ESTIMATION OF EIGEN FUNCTIONS TO THE NEW TYPE OF SPECTRAL PROBLEM

KARWAN H.F JWAMER*, ARYAN ALI. M
Department of Mathematics, Faculty of Science and Science Education, School of Science, University of Sulaimani, Kurdistan Region, Sulaimani, Iraq

Abstract

In this paper, we study some properties of eigenvalues and the corresponding eigen functions of new type of spectral problem (1)-(4).

Keywords: Spectral problem, eigenvalues, eigen functions.
2010 AMS Subject Classification: 47E05, 34B05, 34B07

1. Introduction

In this paper, we study the new type of spectral problem T_{o} which is defined by:

$$
\begin{gather*}
-y^{\prime \prime}(x)+y^{\prime}(x)=\lambda^{2} \rho(x) y(x), x \in[0, a], \tag{1}\\
y(0)=y^{\prime}(0)=y(a)+y^{\prime}(a)=0, \tag{2}\\
\int_{0}^{a} y^{\prime}(x) \bar{y}(x) d x=\tau^{2}(\tau \text { is constant }), \tag{3}\\
\left(\int_{0}^{a} \rho(x)|y(x)|^{2} d x\right)^{\frac{1}{2}}=1, \tag{4}
\end{gather*}
$$

where λ is a spectral parameter, and $\lambda=\delta+\mathrm{i} \sigma$,where $\delta, \sigma \in \mathrm{R}$, and $\mathrm{i}=\sqrt{-1}$. Let $a>0$, we assume that $\rho(x)=\rho$ is a constant and let m and M be fixed such that $0<m \leq M$. Let

[^0]Received May 6, 2012
$V^{+}[0, a]$ denotes the family of allpositive integrable functions $\rho(x)$ on the closed interval [$0, a$] that satisfy the condition $0<m \leq \rho(x) \leq M$, equipped with usual L_{1} metric. In what follows we refer to these functions as weight functions. Here we attempt to specify the properties of eigenvalues of the spectral problem T_{o} and estimating the eigen functions corresponding to the eigenvalues.For the first time an Italian physicist T.Regge[7] has studied thedifferential equation $-y^{\prime \prime}+q(x) y=\lambda^{2} \rho(x) y(x), x \in(0, a)$ with the boundary condition $y(0)=0, y^{\prime}(a)-i \lambda y(a)=0$, andwas considered by who showed that the system of eigen functions of this problem are completed and studied asymptoticbehavior of eigenvalues of this problem $\rho(x)=1$. Kravitsky [6] specified a class of functions that allowed expansion in uniformly convergent series in eigen functions and associated functions in the Regge problem when $\rho(x) \equiv 1$. The present time they are many Arthurs studied the estimation of eigen functions to the equation $-y^{\prime \prime}+q(x) y=\lambda^{2} \rho(x) y(x)$ but with different boundary conditions for more known about their works see [1-5].

2. Features of Eigenvalues of the problem T_{o}

Here we determine the properties of the eigenvalues of our problem T_{o} with the given boundary conditions.

Theorem 1: Let $y(x)$ be an eigen function corresponding to the eigenvalue λ of the problem T_{o}, and $\rho(x)=\rho$ is a constant, then: (i) If $\delta \neq 0$, then λ is real.
(ii) If $\sigma \neq 0$, then λ is complex.

Proof: Multiplying equation (1) by $\bar{y}(x)$ and integrating the obtained equation from0 to a, yields:

$$
-\int_{0}^{a} y^{\prime \prime}(x) \bar{y}(x) d x+\int_{0}^{a} y^{\prime}(x) \bar{y}(x) d x=\lambda^{2} \int_{0}^{a} \rho(x) y(x) \bar{y}(x) d x
$$

$$
\begin{aligned}
& \left.-\bar{y}(x) y^{\prime}(x)\right]_{0}^{a}+\int_{0}^{a} y^{\prime}(x) \bar{y}^{\prime}(x) d x+\int_{0}^{a} y^{\prime}(x) \bar{y}(x) d x=\lambda^{2} \int_{0}^{a} \rho(x)|y(x)|^{2} d x \\
& -\bar{y}(a) y^{\prime}(a)+\bar{y}(0) y^{\prime}(0)+\int_{0}^{a} y^{\prime}(x) \bar{y}^{\prime}(x) d x+\int_{0}^{a} y^{\prime}(x) \bar{y}(x) d x=\lambda^{2} \int_{0}^{a} \rho(x)|y(x)|^{2} d x
\end{aligned}
$$

