AN UPPER BOUND ON THE NUMBER OF EDGES OF GRAPHS CONTAINING NO r VERTEX-DISJOINT ODD CYCLES

MOHAMMAD HAILAT

Department of Mathematical Sciences, University of South Carolina Aiken, SC 28801, USA

Copyright © 2018 M. Hailat. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In [5], we found an upper bound on the number of edges, $\mathcal{E}(G)$, of a graph G containing no r vertex-disjoint cycles of length 3. In this paper we generalize this result to graphs containing no r vertex-disjoint cycles of length $2k+1$. We showed that $\mathcal{E}(G) \leq \left\lceil \frac{(n-r+1)^2}{4} \right\rceil + (r-1)(n-r+1)$ for every $G \in \mathcal{G}(n, V_r, 2k+1)$, the class of all graphs on n vertices containing no r vertex-disjoint cycles of length $2k+1$. Determination of the maximum number of edges in a given graph that contains no specific subgraphs is one of the important problems in graph theory. Solving such problems has attracted the attention of many researchers in graph theory.

Keywords: upper bound; number of edges; graph theory.

2010 AMS Subject Classification: Primary 05C38, Secondary 05C35.

1. Introduction

In this paper, we only consider simple graphs. That is, graphs that has no loops or multiple edges. Let $V(G)$ denote the set of vertices of a graph G and $E(G)$ be the set of edges of G. If an edge $e \in E(G)$ is incident with the two vertices u and v in $V(G)$, we write $e = uv = vu$. For
a vertex \(u \in V(G) \) we denote the neighborhood of \(u \) by \(N_G(u) \), which is the set of all vertices \(v \in V(G) \) such that \(uv \in E(G) \). For a vertex \(u \in V(G) \), we define the degree \(d_G(u) \) to be the number of edges incident with \(u \).

For vertex-disjoint subgraphs \(H_1 \) and \(H_2 \) of \(G \), we let \(E(H_1,H_2) \) to be the set of all edges that are incident to a vertex in \(H_1 \) and a vertex in \(H_2 \). That is \(E(H_1,H_2) = \{ uv \in E(G) \mid u \in V(H_1), v \in H_2 \} \). We also define \(\bar{\epsilon}(G) \) to be the number of edges of \(G \). That is, \(\bar{\epsilon}(G) \) equals the \(|E(G)| \) and \(\bar{\epsilon}(H_1,H_2) = |E(H_1,H_2)| \). The cycle on \(n \) vertices is denoted by \(C_n \) and the complete tripartite graph with partitioning sets of order \(m, n \) and \(k \) is denoted by \(K_{m,n,k} \). For given graphs \(G_1 \) and \(G_2 \) we denote the union of \(G_1 \) and \(G_2 \) by \(G_1 \cup G_2 \) such that \(V(G_1 \cup G_2) = V(G_1) \cup V(G_2) \) and \(E(G_1 \cup G_2) = E(G_1) \cup E(G_2) \). We also denote the joint of \(G_1 \) and \(G_2 \) by \(G_1 \vee G_2 \) such that \(V(G_1 \vee G_2) = V(G_1) \cup V(G_2) \) and \(E(G_1 \vee G_2) = E(G_1) \cup E(G_2) \cup E(G_1,G_2) \).

The determination of maximum number of edges in a given graph that has no specific subgraphs has attracted the attention of many graph theorists. For example, Höggkvist et al in [6] proved that \(\bar{\epsilon}(G) \leq \left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1 \) for a non bipartite graph \(G \) with \(n \) vertices that contains no odd cycle \(C_{2k+1} \) for all positive integers \(k \), Jia in [7] proved that \(\bar{\epsilon}(G) \leq \left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 3 \) for a nonpartite graph \(G \) with \(n \) vertices such that contains no odd cycle for \(n \geq 10 \), and Hailat in [5] proved that \(\bar{\epsilon}(G) \leq \left\lfloor \frac{(n-r+1)^2}{4} \right\rfloor + (r-1)(n-r+1) \) for every \(G \in \mathcal{G}(n,V_r,3) \).

In [2], M. Bataineh and M. Jaradat proved that \(\bar{\epsilon}(G) \leq \left\lfloor \frac{n^2}{4} \right\rfloor + r - 1 \) for any graph \(G \in \mathcal{J}(n;r,2k+1) \) for large \(n \) and \(r \geq 2, k \geq 1 \), where \(\mathcal{J}(n;r,2k+1) \) is the set of all graphs on \(n \) vertices containing no \(r \) edge-disjoint cycles of length \(2k+1 \).

