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Abstract. In this paper, we deal with the finite-time stabilization problem of a memristor-based hyperchaotic

complex Lü system. Based on the finite-time stability theory, two control strategies are presented to achieve

stabilization of the memristor-based hyperchaotic complex Lü system in a finite time. Two numerical simulations

have been conducted, the simulation results demonstrate the validity and feasibility of the theoretical analysis.
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1. Introduction

Hyperchaos [1] is generally characterized as a chaotic attractor with more than one posi-

tive Lyapunov exponent and has richer dynamical behaviors than chaos. Compared to chaotic
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systems, hyperchaotic systems have a greater randomness and higher complexity and unpre-

dictability, so they are more suitable and effective for secure communication and digital cryp-

tography. Over the past three decades, hyperchaotic systems have been investigated extensively

[2-5].

Memristors are considered to be the fourth fundamental circuit element with the character-

istics of nonlinearity, non-volatility, nanoscale, and low power consumption. Increasing atten-

tions are focused on the memristors for their potential applications in programmable logic, sig-

nal processing, neural networks, and so on [6]. Moreover, as a novel element, the circuit based

on the memristor shares many interesting phenomenon. Recently, the study of memristors,

memristor-based circuits and neural networks have become a key research front in mathemat-

ics, computer science and engineering [7-10].

The complex systems appear in physics and engineering fields. Since Fowler et al. [11] gen-

eralized the real Lorenz model to a complex Lorenz model, which can be used to describe and

simulate the physics of a detuned laser and the thermal convection of liquid flows [12-13], many

hyperchaotic complex-variable systems have been reported, such as the hyperchaotic complex

Chen system [14], hyperchaotic complex Lorenz system [15], memristor-based hyperchaotic

complex Lü System [16], etc.

Recently, the theory and methods on stabilization of chaotic or hyperchaotic systems have

received a great deal of attention among scientists, and have also been extensively studied due

to their potential applications in secure communication, modeling brain activity, chemical reac-

tions, ecological systems, etc. [17-19]. Many approaches on chaos or hyperchaos stabilization

have been proposed, such as active control [20], passive control [21], adaptive control [22],

backstepping [23], sliding mode control[24] methods.

The existing methods stabilize chaotic or hyperchaotic systems asymptotically, i.e. the sys-

tem trajectories converge to zero with infinite settling time. However, from the practical engi-

neering point of view, it is more crucial to stabilize chaotic or hyperchaotic systems in a finite

time. Therefore, it is important to consider the problem of finite-time stabilization of chaotic or
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hyperchaotic systems. Finite-time control is a very useful technique to achieve faster conver-

gence speed in control systems. In addition, the finite-time control technique has demonstrated

better robustness and disturbance rejection properties [25].

Motivated by the above discussion, in this paper, we propose controllers to stabilize memristor-

based hyperchaotic complex Lü system. Based on the finite-time stability theorem, two control

strategies are constructed to stabilize the memristor-based hyperchaotic complex Lü system in

a finite time. Numerical simulation results verify the effectiveness of the proposed controllers.

2. Preliminary definition and lemmas and system description

Definition 1 [25]. Consider the nonlinear dynamical system modeled by

(1) ẋ = f (x),

where the state variable x ∈ Rn. If there exists a constant T > 0(T > 0 may depend on the initial

state x(0)), such that

(2) lim
t→T
‖ x(t) ‖= 0,

and ‖ x(t) ‖≡ 0, if t ≥ T , then system (1) is finite-time stable.

Lemma 1 [25]. Suppose there exists a continuous function V : D→R such that the following

conditions hold:

(i) V is positive definite.

(ii) There exist real numbers c > 0 and α ∈ (0,1) and an open neighborhood V ⊆ D of the

origin such that

(3) V̇ (x)+ c(V (x))α ≤ 0, x ∈ V \{0}.

Then the origin is a finite-time stable equilibrium of system (1), and the settling time, depending

on the initial state x(0) = x0, satisfies

(4) T (x0)≤
V 1−α(x0)

c(1−α)
.
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In addition, if D = Rn and V (x) is also radially unbounded (i.e. V (x)→ +∞ as ‖x‖ → +∞),

then the origin is a globally finite-time stable equilibrium of system (1).

