measures which have been suggested by WHO to prevent cholera these measures are

environmental sanitation, water treatment, provision of clean water, provision of education on

the effect of cholera [26].

A number of studies have been conducted to highlight the spread of infectious diseases in

deterministic context. For example, the mechanistic model of the SIRS form, for cholera in

[9], explains monthly cholera deaths counts in the twenty-six districts of the former British East

Indian province of Bengal during the period 1891-1940. The model incorporated both transmis-

sion due to human prevalence via a mass action term and transmission from the environmental

reservoir. One of the three models proposed is a two path model which includes a class for se-

vere infectious as well as a class for mild, in apparent infectious. However, the model does not

allow for feedback from infected individuals into the environment reservoir. The SIWR model

of [19, 5] allows for infections from both a water compartment (W) and direct transmission and

considers the feedback created by infected individuals contaminating the water. To allow for

the possibility of asymptomatic individuals excreting vibrio cholerae to water reservoir. The
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mathematical model with a compartment for asymptomatic infected individuals developed in

[11], considers only direct transmission for disease.

There exist literature that deals with measures of cholera treatment. For example, a mathe-

matical model for the dynamics of cholera with control measures such as educational campaign-

s, vaccination, sanitation, and treatment as control strategies in limiting disease are explained

in [4]. The mathematical model considers infected individual as a single compartment. How-

ever, it could be better to divide the infected individuals into two groups i.e., asymptomatic and

symptomatic infected individuals in order to observe the contribution of vibrio cholerae to the

environment from each compartment. The mathematical model (SIR-C) for modeling cholera

dynamics with a control strategy in Ghana proposed in [16]. The model considers the infected

individuals as a single compartment with limited numerical analysis. In this study we extend

the deterministic model developed in [16], by splitting infected compartment (I) into two sub

groups, symptomatic infected (Is) and asymptomatic infected (Ia) individuals in order to observe

the contribution of vibrio cholerae to the environment from each compartment.

2. Model Formulation and Theoretical Analysis

We formulate the basic model for the dynamics of cholera with two subpopulation; bacte-

ria (pathogen) and individuals. Individuals are subdivided into four developing compartments

S, Is, Ia and R, which all of them depend on time t, but the dependency has been dropped for

notational convenience. Here S denotes susceptible individuals who contract disease at rate β

and the influx of susceptible comes from a constant recruitment rate b and develop to infectious

classes at probabilities p,q respectively. The symptomatic infected individuals (Is) who become

new infected from S at a probability p and contribute vibrio cholerae through excretion to the

environment at a rate α1, dies due to natural death and due to disease at rates µ and d. The

asymptomatic infected individuals (Ia) who become new infected from S at a probability q and

contribute vibrio cholerae through excretion to the environment at a rate α2. R denotes the re-

covery of Is and Ia at rates r1 and r2 respectively. The concentration of vibrio cholerae in water

is denoted by B. The concentration of bacteria decrease due to mortality rate φ and due to water
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treatment at a rate δ . The total population is given by N(t) = S(t)+ Is(t)+ Ia(t)+R(t) at any

given time t. In formulating the model, the following assumptions are imposed:

(1) The population is closed (i.e., there is neither immigration nor emigration),

(2) The contribution of both symptomatic infected (Is) and asymptomatic infected (Ia) in-

dividuals to the population of vibrio cholerae in the aquatic environment at the rates α1

and α2 respectively,

(3) Human birth and death rates occurs at different rates (i.e., b and µ) respectively,

(4) Water treatment is included in model as a control strategy,

(5) The population is homogeneously mixed i.e., each individual within the population is

susceptible to disease.

In this study we assume that, each susceptible individual has equal chance of acquiring cholera

through the recruitment rate b and consuming water with vibrio cholerae in the reservoir at

the force of infection λ =
βB

κ +B
, where

B
κ +B

is the ratio of vibrio cholerae concetration and

κ is the concetration of vibrio cholerae in the water reservoir that will make a possibility of

50% of susceptible population infected. The cholera model can be described by the following

deterministic system of nonlinear ordinary differential equations:

dS
dt

= bN−β
B(t)S(t)
κ +B(t)

−µS(t),

dIs

dt
=

pβB(t)S(t)
κ +B(t)

− (µ + r1 +d) Is(t),

dIa

dt
=

qβB(t)S(t)
κ +B(t)

− (µ + r2) Ia(t),

dR
dt

= r1Is(t)+ r2Ia(t)−µR(t),

dB
dt

= α1Is(t)+α2Ia(t)− (δ +φ)B(t),

(2.1)

with initial conditions S(0)> 0, Is(0)≥ 0, Ia(0)≥ 0, R(0)≥ 0, B(0)≥ 0 and p+q = 1.