In this paper, we generalize the result of [5] to the case where \(G \) is a graph that contains no \(r \) vertex-disjoint cycle of length \(2k+1 \). This result is parallel to the result of [1] in which the author considered the case of vertex-disjoint cycles instead of edge-disjoint cycles that was addressed in [2].

2. Important Lemmas and Theorems

In this section, we introduce the following results that will be used to prove the main theorem of this paper.
2.1. **Theorem** (Jia [7]). Let \(G \in \mathcal{G}(n, 5) \), \(n \geq 10 \). Then \(\varepsilon'(G) \leq \lfloor \frac{(n-2)^2}{4} \rfloor + 3 \).

2.2. **Theorem** (Batineh [1]). Let \(k \geq 3 \) be a positive integer and \(G \in \mathcal{S}(n; 2k + 1) \). Then for large \(n \), \(\varepsilon'(G) \leq \lfloor \frac{(n-2)^2}{4} \rfloor + 3 \).

Let \(\mathcal{G}(n, r, 2k+1) \) denote the class of graphs on \(n \) vertices containing no \(r \) edge-disjoint cycles of length \(2k+1 \), and \(\mathcal{G}(n, V_r, 2k+1) \) denote the class of graphs on \(n \) vertices containing no \(r \) vertex-disjoint cycles of length \(2k+1 \). Note that \(\mathcal{G}(n, V_r, 2k+1) \subseteq \mathcal{G}(n, r, 2k+1) \).

2.3. **Theorem** (Batineh and Jaradat [2]). Let \(G \in \mathcal{G}(n, 2, 3) \). Then for large \(n \), \(\varepsilon'(G) \leq \lfloor \frac{n^2}{4} \rfloor + 1 \). Furthermore, equality holds if and only if \(G \in \Omega(n, 2) = K_{1, \lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil} \).

2.4. **Lemma** (Bondy and Murty [3]). Let \(G \) be a graph on \(n \) vertices. If \(\varepsilon'(G) > \frac{n^2}{4} \), then \(G \) contains a cycle of length \(2k+1 \) for each \(1 \leq k \leq \lfloor \frac{n+3}{2} \rfloor - \frac{1}{2} \).

2.5. **Theorem** (Batineh and Jaradat [2]). Let \(k \geq 1 \), \(r \geq 2 \) be two integers and \(g \in \mathcal{G}(n; r, 2k+1) \). For large \(n \), \(\varepsilon'(G) \leq \lfloor \frac{n^2}{4} \rfloor + r - 1 \). Furthermore, equality holds if and only if \(G \in \Omega(n, r) = K_{r-1, \lfloor \frac{n+r+1}{2} \rfloor, \lceil \frac{n-r+1}{2} \rceil} \).

Let \(\mathcal{S}(n, V_{2k+1}) \) denote the class of graphs on \(n \) vertices containing no vertex disjoint cycles of length \(2k+1 \).

2.6. **Theorem** (Batineh [1]). Let \(k \geq 1 \) be an integer and \(G \in \mathcal{S}(n, V_{2k+1}) \). Then for \(n > \max \{ \frac{4k^3 + 15k^2 + 11k - 5}{2}, 4(4k^2 + 8k - 3) + 1 \} \), \(\varepsilon'(G) \leq \lfloor \frac{(n-1)^2}{4} \rfloor + n - 1 \). Furthermore, equality holds if and only if \(G = \Omega(n, 2) \).

2.7. **Theorem** (Hailat [5]). Let \(G \in \mathcal{S}(n, V_r, 3) \). Then for large \(n \), \(\varepsilon'(G) \leq \lfloor \frac{(n-r+1)^2}{4} \rfloor + (r - 1)(n - r + 1) \). Furthermore, equality holds if and only if \(G = \Omega(n, r) \).

3. Main Result

In this section, we generalize the result of Theorem 2.7 to the case where \(G \in \mathcal{S}(n, V_r, 2k+1) \). That is to the case where \(G \) is a graph on \(n \) vertices containing no \(r \) vertex-disjoint cycles of length \(2k+1 \). We prove our main result using induction on \(r \) and we start with \(r = 2 \).
3.1. Theorem. Let k be a positive integer and $G \in \mathcal{S}(n, 2, 2k + 1)$. Then for large n, $\mathcal{E}(G) \leq \left\lfloor \frac{(n-1)^2}{4} \right\rfloor + n - 1$. Furthermore, equality holds if and only if $G = \Omega(n, 2)$.

