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Abstract. In this paper, we study the spin number of homotopy E(2n) surfaces under the action of Zp.

By discussing the spin number as positive or negative number, we obtain restrictions on the coefficients

of the G−index operator IndGD.
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1. Introduction

Let X = E(2n)(n ≥ 1) be the relatively minimal elliptic surface with rational base. An

elliptic surface E(2n) is defined as the 2n-fold fiber sum of copies of E(1), where E(1)

denotes CP 2]9CP 2 being equipped with an elliptic fibration. Let bi be the i-th Betti

number of X, and b+
2 (resp. b−2 ) be the rank of the maximal positive (resp. negative)

definite subspace H+(X;R) (resp. H−(X;R)) of H2(X;R). b+
2 (X/τ) represents the rank

of H2(X/τ ;R). The signature of X is denoted by σ(X).
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It is well known that the spin number is defined as Spin(τ̂ , X) = Indτ̂D = tr(τ̂ |kerD)−

tr(τ̂ |cokerD). In this paper, we study the spin number of homotopy E(2n) surfaces under

the action of Zp.

At first, for the periodic diffeomorphism τ of odd prime order p on the homotopy elliptic

surface E(2n), we prove the following result.

Theorem 1.1. Let X be a homotopy E(2n) surface, and let X admit a periodic

diffeomorphism τ of odd prime order p satisfying b+
2 (X/τ) = b+

2 (X). Then we have

k0 ≤ b+
2 (X)− 1, where k0 is one of the coefficients of the G-index operator IndGD.

Then by discussing the spin number as positive or negative number, we obtain the

following theorems.

Theorem 1.2. Let X be a homotopy E(2n) surface and let X admit a periodic dif-

feomorphism τ of odd prime order p satisfying b+
2 (X/τ) = b+

2 (X). Assume that the spin

number Spin(τ̂ , X) is both rational and non-negative. Then we have

k1 = k2 = · · · = kp−1,
2s

p
≤ k0 ≤ l − 1.

Theorem 1.3. Let X be a homotopy E(2n) surface and let X admit a periodic dif-

feomorphism τ of odd prime order p satisfying b+
2 (X/τ) = b+

2 (X). Assume that the spin

number Spin(τ̂ , X) is both rational and negative. Then we have

k1 = k2 = . . . = kp−1 =
2s− k0

p− 1
≥ 1, k0 <

2s

p
.

We organize this paper as follows. In section 2, we give some preliminaries about the

group action of Zp and the character formula for the K-theory. In section 3, we study the

spin number and prove the main results.

2. Preliminaries

In this section, we review some basic knowledge about group representation theory and

the T. tom Dieck’s character formula.
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Since any spin actions of odd prime order are of even type, we only consider spin actions

of even type. For details, we refer to [3], [7].

Let R(Zp) be the representation ring of Zp. Then R(Zp) is generated by 1, ξ, . . . , ξp−1,

where ξ is the one-dimensional representation such that ξp = 1. The group Pin(2) has

a non-trivial 1-dimensional representation 1̃ and a countable series of 2-dimensional irre-

ducible representations h1, h2, · · · . The representation h1 = h is the restriction of the

standard representation of SU(2) to Pin(2) ⊂ SU(2). Since the representation ring

R(Gev) = R(Pin(2))⊗R(Zp) then any general element α ∈ R(Gev) must have the form

α = α0(ξ)1 + α̃0(ξ)1̃ +
∞∑
i=1

αi(ξ)hi.

Denote Vλ,C = Vλ⊗C, Wλ,C = Wλ⊗C. Then the virtual representation [Vλ,C]−[Wλ,C] ∈

R(G̃) is the same as IndD = [kerD]− [CokerD]. And Furuta shows

r(IndD) = k(ξ)h− t(ξ)1̃,

where r : R(G̃) → R(Pin(2)), k(ξ) and t(ξ) are polynomials of ξ such that k(1) =

−σ(X)/8 and t(1) = b+
2 (X). Thus IndD = k(ξ)h− t(ξ)1̃.