2.1. Computation of SIRB Basic Reproduction Number

In epidemiology a key parameter is the basic reproduction number R0, defined as the average

number of secondary infectious cases transmitted by a single primary infectious cases intro-

duced into a whole susceptible population [18]. To compute R0, we use the next generation
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matrix approach as described in [20]. It is obtained by taking the largest (dominant) eigenvalue

value (spectral radius) of [
∂Fi(E0)

∂Xi

] [
∂Vi(E0)

∂Xi

]−1

,

where Fi is the rate of appearance of new infection in compartment i, Vi is the net transition

between compartments, E0 is the disease free equilibrium and Xi stand for the terms in which

the infection is in progression i.e., Is, Ia and B in the model (2.1), that is

dIs

dt
=

pβBS
κ +B

− (µ + r1 +d) Is,

dIa

dt
=

qβBS
κ +B

− (µ + r2) Ia,

dB
dt

= α1Is +α2Ia− (δ +φ)B.

Using the linearization method, the associated matrix at DFE for F and V can be computed as

F =


0 0 pβS∗

κ

0 0 qβS∗
κ

0 0 0

 and V =


µ + r1 +d 0 0

0 µ + r2 0

−α1 −α2 δ +φ

.

For the inverse of matrix V to exist this condition should hold |V | 6= 0 and µ,r1,r2,α1,α2,δ ,µ and d

are positive. Hence the next generation matrix becomes

∣∣FV−1−λ I
∣∣=


pα1βS∗

κ(δ+φ)(µ+r1+d) −λ
α2 pβS∗

κ(µ+r2)(δ+φ)
pβS∗

κ(δ+φ)

qα1βS∗

κ(δ+φ)(µ+r1+d)
qα2βS∗

κ(µ+r2)(δ+φ) −λ
qβS∗

κ(δ+φ)

0 0 −λ

,

where

S∗ =
bN
µ

.

Then R0 can now be computed as

R0 =

(
α1β µ p+α2βqr1 +α1β pr2 +α2βdq+α2β µq

L

)
bN
µ

, (2.2)

where

L = δκµd +δκµ
2 +δκµr1 +δκdr2 +δκµr2 +δκr1r2 +δκµφ +φκµ

2 +κµφr1 +κφdr2 +κµφr2

+κφr1r2
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2.2. Positivity and Boundedness of Solutions

Model (2.1) can be shown that state variables are non-negative and the solutions remain

positive for t ≥ 0. Also, the parameters in our model are assumed to positive. We also, show

that the feasible solutions are bounded in a region such that Φ = (S, Is, Ia,R,B) ∈ R5
+.

Lemma 2.1. Let the initial values of the parameters be {S(0)≥ 0, Is(0)≥ 0, Ia(0)≥ 0, R(0)≥ 0,

B(0) ≥ 0} and N ≥ 0 ∈ Φ, then the solution set {S(t), Is(t), Ia(t),Rt ,B(t)} are positive for all

t ≥ 0

Proof. Consider the first Equation in (2.1)

dS
dt

= b̂− βBS
κ +B

−µS,

where b̂ = bN.

We have that,
dS
dt
≥− βBS

κ +B
−µS, (2.3)

by separating the variables of Equation (2.3) and integrating, we obtain

S(t)≥ S(0)e−
∫ t

0
βB(r)

κ+B(r)dr−µt ≥ 0.

Hence,

S(t)≥ 0.

By considering the second equation in Equation (2.1)

dIs

dt
=

pβBS
κ +B

− (µ + r1 +d) Is,

We have that
dIs

dt
≥−(µ + r1 +d) Is, (2.4)

By separating the variables of Equation (2.4) and integrating, we obtain

Is(t)≥ Is(0)e−(µ+r1+d)t ≥ 0.

Hence,

Is(t)≥ 0.
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By considering the third equation in Equation (2.1)

dIa

dt
=

qβBS
κ +B

− (µ + r2) Ia,

We have that

dIs

dt
≥−(µ + r2) Ia, (2.5)

By separating the variables of Equation (2.5) and integrating, we obtain

Ia(t)≥ Ia(0)e−(µ+r2)t ≥ 0.

Hence,

Ia(t)≥ 0.

The same method can be applied to the remaining equations in fourth and fifth in Equation (2.1)

to obtain

R(t)≥ R(0)e−µt ≥ 0.

Hence,

R(t)≥ 0.

B(t)≥ B(0)e−(δ+φ)t ≥ 0.

Hence,

B(t)≥ 0.

Therefore, the solution of model system (2.1) is always positive. This completes the proof.