Proof. Since $G \in \mathcal{S}(n, 2, 2k + 1)$, then G has no two vertex-disjoint cycles of length $2k + 1$. Suppose first that G has no cycle of length $2k + 1$. The for $n \geq 4k - 1$, we have $3 \leq 2k + 1 \leq \frac{1}{2} (4k + 2) \leq \left\lfloor \frac{n+3}{3} \right\rfloor$, so that, using Lemma 2.4 (Bondy and Murty [3])

$$\mathcal{E}(G) \leq \left\lfloor \frac{n^2}{4} \right\rfloor$$

$$= \left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 2(n-1) + 1$$

$$\leq \left\lfloor \frac{(n-1)^2}{4} \right\rfloor + (n-1) \quad \text{for } n \geq 4k - 1$$

Suppose second that G has a cycle of length $2k + 1$. Then for large n, $\mathcal{E}(G) \leq \left\lfloor \frac{(n-1)^2}{4} \right\rfloor + n - 1$ by Theorem 2.6. Note that if $G = \Omega(n, 2) = K_{1, \left\lfloor \frac{n-1}{2} \right\rfloor, \left\lceil \frac{n+1}{2} \right\rceil}$ then

$$\mathcal{E}(G) = \left\lceil \frac{n-1}{2} \right\rceil + \left\lfloor \frac{n-1}{2} \right\rfloor + \left\lfloor \frac{n-1}{2} \right\rfloor = \left\lfloor \frac{(n-1)^2}{4} \right\rfloor + (n-1)$$

Therefore equality holds if and only if $G = \Omega(n, 2)$. \qed

To prove the main result we need to introduce Turán graphs, since these graphs play a major role in the proof.

3.2. Definition. The complete s-partite graph on n vertices with part sizes being $\left\lfloor \frac{n}{s} \right\rfloor$ or $\left\lceil \frac{n}{s} \right\rceil$ is called Turán graph. We denote this graph by $T_{n,s}$.

Note that Turán graph is K_{s+1} free, where K_{s+1} is the complete graph on $(s + 1)$-vertices. In [4], David Conlon introduced the following statement of Turán’s theorem.

3.3. Theorem. (Turán) If G is an n-vertex K_{s+1}-free graph, then it contains at most $\mathcal{E}(T_{n,s})$ edges.

In addition, Conlon introduced three different proofs of Turán’s Theorem. In this paper we use the result of 2 (Zykov’s Symmetrization). In this proof it was concluded that the set of vertices
of a K_{s+1}-free graph G on n vertices with maximum number of edges can be partitioned into s equivalence classes. In these classes, vertices in the same class are non-adjacent and vertices in different classes are adjacent. Since the graph G is K_{s+1}-free, it must be a complete s-partite graph. Note that $T_{n,s}$ is the unique graph that maximizes the number of edges among such graphs.

3.4. Theorem. Let G be a graph that has $(r - 1)$ vertex-disjoint cycles $C_1, C_2, \ldots, C_{r-1}$, but has no r vertex disjoint cycles of length $2k + 1$ and let $H = G - \bigcup_{i=1}^{r-1} G(C_i)$. Then $\mathcal{E}(\bigcup_{i=1}^{r-1} G(C_i), H) \leq 2(r-1)(n-r+1) - 4k(r-1)^2$ and $\mathcal{E}(\bigcup_{i=1}^{r-1} G(C_i)) \leq (2k+1)(k+1)(r-1)^2$.

Proof. Note that H is K_{2k+1}-free graph since, otherwise, G would have r vertex-disjoint cycles of length $2k + 1$, a contradiction to the assumption. Let H' be a graph on the vertices of H with a maximum number of edges. Note that $|V(H)| = |V(H')| = n - (2k+1)(r-1) = (n-r+1) + 2k(r-1)$, $\mathcal{E}(H) \leq \mathcal{E}(H')$, and $\mathcal{E}(\bigcup_{i=1}^{r-1} G(C_i), H) = \mathcal{E}(\bigcup_{i=1}^{r-1} G(C_i), H')$.