Let V and W be complex G representations for some compact Lie group G. BV and

BW denote balls in V and W . f : BV → BW is a G-map preserving the boundaries SV

and SW . Applying the K-theory functor to f , we get a map

f ∗ : KG(W )→ KG(V ),

where KG(V ) denotes KG(BV, SV ). This map defines an unique element αf ∈ R(G) by

the equation f ∗(λ(W )) = αf · λ(V ), where λ(V ) is the Bott class which is the generator

of KG(V ). The element αf is called the K-theory degree of f .

Let Vg and Wg denote the subspaces of V and W fixed by an element g ∈ G and let

V ⊥g and W⊥
g be the orthogonal complements. Let f g : Vg → Wg be the restriction of f

and let d(f g) denote the ordinary topological degree of f g. For any β ∈ R(G), let λ−1β

denote the alternating sum Σ(−1)iλiβ of exterior powers. The T. tom Dieck’s character

formula is that:

trg(αf ) = d(f g)trg(λ−1(W⊥
g − V ⊥g )), (1)
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where trg is the trace of the action g on αf . Note that when dimVg 6= dimWg, d(f g) = 0.

Recall that λ−1(Σiairi) =
∏

i(λ−1ri)
ai and that for a one dimensional representation r,

we have λ−1r = (1− r).

3. Main results

Let X be a homotopy E(2n) surface and τ be a periodic diffeomorphism of odd prime

order p. From the Atiyah-Singer G-spin theorem ([4], [2], Theorem 8.35 in [1], Theorem

3.1 in [5] and Theorem 14.11 in [6]), we can obtain the following lemma about the spin

numbers in the case of E(2n).

lemma 3.1. Let X be the homotopy E(2n) surface and let g : X → X is a cyclic group

action on X with odd prime order p. Let ĝ be the lift of g which preserves trivial Spinc

structure. Assume the fixed point set Xg is composed of isolated points Pj and connected

2-manifolds Fk. Then we have the following formula for Spin number

Spin(ĝ, X) = −1

4

∑
Pj

ε(Pj, ĝ)csc(αj/2)csc(βj/2)

+
1

4

∑
Fk

ε(Fk, ĝ)cos(θk/2)csc2(θk/2)〈[Fk] · [Fk]〉
(2)

where αj(resp βj) denotes 2πlαj
/p (resp 2πlβj/p) (0 < αj, βj < π), θk = 2πlθj/p (0 <

θk < π), ε(Pj, ĝ) and ε(Fk, ĝ) are ±1. And the signal depends on the action of g on the

Spin bundle.

From the above theorem, we can easily show the following results.

Lemma 3.2. Let X be a homotopy E(2n) surface, and let τ be a periodic diffeomorphism

of odd prime order p on X. Let τ̂ be a lifting of τ and preserve the trivial spinc structure.

Then

(1). The spin number is always real.

(2). When p = 3, the spin number Spin(τ̂ , X) is always rational.

Proof. (1). Since every part in formula (2) is real, we have Spin(τ̂ , X) is always real.
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(2). Since p = 3, αj, βj and θk are all equal to 2π/3. Thus csc(αj/2)csc(βj/2) = 4/3

and cos(θk/2)csc2(θk/2) = 2/3. From formula (2) we get

Spin(τ̂ , X) =
1

6

∑
Fk

±〈[Fk] · [Fk]〉+
1

3

∑
Pj

±1,

which is always rational. This completes the proof.

For i = 0, 1, 2, . . . , p− 1, let mi (resp. ni) denote the dimensions of the νi-eigenspaces

of a generator of the Zp-action on VΛ (resp. WΛ). Then dimCVΛ = m0 +m1 + · · ·+mp−1

and dimCWΛ = n0 + n1 + · · · + np−1. Let ki = mi − ni, for i = 0, 1, 2, . . . , p − 1. Then

IndGD = k0 +k1ξ+ · · ·+kp−1ξ
p−1. Note that the intersection form of E(2n) is isomorphic

to 2sE8⊕ lH, where 2s = −σ(X)
8

, l = b+
2 (X) and s, l > 0.

Next, we prove the main theorems.

Theorem 3.3. Let X be a homotopy E(2n) surface, and let X admit a periodic diffeomor-

phism τ of odd prime order p satisfying b+
2 (X/τ) = b+

2 (X). Then we have k0 ≤ b+
2 (X)−1,

where k0 is one of the coefficients of the G-index operator IndGD.