Lemma 2.2. The solutions for the model system (2.1) are contained and remain in the region Φ

for all time t ≥ 0

Proof. Consider the total population

N(t) = S(t)+ Is(t)+ Ia(t)+R(t),

its time derivative satisfies

dN(t)
dt

=
dS
dt

+
dIs

dt
+

dIa

dt
+

dR
dt

. (2.6)
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Substituting the derivatives from Equation (2.1) to Equation (2.6) we get

dN(t)
dt

= b̂− (S(t)+ Is(t)+ Ia(t)+R(t))µ−dIs

dN(t)
dt

= b̂−N(t)µ−dIs

dN(t)
dt
≤ b̂−N(t)µ

dN(t)
dt

+N(t)µ ≤ b̂

The integration factor I.F= eµt . The solution becomes

N(t)≤ b̂/µ +Ce−µt ,

where C is constant. Then

lim
t→∞

N(t)≤ b̂/µ

However, for the bacteria variable the boundedness is shown as follows

dB
dt

= α1Is +α2Ia− (δ +φ)B,

but Is ≤ b̂/µ and Ia ≤ b̂/µ . Then

dB
dt
≤ α1b̂/µ +α2b̂/µ− (δ +φ)B.

By integrating this equation (I.F= e(δ+φ)t), we get this solution

B(t)≤ (α1 +α2)b̂
(δ +φ)µ

+Ae−(δ +φ)t,

where A is a constant. Then

lim
t→∞

B(t)≤ (α1 +α2)b̂
(δ +φ)µ

Hence, we have that 0≤ N(t)≤ b̂/µ and 0≤ B(t)≤ (α1 +α2)b̂
(δ +φ)µ

which implies that N and

all other variable (S, Is, Ia,R and B) is bounded and all the solutions starting in Φ approach,

enter or stay in Φ. This completes the proof.

2.3. Local Stability of the Disease Free Equilibrium
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Local stability of the DFE can be analyzed using R0 as the bifurcation parameter, that is

locally asymptotically stable if R0 < 1 and unstable when R0 > 1. The DFE of the model

system (2.1) is given by

E0 = (So, Io
s , I

o
a ,R

o,Bo) =

(
bN
µ

,0,0,0,0
)
.

Theorem 2.1. The DFE E0 of the system (2.1) is locally asymptotically stable if R0 < 1 and

unstable if R0 > 1.

Proof. The Jacobian matrix of the system at an arbitrary equilibrium is defined by

J =



− βB
κ+B −µ 0 0 0 −βS

κ+B + βBS
(κ+B)2

pβB
κ+B −(µ + r1 +d) 0 0 pβS

κ+B −
pβBS

(κ+B)2

qβB
κ+B 0 −(µ + r2) 0 qβS

κ+B −
qβBS
(κ+B)2

0 r1 r2 −µ 0

0 α1 α2 0 −(δ +φ)


.

The characteristic equation of the Jacobian matrix is given as follows

|J(E0)−λ I|=



−µ−λ 0 0 0 −βbN
κµ

0 −(µ + r1 +d)−λ 0 0 pβbN
κµ

0 0 −(µ + r2)−λ 0 qβbN
κµ

0 r1 r2 −µ−λ 0

0 α1 α2 0 −(δ +φ)−λ


.

Since the first and fourth columns of matrix above contains diagonal terms, they form eigenval-

ues λ1 =−µ which is negative. The other eigenvalues are obtained after reducing the first and

fourth columns and their corresponding rows, leading to

Q+(−µ− r1−d−λ )φr2 +(−µ− r1−d−λ )λ r2 +(−µ− r1−d−λ )λδ

+(−µ− r1−d−λ )φλ +(−µ− r1−d−λ )λ
2 +W = 0,

(2.7)

where

Q = (−µ− r1−d−λ )µδ +(−µ− r1−d−λ )µφ +(−µ− r1−d−λ )µλ +(−µ− r1−d−λ )δ r2

W = α2q
βbN
µκ

(µ +λ + r1 +d)+
pβbN

µκ
(α1µ +α1r2 +α1λ ) .



MARKOV CHAIN MONTE CARLO ANALYSIS OF CHOLERA EPIDEMIC 593

The simplification of Equation (2.7), leads to

A1−
(

A3−
α2qβbN

µκ
− α1 pβbN

µκ

)
λ

−
(

A2 +
α2r1 pβbN

µκ
− α1µ pβbN

µκ
− α1µβ r2 pN

µκ

)
= 0,

(2.8)