Let $n' = n - (2k+1)(r-1) = (n-r+1) - 2k(r-1) = (|V(H')|)$. Since H' is K_{2k+1}-free graph then, using proof 2 of Turán's theorem, H' is $T'_{n',2k}$ and the vertices of H' can be partitioned into $2k$ equivalent classes $H'_1, H'_2, \ldots, H'_2k$, where $|V(H'_i)| = \left\lceil \frac{n'}{2k} \right\rceil$ or $\left\lfloor \frac{n'}{2k} \right\rfloor$. Note that vertices of H'_i are non-adjacent for all $i = 1, \ldots, 2k$, but vertices of H'_i are adjacent to all vertices of H'_j. In Figure 1, let

$$C_1 = v_{11} \ldots v_{1(2k+1)}v_{11}$$

$$\vdots$$

$$C_{r-1} = v_{(r-1)1} \ldots v_{(r-1)(2k+1)}v_{(r-1)1}$$

Note that $|H'_i| = \left\lceil \frac{n-(2k+1)(r-1)}{2} \right\rceil$ or $\left\lfloor \frac{n-(2k+1)(r-1)}{2} \right\rfloor$, so that

$$\mathcal{E}(v_{ij}, H') \leq \sum_{i=1}^{2k} |H'_i| = n - (2k+1)(r-1)$$

$$= (n - r + 1) - 2k(r-1)$$
In Figure 1, if \(v_{ij} \in V(C_i) \) is adjacent to a vertex \(x \in V(H'_t) \) and to a vertex \(y \in V(H'_j) \) then we can construct a cycle of length \(2k + 1 \), \(C'_i = v_{ij}x\ldots yv_{ij} \) since each vertex in \(H'_t \) is adjacent to every vertex in \(H'_m \), for \(t \neq m \). Now if we take another vertex \(w_{ij} \in V(C_i) \) and assume that its adjacent to \(x' \in V(H_t) \) and to \(y' \in V(H_l) \) then we can construct another disjoint cycle, \(C''_i \) of length \(2k + 1 \). If we replace \(C_i \) with \(C'_i \) and \(C''_i \) then we have \(r \) vertex-disjoint cycles in \(G \), a contradiction. This implies that if a vertex in \(V(C_i) \) is adjacent to more that one component of \(V(H') = V(H) \) then the other vertices of \(C_i \) cannot be adjacent to more than one component of \(V(H') \). It follows that

\[
\mathcal{E}(G(C_i), H) = \mathcal{E}(G(C_i), H') \\
\leq (n - r + 1) - 2k(r - 1) + 2k \left(\frac{1}{2k} ((n - r + 1) - 2k(r - 1)) \right) \\
= (n - r + 1) - 2k(r - 1) + (n - r + 1) - 2k(r - 1) \\
= 2(n - r + 1) - 4k(r - 1).
\]
Therefore

\[\mathcal{E}(\bigcup_{i=1}^{r-1} G(C_i), H) \leq (r-1)(2(n-r+1) - 4k(r-1)) \]

\[= 2(n-r+1)(r-1) - 4k(r-1)^2. \]

Now, since \(|V(\bigcup_{i=1}^{r-1} G(C_i))| = (2k+1)(r-1)\) then

\[\mathcal{E}(\bigcup_{i=1}^{r-1} G(C_i)) \leq \frac{(2k+1)(r-1)((2k+1)(r-1) - 1)}{2} \]

\[\leq \frac{(2k+1)(r-1)((2k+2)(r-1))}{2} \]

\[= (2k+1)(k+1)(r-1)^2. \]

\[\square \]

The following lemma is needed for the proof of Theorem 3.6.

3.5. Lemma. Let \(n, r, k\) be three positive integers such that \(r \geq 2\) and \(n \geq 6k(r-1)\). Then

\[(2-k)(r-1)(n-r+1) + (3k^2-k+1)(r-1)^2 < (r-1)(n-r+1).\]

Proof. Suppose not. Then

\[(2-k)(r-1)(n-r+1) + (3k^2-k+1)(r-1)^2 \geq (r-1)(n-r+1),\]

so that

\[(2-k)(n-r+1) + (3k^2-k+1)(r-1) \geq (n-r+1).\]

This implies that

\[n-r+1 \leq \frac{(3k^2-k+1)(r-1)}{k-1},\]

so that

\[n \leq (r-1) \left(\frac{3k^2-k+1}{k-1} + 1 \right) \]

\[= (r-1) \left(\frac{3k^2}{k-1} \right) \]

\[\leq (r-1)(3k^2)\left(\frac{2}{k} \right) = 6k(r-1),\]

a contradiction to the fact that \(n > 6k(r-1)\). Therefore Lemma 3.5 follows. \[\square\]
3.6. **Theorem.** Let \(k \) be a positive integer and \(G \in \mathcal{S}(n,r,2k+1) \). Then for \(n > 6k(r-1) \):

\[
\mathcal{E}(G) \leq \left\lfloor \frac{(n-r+1)^2}{4} \right\rfloor + (r-1)(n-r+1).
\]

Furthermore, equality holds if and only if \(G = \Omega(n,r) \).

Proof. We prove the theorem using induction on \(r \). For \(r = 2 \) the theorem holds by Theorem 3.1.