Proof. Since τ is of odd prime order, the spin action generated by τ is of even type.

Recall that [V ]− [W ] = k(ξ)h− t(ξ)1̃, where

k(ξ) = k0 + k1ξ + · · ·+ kp−1ξ
p−1

and

t(ξ) = t0 + t1ξ + · · ·+ tp−1ξ
p−1

satisfying

t(1) = t0 + t1 + · · ·+ tp−1 = b+
2 (X) = l

k(1) = k0 + k1 + · · ·+ kp−1 = −σ(X)

8
= 2s.

Note that τ is of odd prime order and b+
2 (X) = b+

2 (X/τ). Then t0 = b+
2 (X/τ) = l and

t1 + · · ·+ tp−1 = 0.

Let α = α0(ξ)+α̃0(ξ)1̃+
∑∞

i=1 αi(ξ)hi be the K-theoretic degree of f . Next, we compute

α under the action of φ, φν and Jνj for j = 1, 2, . . . , p− 1.
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Recall that φ ∈ S1 is an element generating a dense subgroup of S1, ν is a generator

of Zp and J ∈ Pin(2) comes from the quaternion. Since φ and φν act non-trivially on h

and trivially on 1̃,

dimVφ − dimWφ = −(t0 + t1 + . . .+ tp−1) = −l < 0,

dimVφν − dimWφν = −t0 = −l < 0.

From the K-theoretic degree formula, we get d(fφ) = d(fφν) = 0. Thus trφ(α) = trφν(α) =

0. Furthermore

α0(ν) + α̃0(ν) = 0, αi(ν) = 0, i ≥ 1.

Hence α̃0 = −α0 and αi = 0 for all i ≥ 1. moreover α = α0(ξ)(1− 1̃).

Let α0(ξ) = a0 + a1ξ + . . .+ ap−1ξ
p−1. Since the action of J on 1̃ is −1, we have

trJνj(α) = trJνj(α0(ξ)(1− 1̃)) = 2(a0 + a1ν
j + . . .+ ap−1ν

j(p−1)). (3)

On the other hand, since the action of J on h is

 √−1 0

0 −
√
−1

, Jν acts non-trivially

on ξ1̃, ξh and h. Thus dimVJν−dimWJν = 0, and d(fJν) = 1. Then from the K-theoretic

degree formula, we have

trJνj(α) = trJνj(λ−1(W⊥
g − V ⊥g ))

= trJνj(λ−1((t0 + t1ξ + · · ·+ tp−1ξ
p−1)1̃

− (k0 + k1ξ + · · ·+ kp−1ξ
p−1)h))

= 2t0(1 + νj)t1(1 + ν2j)t2 · · · (1 + ν(p−1)j)tp−1

2−k0(1 + ν2j)−k1(1 + ν4j)−k2 · · · (1 + ν2(p−1)j)−kp−1

(4)

for j = 1, 2, . . . , p− 1.

We multiply p− 1 equations from (3) and (4). Noticing that t0 = l, we obtain

2(l−k0)(p−1)(

p−1∏
j=1

(1 + νj))t1 · · · (
p−1∏
j=1

(1 + ν2(p−1)j))−kp−1 = 2p−1

p−1∏
j=1

(

p−1∑
i=0

aiν
ji). (5)



THE SPIN NUMBER OF HOMOTOPY E(2n) SURFACES UNDER THE ACTION OF Zp 1325

Since
∏p−1

j=1(1 + νj) = 1, (5) becomes

2(l−1−k0)(p−1) =

p−1∏
j=1

(

p−1∑
i=0

aiν
ji) = c0 + c1ν + . . .+ cp−1ν

p−1,

where ci ∈ Z, (i = 0, 1, . . . , p− 1). If k0 ≥ l then the above equation means

1 = 2(k0−l+1)(p−1)(c0 + c1ν + . . .+ cp−1ν
p−1)

which is a contradiction for νp = 1 and ci ∈ Z, (i = 0, 1, . . . , p − 1). Thus we have

k0 ≤ l − 1. This completes the proof.