By using boundary conditions (2), we get:
$\bar{y}(a) y(a)+\int_{0}^{a}\left|y^{\prime}(x)\right|^{2} d x+\int_{0}^{a} y^{\prime}(x) \bar{y}(x) d x=\lambda^{2} \int_{0}^{a} \rho(x)|y(x)|^{2} d x$
In view of condition (3) and normalized condition (4), we have:
$|y(a)|^{2}+\int_{0}^{a}\left|y^{\prime}(x)\right|^{2} d x+\tau^{2}=\lambda^{2}$
From equation (1)and the conditions (2)-(4) replace $y(x)$ by $\bar{y}(x)$, we get:

$$
\begin{gathered}
-\bar{y}^{\prime \prime}(x)+\bar{y}^{\prime}(x)=\overline{\lambda^{2}} \rho(x) \bar{y}(x) \\
\bar{y}(0)=\bar{y}^{\prime}(0)=\bar{y}(a)+\bar{y}^{\prime}(a)=0, \int_{0}^{a} \bar{y}^{\prime}(x) y(x) d x=\tau^{2} .
\end{gathered}
$$

Multiplying theabove differential equation by $y(x)$ and integrate from 0 up to a, we obtain:
$|y(a)|^{2}+\int_{0}^{a}\left|y^{\prime}(x)\right|^{2} d x+\tau^{2}=\overline{\lambda^{2}}(6)$
Subtracting equation (6) from equation (5) yields:
$\lambda^{2}-\overline{\lambda^{2}}=0 \rightarrow(\lambda-\bar{\lambda})(\lambda+\bar{\lambda})=0,(\lambda-\bar{\lambda})=0 \operatorname{or}(\lambda+\bar{\lambda})=0$, then:
(i) If $\delta \neq 0, \therefore(\lambda+\bar{\lambda}) \neq 0, \operatorname{thus}(\lambda-\bar{\lambda})=0 \rightarrow \lambda=\bar{\lambda}$, then λ is real.
(ii) If $\sigma \neq 0$, so $(\lambda-\bar{\lambda}) \neq 0$, hence $(\lambda+\bar{\lambda})=0 \rightarrow \lambda=-\bar{\lambda}$, then λ is complex.

3. Estimation of Eigen functions of problem $\boldsymbol{T}_{\boldsymbol{o}}$

In this section, we estimate the eigen function $y(x)$ corresponding to eigenvalue λ of problem T_{o}.

Theorem 2: Let λ be an eigenvalue corresponding to the eigen function $y(x)$ of problem T_{o}, and $\rho(x) \in L^{+}[0, a]$, and $\delta \neq 0$,then
$\lim _{n \rightarrow \infty} \frac{\max _{x \in[0, a]}|y(x)|}{|\lambda|^{\frac{1}{2}}}=A$, where $A=\frac{\sqrt{2}}{\sqrt[4]{m}}$.

Proof:

Let us consider the identity:

$$
\begin{aligned}
|y(x)|^{2} & =y(x) \bar{y}(x)=\int_{0}^{x}\left[\bar{y}(t) y^{\prime}(t)+y(t) \bar{y}^{\prime}(t)\right] d t+|y(0)|^{2} \\
& =\int_{0}^{x} \frac{\sqrt{\rho(t)}\left[\bar{y}(t) y^{\prime}(t)+y(t) \bar{y}^{\prime}(t)\right]}{\sqrt{\rho(t)}} d t+|y(0)|^{2}
\end{aligned}
$$