Assume that the result is true for \(r-1 \). We need to show that the result is true for \(r \geq 3 \). Let \(G \in \mathcal{S}(n;r,2k+1) \). If \(G \) contains no \(r-1 \) vertex disjoint cycles of length \(2k+1 \), then by induction

\[
\mathcal{E}(G) \leq \left\lfloor \frac{(n-(r-1)+1)^2}{4} \right\rfloor + ((r-1)-1)(n-(r-1)+1)
= \left\lfloor \frac{(n-r+2)^2}{4} \right\rfloor + (r-2)(n-r+2)
\leq \frac{(n-r+1)^2 + 2(n-r+1) + 1}{4} + 4((r-1)-1)(n-(r-1)+1) + 1
= \frac{(n-r+1)^2}{4} + 2(n-r+1) + 4(r-1)(n-r+1) + 4(r-1) - 4(n-r+1) - 4 + 1
= \frac{(n-r+1)^2}{4} + (r-1)(n-r+1) - \frac{1}{2}(n-r+1)(r-1) - 1 + 1
\leq \left\lfloor \frac{(n-r+1)^2}{4} \right\rfloor + (r-1)(n-r+1), \quad \text{for } n \geq 3r-3.
\]

Assume that \(G \) has \(r-1 \) vertex-disjoint cycles each of length \(2k+1 \) and has no \(r \) vertex-disjoint cycles of length \(2k+1 \). Let \(C_1, C_2, \ldots, C_{r-1} \) be such cycles in \(G \). Let \(H = G - \bigcup_{i=1}^{r-1} G(C_i) \), so that \(H \) has no cycle of length \(2k+1 \) since, otherwise, \(G \) will have \(r \) vertex-disjoint cycles of length \(2k+1 \). Since \(|V(H)| = n' = n - (r-1)(2k+1) \) then, using Lemma 2.5, we have

\[
\mathcal{E}(H) \leq \left\lfloor \frac{n'^2}{4} \right\rfloor = \left\lfloor \frac{(n-r+1)^2 - 2k(r-1))}{4} \right\rfloor
\leq \left\lfloor \frac{(n-r+1)^2}{4} \right\rfloor - k(r-1)(n-r+1) + k^2(r-1)^2.
\]

From Theorem 3.4 we have:

\[
\mathcal{E}\left(\bigcup_{i=1}^{r-1} G(C_i), H\right) \leq 2(n-r+1)(r-1) - 4k(r-1)^2
\]
and
\[
E\left(\bigcup_{i=1}^{r-1} G(C_i)\right) \leq (2k+1)(k+1)(r-1)^2.
\]

It follows that:
\[
E(G) = E(H) + E\left(\bigcup_{i=1}^{r-1} G(C_i), H\right) + E\left(\bigcup_{i=1}^{r-1} G(C_i)\right)
\leq \left\lfloor \frac{(n-r+1)^2}{4} \right\rfloor - k(r-1)(n-r+1) + k^2(r-1)^2
\]
\[+ 2(n-r+1)(r-1) - 4k(r-1)^2 + (2k+1)(k+1)(r-1)^2
\]
\[= \left\lfloor \frac{(n-r+1)^2}{4} \right\rfloor + (2-k)(r-1)(n-r+1) + (k^2 - 4k + 2k^2 + 3k + 1)(r-1)^2
\]
\[= \left\lfloor \frac{(n-r+1)^2}{4} \right\rfloor + (2-k)(r-1)(n-r+1) + (3k^2 - k + 1)(r-1)^2
\]
\[\leq \left\lfloor \frac{(n-r+1)^2}{4} \right\rfloor + (r-1)(n-r+1) \quad \text{(using Lemma 3.5)}
\]

Furthermore, equality holds for \(\Omega(n,r) = K_{r-1,\lfloor\frac{n-r+1}{2}\rfloor,\lceil\frac{n-r+1}{2}\rceil}\) since
\[
E(\Omega(n,r)) = (r-1)\left\lfloor \frac{n-r+1}{2} \right\rfloor + (r-1)\left\lfloor \frac{n-r+1}{2} \right\rfloor + \left\lfloor \frac{n-r+1}{2} \right\rfloor \left\lfloor \frac{n-r+1}{2} \right\rfloor
\]
\[= (r-1)[n-r+1] + \left\lfloor \frac{(n-r+1)^2}{4} \right\rfloor
\]
\[= \left\lfloor \frac{(n-r+1)^2}{4} \right\rfloor + (r-1)(n-r+1).
\]

\[\square\]

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