Next, we discuss ki (i = 1, 2, · · · , p− 1) when the spin number is non-negative, and we

get the following theorem.

Theorem 3.4. Let X be a homotopy E(2n) surface and let X admit a periodic diffeo-

morphism τ of odd prime order p satisfying b+
2 (X/τ) = b+

2 (X). Assume that the spin

number Spin(τ̂ , X) is both rational and non-negative. Then we have

k1 = k2 = · · · = kp−1,
2s

p
≤ k0 ≤ l − 1.

proof. Note that

Spin(τ̂ , X) = k0 + k1ν + . . .+ kp−1ν
p−1.

Then by 1 + ν + . . .+ νp−1 = 0, we obtain

Spin(τ̂ , X) = k0 + k1ν + . . .+ kp−1ν
p−1

= (k0 − kp−1) + (k1 − kp−1)ν + · · ·+ (kp−2 − kp−1)νp−2.

Since the spin number is rational, k1 − kp−1 = . . . = kp−2 − kp−1 = 0. Thus we have

k1 = k2 = . . . = kp−1. Then

Spin(τ̂ , X) = k0 − k1. (6)

Note that Spin(1, X) = k0 + (p− 1)k1 = 2s. By (6), we have

0 ≤ Spin(τ̂ , X) =
pk0

p− 1
− 2s

p− 1
. (7)

Then we have 2s
p
≤ k0 ≤ l − 1 by theorem 1.1. This completes the proof.
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Remark 3.5. When p = 3 and X = E(2n) = E(4), we have the following five cases.

Case 1. k0 = 2, k1 = k2 = 1 and Spin(τ̂ , X) = 1.

Case 2. k0 = 4, k1 = k2 = 0 and Spin(τ̂ , X) = 4.

Case 3. k0 = 6, k1 = k2 = −1 and Spin(τ̂ , X) = 7.

When the spin number is rational and negative, we get the following theorem.

Theorem 3.6. Let X be a homotopy E(2n) surface and let X admit a periodic diffeo-

morphism τ of odd prime order p satisfying b+
2 (X/τ) = b+

2 (X). Assume that the spin

number Spin(τ̂ , X) is both rational and negative. Then we have

k1 = k2 = . . . = kp−1 =
2s− k0

p− 1
≥ 1, k0 <

2s

p
.

proof. On the one hand, we can obtain k1 = k2 = . . . = kp−1 by the same methods as

Theorem 1.2. On the other hand, from (7) and the assumptions of this lemma, we have

0 > Spin(τ̂ , X) =
pk0

p− 1
− 2s

p− 1
.

Thus k0 <
2s
p

. Besides, since k0 + k1 + . . .+ kp−1 = −σ(X)
8

= 2s, we have

k1 = k2 = . . . = kp−1 =
2s− k0

p− 1
≥ 1.

This completes the proof.

Remark 3.7. In particular, if p = 3 and X = E(2n) = E(4) then k0 ≤ 1 and k1 = k2 =

4−k0
2
≥ 2.

References

[1] M. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes: II. Applications, Ann.

Math. 88 (1968) 451-491.

[2] M. Atiyah and F. Hirzebruch, Spin manifolds an group actions, Essays in Topology and Related

Topics, Springer-Verlag (1970) 18-28.

[3] J. Bryan, Seiberg-Witten theory and Z/2p actions on spin 4-manifolds, Math. Res. Lett. 5 (1998)

165-183.

[4] F. Hirzeruch, The signature theorem: Reminiscenses and Recreation, Ann. Math. Stud. 70, Princeton

Uni. Press (1971).



THE SPIN NUMBER OF HOMOTOPY E(2n) SURFACES UNDER THE ACTION OF Zp 1327

[5] J. H. Kim, Rigidity of Periodic Diffeomorphisms on Homotopy K3 Surfaces, Quart. J. Math. 00

(2007), 1-20.

[6] B. Lawson, M. Michelsohn, Spin geometry, Princeton University Press, 1989.

[7] T. tom Dieck, Transformation Groups and Representation Theory, Lecture Notes in Mathematics,

766, Springer, Berlin, 1979.