A1 =−λ
3− (2µ + r2 +δ +φ + r1 +d)λ

2,

A2 = µ
2
δ +µδ r1 +µδd +µ

2
φ +µφr1 +µφd +µδ r2 +δ r1r2 +δdr2 +µφr2 +φr1r2 +φdr2

− α2µqβbN
µκ

− α2r1βbN
µκ

− α2dqβbN
µκ

,

A3 = µδ +µφ +µr1 +µd +δ r2 +φr2 +µr2 + r1r2 + r2d +µδ +δ r1 +δd +µφ +µ2 +φr1 +φd,

and Equation (2.8), can be written as

B1 +B2λ −
(

B3 +B4−
α1µβ r2 pbN

µκ

)
= 0, (2.9)

where

B1 = λ
3 +(2µ + r2 +δ +φ +µ + r1 +d)λ

2,

B2 = µδ +µφ +µr1 +µd +δ r2 +φr2 +µr2 + r1r2 + r2d +µδ +δ r1 +δd

+µφ +µ2 +φr1 +φd− α2qβbN
µκ

− α1 pβbN
µκ

− α2r1 pbβN
µκ

,

B3 = µ
2
δ +µδ r1 +µδd +µ

2
φ +µφr1 +µφd +µδ r2 +δ r1r2 +δdr2 +µφr2 +φr1r2 +φdr2,

B4 =−
α2µqβbN

µκ
− α2r1βbN

µκ
− α2dqβbN

µκ
+

α2r1 pβbN
µκ

− α1µ pβbN
µκ

.

We can now write Equation (2.9), in the form

λ
3 +M1λ

2 +M2λ +M3 = 0, (2.10)



594 YOHANA MAIGA MARWA, SAMUEL MWALILI, ISAMBI SAILON MBALAWATA

where

M1 = 2µ + r2 +δ +σ + r1 +d,

M2 = µδ +µφ +µr1 +µd +φr2 +δ r2 +µr2 + r1r2 + r2d +µδ +δ r1 +δd

+µφ +µ
2 +φr1 +φd−

(
α2qβbN

µκ
+

α1 pβbN
µκ

+
α2r1 pbNβ

µκ

)
,

M3 = µ
2
δ +µδ r1 +µdδ +µ

2
φ +µφr1 +µφd +µδ r2 +δ r1r2 +δdr2 +µφr2 +φr1r2

+φdr2−
(

α2qµβ

κ
+

qα2r1β

κ
+

α2dqβ

κ
+

α1µ pβ

κ
+

α1r2 pβ

κ

)
bN
µ

.

To ensure that the remaining eigenvalues of Equation (2.10) have negative real parts, we em-

ploy Routh-Hurwiz stability criterion [17]. The conditions are M1 > 0, M3 > 0 and also,

M1M2 > M3. So, M1 is already non-negative and M3 is non-negative if and only if R0 < 1.

The disease free equilibrium is locally asymptotically stable if R0 < 1. We re-write M3 as

M3 = (1−R0)L,

when R0 < 1, M3 is positive and R0 > 1, M3 is negative, under the condition that L is always

positive, which is true since the values of the parameters are all positive. This proofs Theorem

2.3 i.e. the disease free equilibrium of the system is locally asymptotically stable if R0 < 1 and

unstable if R0 > 1. This completes the proof.

Theorem 2.2. The DFE is globally asymptotically stable if R0 < 1

Proof. For globally asymptotically stable, we use a concept of Metzler matrices proposed by

[2]. The system must be written as

dX
dt

= M(X,Z)

dZ
dt

= N(X,Z),N(X,0) = 0,

where X ∈ Rm denotes the uninfected compartments and Z ∈ Rn denotes the infected compart-

ments. The DFE is globally asymptotically stable for the system provided that R0 < 1 and

conditions stated below should holds,

H1: The system is defined on a positively invariant set Ω of the non-negative orthant.

That is
dX
dt

= M(X,0),X∗ is globally asymptotically stable.
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H2 : N(X,Z) = G− N̄(X ,Z), N̄(X,Z)≥ 0 for (X ,Z) ∈Ω.

Here G =
∂N
∂Z

(X∗,0) is an M-matrix (the off diagonal element of G are non-negative).

Therefore

X = (S,R) and Z = (Is, Ia,B)

M(X,Z) =
d
dt

(
S
R

)
=

bN − βBS
κ+B −µS

r1Is −r2Ia −µR


At the disease free equilibrium, Z = B, Is, Ia, but Z = 0, so ,B = 0, Ia = 0, Is = 0, and hence leads

to

Ṡ = bN−µS and Ṙ =−µR,

and their corresponding solutions becomes

S(t) =
bN
µ

+S(0)e−µt and R(t) = R(0)e−µt

It is true that R(t)→ 0 and S(t)→ bN
µ

as t→ ∞, regardless of the values of R(0) and S(0).