From inequality $(t) \geq m$, we get:

$$
\begin{aligned}
& |y(x)|^{2} \leq \int_{0}^{x} \frac{\sqrt{\rho(t)}\left|\bar{y}(t) y^{\prime}(t)+y(t) \bar{y}^{\prime}(t)\right|}{\sqrt{m}} d t+|y(0)|^{2} \\
& \leq \frac{1}{\sqrt{m}}\left[\int_{0}^{x} \sqrt{\rho(t)}\left|\bar{y}(t) y^{\prime}(t)\right| d t+\int_{0}^{x} \sqrt{\rho(t)}\left|y(t) \bar{y}^{\prime}(t)\right| d t\right]+|y(0)|^{2} \\
& \leq \frac{1}{\sqrt{m}}\left[\int_{0}^{x} \sqrt{\rho(t)}|\bar{y}(t)|\left|y^{\prime}(t)\right| d t+\int_{0}^{x} \sqrt{\rho(t)}|y(t)|\left|\bar{y}^{\prime}(t)\right| d t\right]+|y(0)|^{2} \\
& \quad=\frac{2}{\sqrt{m}} \int_{0}^{x} \sqrt{\rho(t)}|y(t)|\left|y^{\prime}(t)\right|+|y(0)|^{2}
\end{aligned}
$$

And from boundary condition (2), $y(0)=0$, therefore
$|y(x)|^{2} \leq \frac{2}{\sqrt{m}} \int_{0}^{x} \sqrt{\rho(t)}|y(t)|\left|y^{\prime}(t)\right|$
$\leq \frac{2}{\sqrt{m}} \int_{0}^{a} \sqrt{\rho(t)}|y(t)|\left|y^{\prime}(t)\right|$.
Using Bunyakovsky's inequality on the last inequality, we shall obtain:
$|y(x)|^{2} \leq \frac{2}{\sqrt{m}}\left[\int_{0}^{a} \rho(t)|y(t)|^{2} d t\right]^{\frac{1}{2}}\left[\int_{0}^{a}\left|y^{\prime}(t)\right|^{2} d t\right]^{\frac{1}{2}}$
From normality condition (4) we have: $\left[\int_{0}^{a} \rho(t)|y(t)|^{2} d t\right]^{\frac{1}{2}}=1$, hence $|y(x)|^{2} \leq \frac{2}{\sqrt{m}}\left[\int_{0}^{a} \quad\left|y^{\prime}(t)\right|^{2} d t\right]^{\frac{1}{2}}$

From equation (5), we have:
$\int_{0}^{a}\left|y^{\prime}(x)\right|^{2} d x=\lambda^{2}-|y(a)|^{2}-\tau^{2}$,therefore equation (7) becomes:
$|y(x)|^{2} \leq \frac{2}{\sqrt{m}}\left[\lambda^{2}-|y(a)|^{2}-\tau^{2}\right]^{\frac{1}{2}}=\frac{2}{\sqrt{m}}\left[\lambda^{2}-\left(|y(a)|^{2}+\tau^{2}\right)\right]^{\frac{1}{2}}$
And since $\delta \neq 0$, so by theorem (1) λ is real, hence $\lambda^{2}=|\lambda|^{2}$, thus the last inequality becomes:
$|y(x)|^{2} \leq \frac{2}{\sqrt{m}}\left[|\lambda|^{2}-\left(|y(a)|^{2}+\tau^{2}\right)\right]^{\frac{1}{2}}=\frac{2|\lambda|}{\sqrt{m}}\left[1-\frac{\left(|y(a)|^{2}+\tau^{2}\right)}{|\lambda|^{2}}\right]^{\frac{1}{2}}$
Or
$|y(x)|^{2} \leq \frac{2}{\sqrt{m}}|\lambda| \rightarrow|y(x)| \leq|\lambda|^{\frac{1}{2}} \sqrt{\frac{2}{\sqrt{m}}}$
And since x is any value in the interval $[0, a]$, thus
$\max _{x \in[0, a]}|y(x)| \leq|\lambda|^{\frac{1}{2}} \sqrt{\frac{2}{\sqrt{m}}} \rightarrow \frac{\max _{x \in[0, a]}|y(x)|}{|\lambda|^{\frac{1}{2}}} \leq \frac{\sqrt{2}}{\sqrt[4]{m}}$
Hence
$\lim _{n \rightarrow \infty} \frac{\max _{x \in[0, a]}|y(x)|}{|\lambda|^{\frac{1}{2}}}=A$, where $A=\frac{\sqrt{2}}{\sqrt[4]{m}}$.