Hence, we conclude that the system is globally asymptotically stable at the equilibrium point(
bN
µ

,0
)

, thus H1 are satisfied. Again the matrix N(X,Z) is given by

N(X,Z) =


pβBS
κ+B −(µ + r1 +d) Is

qβBS
κ+B −(µ + r2) Ia

α1Is +α2Ia −(δ +φ)B


and

G =


−(µ + r1 +d) 0 0

0 −(µ + r2) 0

0 0 −(δ +φ)


From condition H2 we get

N̄(X ,Z) = G−N(X,Z). Thus

N̄(X ,Z) =−


pβBS
κ+B
qβBS
κ+B

α1Is +α2Ia

 .
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Hence, we observe that N̄(X ,Z) is less than zero i.e., N̄(X ,Z)< 0. Therefore, H2 is not satisfied.

We conclude that, the disease free equilibrium may not be globally asymptotically stable. This

completes the proof.

2.4. Endemic Equilibrium Point and Local Stability

The endemic equilibrium points of the model system (2.1) is given by E∗ = (S∗, I∗s , I
∗
a ,R
∗,B∗)

with Is 6= 0, Ia 6= 0 and B 6= 0. It can be obtained by equating the RHS of each equation of the

model system (2.1) equal to zero, which exists for R0 > 1.

Theorem 2.3. If R0 > 1, the endemic equilibrium E∗ exists and is locally asymptotically stable

Proof. The local stability of the endemic equilibrium is established from the eigenvalues of the

Jacobian matrix evaluated at endemic equilibrium, that is

J(U∗) =



− βB
κ+B −µ 0 0 0 −βS

κ+B + βBS
(κ+B)2

PβB
κ+B −(µ + r1 +d) 0 0 pβS

κ+B −
pβBS

(κ+B)2

qβB
κ+B 0 −(µ + r2) 0 qβS

κ+B −
qβBS
(κ+B)2

0 r1 r2 −µ 0

0 α1 α2 0 −(δ +φ)


From which it is observed that λ = −µ < 0 is an eigenvalues. The other four eigenvalues can

be obtained from the characteristic polynomial of the 4×4 block matrix.

J1 =


− βB

κ+B −µ 0 0 −βS
κ+B + βBS

(κ+B)2

pβB
κ+B −(µ + r1 +d) 0 pβS

κ+B −
pβBS

(κ+B)2

qβB
κ+B 0 −(µ + r2)

qβS
κ+B −

qβBS
(κ+B)2

0 α1 α2 −(δ +φ)


From the matrix above

tr(J1) =
−βB
κ +B

−µ− (µ +d + r1)− (µ + r2)− (δ +φ)< 0.

The remaining condition is to have a stable system, that is

Det(J1)> 0.
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The easier way to find the determinant of J1 is to expand using column 2. Hence, we have

|J1|= D1−
[

D2 +α2(µ + r1 +d)
(
−µ +

βB
κ +B

)
qβBS

(κ +B)2 +α2(µ + r1 +d)
qβ 2BS
κ +B

]
> 0,

where

D1 = α2(µ + r1 +d)
(

µ +
βB

κ +B

)(
qβS

κ +B

)
+α2(µ + r1 +d)

qβ 2B2S
κ +B

+α1(µ + r2)

(
βB

κ +B
+µ

)(
pβS

κ +B
− pβBS

(κ +B)2

)
+α1(µ + r2)

pβB
κ +B

(
− βS

κ +B
+

βBS
(κ +B)2

)
,

D2 = (µ + r1 +d)(µ + r2)(δ +φ)

(
µ +

βB
κ +B

)
,

D3 = D2 +α2(µ + r1 +d)
(
−µ +

βB
κ +B

)
qβBS

(κ +B)2 +α2(µ + r1 +d)
qβ 2BS
κ +B

.

For Det(J1)> 0, this condition should hold D1 > D3.

Since tr(J1)< 0 and Det(J1)> 0. We conclude that the system is stable. Thus

(α1β µ p+α2βqr1 +α1β pr2 +α2βdq+α2β µq) bN
µ

L
> 1,

implying that, from Equation (2.2), R0 > 1. Therefore, the endemic equilibrium is locally

asymptotically stable when R0 > 1. This completes the proof.

2.5. Global Stability of Endemic Equilibrium Point

Theorem 2.4. If R0 > 1, the endemic equilibrium E∗ of the model system (2.1) is globally

asymptotically stable.

Proof. To establish the global stability of endemic equilibrium E∗, we construct the derivative

of positive Lyapunov function V as follows;

dV
dt

=

(
S−S∗

S

)
dS
dt

+

(
Is− I∗s

Is

)
dIs

dt
+

(
Ia− I∗a

Ia

)
dIa

dt
+

(
R−R∗

R

)
dR
dt

+

(
B−B∗

B

)
dB
dt

,

(2.11)
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where

dS
dt

= bN− βBS
κ +B

−µS,

dIs

dt
=

pβBS
κ +B

− (µ + r1 +d)Is,

dIa

dt
=

qβBS
κ +B

− (µ + r2)Ia,

dR
dt

= r1Is + r2Ia−µR,

dB
dt

= α1Is +α2Ia− (δ +φ)B.

By direct substitution to Equation (2.11) we get

dV
dt

=

(
S−S∗

S

)(
bN− βBS

κ +B
−µS

)
+

(
Is− I∗s

Is

)(
pβBS
κ +B

− (µ + r1 +d)Is

)
+

(
Ia− I∗a

Ia

)(
qβBS
κ +B

− (µ + r2)Ia

)
+

(
R−R∗

R

)
(r1Is + r2Ia−µR)

+

(
B−B∗

B

)
(α1Is +α2Ia− (δ +φ)B) .

(2.12)

Also, the endemic equilibrium of the model system (2.1) is given by E∗ = (S∗, I∗s , I
∗
a ,R
∗,B∗).

It can be obtained by equating the right hand side of each equation of the model system (2.1)

equal to zero. Thus

dS
dt

= bN−β
BS

κ +B
−µS = 0,

dIs

dt
=

pβBS
κ +B

− (r1 +µ +d) Is = 0,

dIa

dt
=

qβBS
κ +B

− (r2 +µ) Ia = 0,

dR
dt

= r1Is + r2Ia−µR = 0,

dB
dt

= α1Is +α2Ia− (δ +φ)B = 0.

(2.13)
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Therefore, Equation (2.12) deduce to

dV
dt

=

(
1− S∗

S

)[
bN− βB(S−S∗)

κ +B
−µ(S−S∗)

]
,

+

(
1− I∗s

Is

)[
pβB(S−S∗)

κ +B
− (µ + r1 +d)(Is− I∗s )

]
,

+

(
1− I∗a

Ia

)[
qβB(S−S∗)

κ +B
− (µ + r2)(Ia− I∗a )

]
,

+

(
1− R∗

R

)
[r1(Is− I∗s )+ r2(Ia− I∗a )−µ(R−R∗)]

+

(
1− B∗

B

)
[α1(Is− I∗s )+α2(Ia− I∗a )− (δ +φ)(B−B∗)]

(2.14)

dV
dt

= bN− βB(S−S∗)
κ +B

−µ(S−S∗)− bNS∗

S
+

S∗βB(S−S∗)
S(κ +B)

+
µS∗(S−S∗)

S

+
pβB(S−S∗)

κ +B
− (µ + r1 +d)(Is− I∗s )−

I∗s pβB(S−S∗)
Is(κ +B)

+
I∗s (µ + r1 +d)(Is− I∗s )

Is

+
qβB(S−S∗)

κ +B
− (µ + r2)(Ia− I∗a )−

I∗a qβB(S−S∗)
Ia(κ +B)

+
I∗a (µ + r2)(Ia− I∗a )

Ia
+ r1(Is− I∗s )

+ r2(Is− I∗s )−µ(R−R∗)− R∗r1(Is− I∗s )
R

− R∗r2(Ia− I∗a )
R

+
R∗µ(R−R∗)

R
+α1(Is− Is)

+α2(Ia− Ia)− (δ +φ)(B−B∗)− B∗α1(Is− I∗s )
B

− B∗α2(Ia− I∗a )
B

+
B∗(δ +φ)(B−B∗)

B
(2.15)

Putting the positive and negative terms together in the system (2.15) we obtained

dV
dt

= M−Z, (2.16)

where

M = bN +
S∗βB(S−S∗)

S(κ +B)
+

µS∗(S−S∗)
S

+
pβB(S−S∗)

κ +B
+

I∗s (µ + r1 +d)(Is− I∗s )
Is

+
qβB(S−S∗)

κ +B
+

I∗a (µ + r2)(Ia− I∗a )
Ia

+ r1(Is− I∗s )+ r2(Is− I∗s )+
R∗µ(R−R∗)

R

+α1(Is− Is)+α2(Ia− Ia)+
B∗(δ +φ)(B−B∗)

B
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and

Z =
βB(S−S∗)

κ +B
+µ(S−S∗)+

bNS∗

S
+(µ + r1 +d)(Is− I∗s )+

I∗s pβB(S−S∗)
Is(κ +B)

+(µ + r2)(Ia− I∗a )

+
I∗a qβB(S−S∗)

Ia(κ +B)
+µ(R−R∗)+

R∗r1(Is− I∗s )
R

+
R∗r2(Ia− I∗a )

R
+(δ +φ)(B−B∗)

+
B∗α1(Is− I∗s )

B
+

B∗α2(Ia− I∗a )
B

Then, from Equation (2.16), if M < Z, then
dV
dt

will be negative, implying that
dV
dt

< 0. How-

ever, it follows that

dV
dt

= 0 if and only if S = S∗, Is = I∗s , Ia = I∗a ,R = R∗,B = B∗.