Theorem 2.3.2: Let ρ be a constant in the problem T_{o} and if $y(x)$ is an eigen function of the problem T_{o}, then $y(x)$ satisfy the inequality
$\frac{1}{\sqrt{|\lambda|}} K_{1} \leq \max _{x \in[0, a]}|y(x)| \leq \frac{1}{\sqrt{|\lambda|}} K_{2}$,
Where K_{1} and K_{2} are constants.

Proof:

From equation (1), we have $y^{\prime \prime}(x)-y^{\prime}(x)+\lambda^{2} \rho y(x)=0$ this is second order linear differential equation with constant coefficients, and then general solution is:

$$
y(x)=e^{\frac{1}{2} x}\left[c_{1} e^{i \sqrt{\lambda^{2} \rho-\frac{1}{4}} x}+c_{2} e^{-i \sqrt{\lambda^{2} \rho-\frac{1}{4}} x}\right]
$$

Applying the condition $y(0)=0$, yields $c_{2}=-c_{1}$, then we have

$$
y(x)=c_{1}\left[e^{\left(\frac{1}{2}+i \sqrt{\lambda^{2} \rho-\frac{1}{4}}\right) x}-e^{\left(\frac{1}{2}-i \sqrt{\lambda^{2} \rho-\frac{1}{4}}\right) x}\right]
$$

Then

$$
y^{\prime}(x)=c_{1}\left[\left(\frac{1}{2}+i \sqrt{\lambda^{2} \rho-\frac{1}{4}}\right) e^{\left(\frac{1}{2}+i \sqrt{\lambda^{2} \rho-\frac{1}{4}}\right) x}-\left(\frac{1}{2}-i \sqrt{\lambda^{2} \rho-\frac{1}{4}}\right) e^{\left(\frac{1}{2}-i \sqrt{\lambda^{2} \rho-\frac{1}{4}}\right) x}\right]
$$

From the boundary condition $y(a)+y^{\prime}(a)=0$, we obtain:
$c_{1}\left[e^{\left(\frac{1}{2}+i \sqrt{\lambda^{2} \rho-\frac{1}{4}}\right) a}-e^{\left(\frac{1}{2}-i \sqrt{\lambda^{2} \rho-\frac{1}{4}}\right) a}\right]+$
$c_{1}\left[\left(\frac{1}{2}+i \sqrt{\lambda^{2} \rho-\frac{1}{4}}\right) e^{\left(\frac{1}{2}+i \sqrt{\lambda^{2} \rho-\frac{1}{4}}\right) a}-\left(\frac{1}{2}-i \sqrt{\lambda^{2} \rho-\frac{1}{4}}\right) e^{\left(\frac{1}{2}-i \sqrt{\lambda^{2} \rho-\frac{1}{4}}\right) a}\right]=0$
Dividing both sides of the above equation by c_{1}, we get:
$\frac{\frac{3}{2}-i \sqrt{\lambda^{2} \rho-\frac{1}{4}}}{\frac{3}{2}+i \sqrt{\lambda^{2} \rho-\frac{1}{4}}}=e^{2 i \sqrt{\lambda^{2} \rho-\frac{1}{4}} a}$
The resulting equation (8) is used for specifying the eigenvalues of our problem.
To find the coefficient c_{1}, we use the normalization condition (4)
$\int_{0}^{a} \rho\left|c_{1}\right|^{2}\left|e^{\frac{1}{2} x}\left[e^{i \sqrt{\lambda^{2} \rho-\frac{1}{4}} x}-e^{-i \sqrt{\lambda^{2} \rho-\frac{1}{4}} x}\right]\right|^{2} d x=1$,
Or
$\rho\left|c_{1}\right|^{2} \int_{0}^{a}\left|e^{\frac{1}{2} x}\left[e^{i \sqrt{\lambda^{2} \rho-\frac{1}{4}} x}-e^{-i \sqrt{\lambda^{2} \rho-\frac{1}{4}} x}\right]\right|^{2} d x=1$.
We introduce the notation $\alpha+i \beta=i \sqrt{\lambda^{2} \rho-\frac{1}{4}}$ (where α and β are real numbers), then

$$
\rho\left|c_{1}\right|^{2} \int_{0}^{a}\left|e^{\frac{1}{2} x}\left[e^{(\alpha+i \beta) x}-e^{-(\alpha+i \beta) x}\right]\right|^{2} d x=1
$$