Therefore, the largest compact invariant set in[
(S∗, I∗s , I

∗
a ,R
∗,B∗) ∈Ω :

dV
dt

= 0
]
,

is the singleton E∗, where E∗ is the endemic equilibrium of the model system (3.1). By

LaSalles’s invariant principle, it implies that endemic equilibrium E∗ is globally asymptotically

stable in Ω if M < Z. This completes the proof.

3. Numerical Results and Discussions

In this section, simulation and parameter estimation of the developed model in (2.1) is carried

using least square and adaptive Markov chain Monte Carlo methods as in [13]. Data are created

by solving ODEs and then corrupted it with relative Gaussian noise whose standard deviation

is 0.5. The parameter values used are literature values and by substituting these values to (2.1),

the simulated ODEs (2.1) leads to the results shown in Figure 2. From Figure 1, we see that,

susceptible variable is decreasing this is due to the fact that some of its members are immigrating

to Ia and Is compartments. As the time goes both Ia and Is are increasing and later, decrease

after a period of time this is due to control measures taken, R is increasing exponentially this

implies that all individuals reaching the compartment R will never come back to the system and

are supposed to remain within it.
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FIGURE 1. Time evolution of the susceptible, symptomatic, asymptomatic in-

fected, recovered and bacteria classes.

The parameters described in model system (2.1) were estimated by least- squares method.

This involves minimizing the sum of squares of residuals. The results are shown in Table 1.

From Table 1, it is observed that estimates of the parameters are indeed close to the literature

TABLE 1. Estimated cholera epidemic model parameters by least square method.

Parameter b β κ α1 α2 d δ φ r1 r2 p q µ

True value 0.000072 0.35 106 1.5 0.1 0.00065 0.05 0.025 0.14 0.5 0.7 0.3 0.000044

Source [1] [15] [15] [1] [1] [14] estimated [1] [1] [1] [1] [1] [8, 1]

Estimates 0.000066 0.32 887729 1.4 0.092 0.000586 0.045 0.022 0.12 0.46 0.644 0.27 0.0000402

values which, in this case, are treated as true values. This implies that, least square method

performs well to the cholera model developed.

In MCMC parameter sampling, to know weather our chains have converged or not, we use

assessment methods such as summary of MCMC, trace plots, scater plots, marginal posterior

distribution and autocorrelation functions. The initial values used are
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S = 1000000, Is = 1, Ia = 1,R = 1,B = 1 and we generated 100000 samples using initial covari-

ance of 0.1. Also, we calculated the basic reproduction number R0 using true values, estimated

values and MCMC mean. The R0 value are 5.7, 6.5 and 5.01 respectively.

3.1. A Summary of an MCMC Object

The results gives the posterior means, standard deviations and posterior quantiles for each

chain and convergence diagnostic. From Table 2, the mean values are close to the least square

TABLE 2. A summary of an MCMC of parameter value.

Parameter b β κ α1 α2 d δ φ r1 r2 p q µ

mean 0.000076 0.37 885840 1.427 0.14 0.000585 0.07 0.0225 0.146 0.50 0.68 0.5 0.0000396

std 0.000074 0.065 1.1905 0.06 0.05 2.14e-16 0.07 0.022 0.03 0.054 0.23 0.3 0.0000394

MCerr 0.007 0.009 0.15 0.11 0.05 0.05 0.009 0.02 0.006 0.009 0.03 0.05 0.003

tau 133.18 2256.9 4855.6 4953.8 7375.9 2386.6 5235.6 129.77 1026.4 6643.6 2034.6 10753 3078.6

geweke 0.84 0.83 1 0.9 0.13 0.05 0.27 0.79 0.76 0.74 0.9 0.13 0.9

estimates.

To check the consistency of the uncertainty estimates in parameters, we computed 95% cred-

ible intervals (CI) corresponding to 2.5% CI and 97.5% CI as shown in Table 3. It is observed

that the true values are within the credible intervals, which means that the method performs

well..

TABLE 3. Credible intervals for MCMC samples showing quantiles correspond-

ing to 2.5% CI and MCMC 97.5% CI.