Or
$\rho\left|c_{1}\right|^{2} \int_{0}^{a}\left|e^{\left(\frac{1}{2}+\alpha\right) x+i \beta x}-e^{\left(\frac{1}{2}-\alpha\right) x-i \beta x}\right|^{2} d x=1$

Since

$$
\left|e^{\left(\frac{1}{2}+\alpha\right) x+i \beta x}-e^{\left(\frac{1}{2}-\alpha\right) x-i \beta x}\right|^{2}=2 e^{x}(\cosh 2 \alpha x-\cos 2 \beta x)
$$

Thus equation (9) becomes:
$\rho\left|c_{1}\right|^{2} \int_{0}^{a} 2 e^{x}(\cosh 2 \alpha x-\cos 2 \beta x) d x=1$.
By integrating the last equation by parts, we obtain

$$
\begin{aligned}
& 2 \rho\left|c_{1}\right|^{2}\left[\frac{1}{2(1+2 \alpha)}\left(e^{(1+2 \alpha) a}-1\right)+\frac{1}{2(1-2 \alpha)}\left(e^{(1-2 \alpha) a}-1\right)\right. \\
& \left.-\frac{(2 \beta \sin 2 \beta a+\cos 2 \beta a)}{\left(4 \beta^{2}+1\right)} e^{a}+\frac{2 \beta}{\left(4 \beta^{2}+1\right)}\right]=1
\end{aligned}
$$

After some algebraic operations, we get
$\left|c_{1}\right|^{2}=\left(1-4 \alpha^{2}\right)\left(4 \beta^{2}+1\right) / 2 \rho\left[e^{a}(\cosh 2 \alpha a-2 \alpha \sinh 2 \alpha a)\left(4 \beta^{2}+1\right)\right.$
$\left.-\left(4 \beta^{2}+1\right)+2 \beta\left(1-4 \alpha^{2}\right)-e^{a}(2 \beta \sin 2 \beta a+\cos 2 \beta a)\left(1-4 \alpha^{2}\right)\right]$
Or
$\left|c_{1}\right|=\frac{1}{\sqrt{2 \rho}} \frac{1}{\sqrt{\frac{1}{\left(1-4 \alpha^{2}\right)}\left[e^{a}(\cosh 2 \alpha a-2 \alpha \sinh 2 \alpha a)-1\right]+\frac{1}{\left(4 \beta^{2}+1\right)}[2 \beta-}}$

By substituting $\left|c_{1}\right|$ in equation $y(x)$, we conclude that:
$y(x)=c_{o} \frac{1}{\sqrt{2 \rho}} \frac{1}{\sqrt{\frac{1}{\left(1-4 \alpha^{2}\right)}\left[e^{a}(\cosh 2 \alpha a-2 \alpha \sinh 2 \alpha a)-1\right]+\frac{1}{\left(4 \beta^{2}+1\right)}[2 \beta-}}$
$\left[e^{\left(\frac{1}{2}+i \sqrt{\lambda^{2} \rho-\frac{1}{4}}\right) x}-e^{\left(\frac{1}{2}-i \sqrt{\lambda^{2} \rho-\frac{1}{4}}\right) x}\right]$.
Where c_{o} arbitrary complex number with module is one (i.e. $\left|c_{o}\right|=1$).
If λ satisfies equation (8) (i.e. λ eigenvalue), then equation (10) gives eigen functions for our problem T_{o} (corresponding to the eigenvalue λ).

Now we determine $\max _{x \in[0, a]}|y(x)|$ and its behaviour depends on, α and β.
From
$\left|e^{\left(\frac{1}{2}+\alpha\right) x+i \beta x}-e^{\left(\frac{1}{2}-\alpha\right) x-i \beta x}\right|^{2}=2 e^{x}(\cosh 2 \alpha x-\cos 2 \beta x)$,
We conclude that

$$
\left|e^{\left(\frac{1}{2}+\alpha\right) x+i \beta x}-e^{\left(\frac{1}{2}-\alpha\right) x-i \beta x}\right|=\sqrt{2 e^{x}(\cosh 2 \alpha x-\cos 2 \beta x)}
$$

Therefore,

$$
|y(x)|=\left|\frac{c_{o}}{\sqrt{2 \rho}} \frac{e^{\left(\frac{1}{2}+i \sqrt{\lambda^{2} \rho-\frac{1}{4}}\right) x}-e^{\left(\frac{1}{2}-i \sqrt{\lambda^{2} \rho-\frac{1}{4}}\right) x}}{\sqrt{\frac{1}{\left(1-4 \alpha^{2}\right)}\left[e^{a}(\cosh 2 \alpha a-2 \alpha \sinh 2 \alpha a)-1\right]+\frac{1}{\left(4 \beta^{2}+1\right)}[2 \beta-}}\right|
$$

Or

$$
|y(x)|=\frac{1}{\sqrt{\rho}} \sqrt{\frac{e^{x}(\cosh 2 \alpha x-\cos 2 \beta x)}{\frac{1}{\left(1-4 \alpha^{2}\right)}\left[e^{a}(\cosh 2 \alpha a-2 \alpha \sinh 2 \alpha a)-1\right]+\frac{1}{\left(4 \beta^{2}+1\right)}[2 \beta-}}
$$

Then

$$
\begin{aligned}
& \frac{1}{\sqrt{\rho}} \sqrt{\frac{e^{x}(\cosh 2 \alpha x-1)}{\frac{1}{\left(1-4 \alpha^{2}\right)}\left[e^{a}(\cosh 2 \alpha a-2 \alpha \sinh 2 \alpha a)-1\right]+\frac{1}{\left(4 \beta^{2}+1\right)}[2 \beta-}} \leq|y(x)| \\
& \leq \frac{1}{\sqrt{\rho} \sqrt{\frac{1}{\left(1-4 \alpha^{2}\right)}\left[e^{a}(2 \beta \sin 2 \beta a+\cosh 2 \beta a)\right]}} \\
& \text { Or } \sqrt{\left.e^{a}(2 \beta \sin 2 \beta a+\cos 2 \beta a)\right]} \\
& \sqrt{\frac{e^{x}(\cosh 2 \alpha x+1)}{\rho\left[\left(1-e^{a}(\cosh 2 \alpha a-2 \alpha \sinh 2 \alpha a)\right)+\left(2 \beta+e^{a}(2 \beta+1)\right)\right]}} \leq|y(x)| \leq \\
& \sqrt{\frac{e^{x}(\cosh 2 \alpha x-1)}{\rho\left[\left(e^{a}(\cosh 2 \alpha a-2 \alpha \sinh 2 \alpha a)-1\right)+\frac{1}{\left(4 \beta^{2}+1\right)}\left(2 \beta-e^{a}(2 \beta+1)\right)\right]}}
\end{aligned}
$$

Let $\max _{x \in[0, a]}|y(x)|$ be achieved at the point of x_{o}, then

$$
\begin{aligned}
& \max _{x \in[0, a]}|y(x)|=\left|y\left(x_{o}\right)\right| \\
& \leq \sqrt{\frac{e^{x_{o}}\left(\cosh 2 \alpha x_{o}+1\right)}{\rho\left[\left(e^{a}(\cosh 2 \alpha a-2 \alpha \sinh 2 \alpha a)-1\right)+\frac{1}{\left(4 \beta^{2}+1\right)}\left(2 \beta-e^{a}(2 \beta+1)\right)\right]}} \\
& \leq \sqrt{\frac{e^{a}(\cosh 2 \alpha a+1)}{\rho\left[\left(e^{a}(\cosh 2 \alpha a-2 \alpha \sinh 2 \alpha a)-1\right)+\frac{1}{\left(4 \beta^{2}+1\right)}\left(2 \beta-e^{a}(2 \beta+1)\right)\right]}}
\end{aligned}
$$