Parameter b β κ α1 α2 d δ φ r1 r2 p q µ

value 0.000072 0.35 106 1.5 0.1 0.00065 0.05 0.025 0.14 0.5 0.7 0.3 0.000044

2.5% CI 0.000071 0.34 930019.89 1.39 0.085 0.00064 0.04 0.019 0.138 0.45 0.62 0.233 0.000042

97.5% CI 0.0000724 0.38 1085041.99 1.67 0.145 0.29 0.054 0.05 0.143 1.7 1.17 0.33 0.000084

3.2. Trace Plot
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A trace plot shows the iteration number against the value of the draw of the parameter at

each iteration [6]. Through this we check whether the chains get stuck in a certain areas of the

parameter space, which indicates bad mixing.

FIGURE 2. Trace plots of estimated unknown parameters b and β using MCMC

method.

From Figures 2 to 4, we observe that the chains seem to be stationary, there is no obvious

trend or stuck, which implies good mixing of chain.

3.3. Autocorrelation Function

The autocorrelation functions measure how well the MCMC sampler performs by measuring

the autocorrelation between parameters θ
i and θ

i+q at lag q. The smaller the autocorrelation

values, the better mixing of the chains. The autocorrelation values for Figures 5 and 6 are

decreasing exponentially and stabilizing around zero, this proves that the parameters are identi-

fiable.

3.4. The Marginal Posterior Distribution of Parameters
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FIGURE 3. Trace plots of estimated unknown parameters p and q using MCMC

method.

FIGURE 4. Trace plots of estimated unknown parameters r2 and α1 using M-

CMC method.
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(A) Autocorrelation function of b with 150 lags. (B) Autocorrelation function of φ with 150 lags.

FIGURE 5. plots of Autocorrelation function of b and φ with 150 lags.

(A) Autocorrelation function of δ with 150 lags. (B) Autocorrelation function of d with 150 lags.

FIGURE 6. plots of Autocorrelation function of δ and d with 150 lags.

From the MCMC figures, we get the information related to correlation, uncertainty, identi-

fiability of parameters, convergence of Markov chain to the target distribution etc [23]. The

distributions that are skewed to the left have a negative coefficient of skewness and that skewed

to the right have a positive value and the skewness for normal distribution is 0 and the kurtosis

for normal distribution is 3 [7]. A ratio greater than 3 indicates more values in the neighborhood

of the mean and a ratio less than 3, indicates that the curve is flatter than the normal. See, Table

4 and Figure 7 for more details. However, it should be noted that parameters for ODEs can take

asymptotic properties of any distribution.

3.5. Predictive MCMC Plots

We check the accuracy of the model through prediction plots. From Figure 8, the model
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TABLE 4. The kurtosis and skewness of parameters

Parameter b β κ α1 α2 d δ φ r1 r2 p q µ

value 0.000072 0.35 106 1.5 0.1 0.00065 0.05 0.025 0.14 0.5 0.7 0.3 0.000044

Kurtosis 5.83 3.8 3.05 3.6 3.8 2.8 3.1 2.5 2.4 2.5 3.8 2.7 4.1

Skewness 0.8 0.6 -1.08 -0.3 1.0 1.1 0.1 0.4 0.3 0.3 0.8 0.4 1.1

FIGURE 7. Posterior distribution of unknown parameters with 10000 iterations

by defining the normal with large variance as the prior distribution on the shape

parameter.

predicted the data at 95% posterior limits which seen with the gray colour around the model

solution. The variance of predictive distribution reflects the predictive accuracy of the model.

4. Conclusion

In this paper, we formulated a new SIRB epidemic model by splitting the infected compart-

ment into two classes (Is and Ia) with the aim of modeling cholera epidemics. We have derived
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FIGURE 8. Model solution using MCMC estimates. Here, y[1], y[2], y[3], y[4],

y[5] stand for S, Is, Ia,R,B respectively.

the basic reproduction number (R0), local stability of the disease free equilibrium, endemic

equilibrium point and global stability of endemic equilibrium point.

The basic reproduction number (R0) is calculated and its value is seen to be 5.7 which agrees

with the one found in [22] and is greater than 1. We observe that the disease was capable to

invade susceptible population, but its spread was possibly stopped due to intervention and other

measures taken.

The model parameters have been estimated by applying least squares estimation with the

aim of fitting the SIRB ordinary differential equations to data. Also, Markov chain Monte

Carlo (MCMC) method is used to estimate unknown parameters and other characteristics of the

target posteriors by generating samples. Graphical representations are presented to illustrate

and support the analytical results. The predictive distributions generated predicted the model to

a large degree of accuracy. Finally, it is observed that both least squares and MCMC methods

performed well to the cholera model developed.
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As a future work, the model will be validated by using real data of cholera cases collected

from Singida, Dodoma and Dar es salaam regions in Tanzania. The mathematical model devel-

oped in this study will be extended to continuous time Markov chain and stochastic models.
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