(Since e^{x} and $\cosh 2 \alpha x$ are monotonic increasing on $[0, a]$), on the other hand $\left|y\left(x_{o}\right)\right|=\max _{x \in[0, a]}|y(x)| \geq|y(a)| \geq$
$\sqrt{\frac{e^{a}(\cosh 2 \alpha a-1)}{\rho\left[\left(1-e^{a}(\cosh 2 \alpha a-2 \alpha \sinh 2 \alpha a)\right)+\left(2 \beta+e^{a}(2 \beta+1)\right)\right]}}$
Therefore

$$
\begin{aligned}
& \sqrt{\frac{e^{a}(\cosh 2 \alpha a-1)}{\rho\left[\left(1-e^{a}(\cosh 2 \alpha a-2 \alpha \sinh 2 \alpha a)\right)+\left(2 \beta+e^{a}(2 \beta+1)\right)\right]}} \leq \max _{x \in[0, a]}|y(x)| \\
& \leq \sqrt{\frac{e^{a}(\cosh 2 \alpha a+1)}{\rho\left[\left(e^{a}(\cosh 2 \alpha a-2 \alpha \sinh 2 \alpha a)-1\right)+\frac{1}{\left(4 \beta^{2}+1\right)}\left(2 \beta-e^{a}(2 \beta+1)\right)\right]}}
\end{aligned}
$$

Or

$$
\begin{align*}
& \sqrt{\frac{(\cosh 2 \alpha a-1)}{\rho\left[\left(\frac{1}{e^{a}}-(\cosh 2 \alpha a-2 \alpha \sinh 2 \alpha a)\right)+\left(\frac{2 \beta}{e^{a}}+(2 \beta+1)\right)\right]}} \leq \max _{x \in[0, a]}|y(x)| \\
& \leq \sqrt{\frac{(\cosh 2 \alpha a+1)}{\rho\left[\left((\cosh 2 \alpha a-2 \alpha \sinh 2 \alpha a)-\frac{1}{e^{a}}\right)+\frac{1}{\left(4 \beta^{2}+1\right)}\left(\frac{2 \beta}{e^{a}-(2 \beta+1)}\right)\right]}} \tag{11}
\end{align*}
$$

Now, in the obtained equation (11) used parameters α and β clearly are not parts of the equation (1) and the boundary and normalized conditions (2)-(4). Therefore we express α and β through ρ.

Suppose $\arg \lambda=\theta$, then $\lambda^{2}=|\lambda|^{2}(\cos 2 \theta+i \sin 2 \theta)$.
$\lambda^{2} \rho-\frac{1}{4}=\rho|\lambda|^{2} \cos 2 \theta-\frac{1}{4}+i \rho|\lambda|^{2} \sin 2 \theta$
On the other hand $-\left(\lambda^{2} \rho-\frac{1}{4}\right)=(\alpha+i \beta)^{2}=\alpha^{2}-\beta^{2}+i 2 \alpha \beta$,

Hence

$$
\begin{gathered}
\alpha^{2}-\beta^{2}=-\rho|\lambda|^{2} \cos 2 \theta+\frac{1}{4} \\
2 \alpha \beta=-\rho|\lambda|^{2} \sin 2 \theta
\end{gathered}
$$

Or

$$
\alpha^{2}-\beta^{2}=-\rho|\lambda|^{2} \cos 2 \theta+\frac{1}{4}
$$

$4 \alpha^{2} \beta^{2}=\rho^{2}|\lambda|^{4} \quad \sin ^{2} 2 \theta$
Solving these two last systems of equations, we get
$\alpha^{2}=\frac{-\rho|\lambda|^{2} \cos 2 \theta+\frac{1}{4}+\sqrt{\left(\rho|\lambda|^{2} \cos 2 \theta-\frac{1}{4}\right)^{2}+\rho^{2}|\lambda|^{4} \sin ^{2} 2 \theta}}{2}$
and

$$
\beta^{2}=\frac{\rho^{2}|\lambda|^{4} \sin ^{2} 2 \theta}{2\left[-\rho|\lambda|^{2} \cos 2 \theta+\frac{1}{4}+\sqrt{\left(\rho|\lambda|^{2} \cos 2 \theta-\frac{1}{4}\right)^{2}+\rho^{2}|\lambda|^{4} \sin ^{2} 2 \theta}\right]}
$$

(Since $\alpha^{2} \geq 0$, then chose non negative root). Separating out the factor $\rho|\lambda|^{2}$ from the last relations, we deduce
$\alpha^{2}=\rho|\lambda|^{2}\left(\frac{-\cos 2 \theta+\frac{1}{4 \rho|\lambda|^{2}}+\sqrt{1-\frac{1}{2 \rho|\lambda|^{2}} \cos 2 \theta+\left(\frac{1}{4 \rho|\lambda|^{2}}\right)^{2}}}{2}\right)$
and

$$
\beta^{2}=\frac{\rho|\lambda|^{2} \sin ^{2} 2 \theta}{2\left[-\cos 2 \theta+\frac{1}{4 \rho|\lambda|^{2}}+\sqrt{1-\frac{1}{2 \rho|\lambda|^{2}} \cos 2 \theta+\left(\frac{1}{4 \rho|\lambda|^{2}}\right)^{2}}\right]}
$$

Or
$\alpha=|\lambda| \sqrt{\frac{-\rho \cos 2 \theta+\frac{1}{4|\lambda|^{2}}+\rho \sqrt{1-\frac{1}{2 \rho|\lambda|^{2}} \cos 2 \theta+\left(\frac{1}{4 \rho|\lambda|^{2}}\right)^{2}}}{2}}$
and

$$
\beta=\frac{\sqrt{\rho}|\lambda| \sin 2 \theta}{\sqrt{-2 \cos 2 \theta+\frac{1}{2 \rho|\lambda|^{2}}+2 \sqrt{1-\frac{1}{2 \rho|\lambda|^{2}} \cos 2 \theta+\left(\frac{1}{4 \rho|\lambda|^{2}}\right)^{2}}}}
$$

(We take the positive root and for negative root we proceed by similar way).
By substituting α and β in equation (11) and making some algebraic operations we get:

$\leq \max _{x \in[0, a]}|y(x)| \leq$

$\operatorname{Let} K_{1}=$

And
$K_{2}=$

Then
$\frac{1}{\sqrt{|\lambda|}} K_{1} \leq \max _{x \in[0, a]}|y(x)| \leq \frac{1}{\sqrt{|\lambda|}} K_{2}$.
Thus the proof of theorem is completed.

REFERENCES

[1] Aigunov G.A and Jwamer K.H, Asymptotic behavior of orthonormalized eienfunctions in a Regge type problem with asummable positive weight function, (2009),UMN , Moscow, Vol(64)6, P.169-170.
[2] Aigounov G.A, Jwamer K. H and Dzhalaeva G.A, Estimates for the eigenfunctions of the Regge problem, Mathematical Notes,(2012), Vol. 92, No.7, pp.127-130.
[3] Aigunov, G. A, the boundedness of the orthonormal eigenfunctions of a certain class of non-linear StrumLiouville type operators with a weight function of unbounded variation on a finite interval ,Russian Math, Surveys, (2000), Vol. 55, No. 4, pp. 815-821.
[4] Gadzhieva, T. Yu, Analysis of spectral characteristics of one non self adjoint problem with smooth coefficients, PhD thesis, Dagestan State university, (2010), South of Russian.
[5]JwamerK.H and AigounovG.A., About Uniform Limitation of Normalized EigenFunctions of T.Regge Problem in the Case of WeightFunctions, Satisfying to LipschitzCondition, Gen. Math. Notes, (2010) 1(2),115-129.
[6] Jwamer K. H andQadir K.H, Estimation of Normalized egienfunctions of spectral problem with smooth coefficients, ActaUniversitatis Apulensis, Special Issue, Romania, (2011), P.113-132.
[7] Jwamer K. H and Qadir K.H., Estimates Normalized Eigenfunction to the Boundary Value Problem in Different Cases of Weight Functions, Int. J. Open Problems Compt.Math.,(2011),Vol. 4(3), P.62-71 . [8] KravitskyA.O , On series expansion in eigen functions of one non self-adjointboundary problem, Report of Academy of Science, USSR, (1966),Vol.170, No.6, P.1255-1258.
[9] Naimark. M. A, Linear differential operators, $2^{\text {nd }}$ edition, Nauka, Moscow, (1969), English trans1. Of $1^{\text {st }}$ edition, Vols. I, II, Ungar, New York, 1967, 1968.
[10] Regge .T , Analytical properties of the scattering matrix , Mathematics(collection of translations), (1963),Vol.4,P.83-89.

[^0]: * Corresponding author