Lemma 2 [26]. For any real number αi, i = 1,2, ...,k and 0 < r < 1, the following inequality

holds

(5) (|α1|+ |α2|+ · · ·+ |αk|)r ≤ |α1|r + |α2|r + · · ·+ |αk|r.

In [16], a memristor-based hyperchaotic complex Lü system was proposed by introducing

complex variables to its real counterpart [10]. The system takes the following form

(6)



ẋ = α(y− x),

ẏ =−xz+βy−ρW (w)x,

ż = (x̄y+ xȳ)/2− γz,

ẇ = (x+ x̄)/2.

where α,β ,ρ and γ are positive parameters. W (w) = a+3bw2 denotes the memductance func-

tion of a flux-controlled memristor, which is characterized by a smooth continuous cubic nonlin-

earity. x = v1+ iv2 and y = v3+ iv4 are complex variables, i =
√
−1; vi(i = 1,2,3,4), z = v5 and

w = v6 are real variables. Dots represent derivatives with respect to time, x̄ and ȳ are conjugates

of x and y, respectively. overbar represents complex conjugate variables.

Separating the real and imaginary parts of system (6) yields the following equivalent system

(7)



v̇1 = α(v3− v1),

v̇2 = α(v4− v2),

v̇3 =−v1v5 +βv3−ρ(a+3bv2
6)v1,

v̇4 =−v2v5 +βv4−ρ(a+3bv2
6)v2,

v̇5 = v1v3 + v2v4− γv5,

v̇6 = v1.

The study in [16] indicates that the system (7) has three line sets of equilibrium points and can

generate abundant behaviors, such as periodic operations, transient phenomena, hyperchaotic



64 BO LI, XIAOBING ZHOU

−10 −5 0 5 10
−10

−5

0

5

10

v
1

v 3

−10 −5 0 5 10
0

5

10

15

20

v
1

v 5

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

8

v
3

v 6

−10

0

10

−10

0

10
0

10

20

v
1

v
3

v 5

FIGURE 1. Hyperchaos of system (7).

and chaotic attractors with different shapes. Fig.1 shows the hyperchaotic dynamics of system

(7), please refer to [16] for more properties and dynamical behaviors.

3. Main results

In this section, we investigate the finite-time stabilization schemes for the memristor-based

hyperchaotic complex Lü system, and present the main results of this paper.

Consider the following controlled system

(8)



v̇1 = α(v3− v1)+µ1,

v̇2 = α(v4− v2)+µ2,

v̇3 =−v1v5 +βv3−ρ(a+3bv2
6)v1 +µ3,

v̇4 =−v2v5 +βv4−ρ(a+3bv2
6)v2 +µ4,

v̇5 = v1v3 + v2v4− γv5 +µ5,

v̇6 = v1 +µ6.
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where µi(i = 1,2, ...,6) are controllers to be determined.

In the following, we will present two strategies to achieve stabilization of system (7) in a

finite time.

Strategy 1:

Theorem 1. If the controllers are designed as

(9)



µ1 =−αv3− vk
1,

µ2 =−αv4− vk
2,

µ3 =−βv3 +ρ(a+3bv2
6)v1− vk

3,

µ4 =−βv4 +ρ(a+3bv2
6)v2− vk

4,

µ5 =−vk
5,

µ6 =−v1− vk
6.

where k = q/p is a proper rational number, p and q are positive odd integers and p > q. The

memristor-based hyperchaotic complex Lü system will achieve finite-time stabilization, i.e., the

system (8)will be asymptotically stabilized at the equilibrium O(0,0,0,0,0,0) in a finite time.

Proof. Choose a positive definite function in the form of

(10) V =
1
2
(v2

1 + v2
2 + v2

3 + v2
4 + v2

5 + v2
6).

Take the time derivative of V , one obtains

(11)
V̇ =v1v̇1 + v2v̇2 + v3v̇3 + v4v̇4 + v5v̇5 + v6v̇6

=v1(α(v3− v1)+µ1)+ v2(α(v4− v2)+µ2)+ v3(−v1v5 +βv3−ρ(a+3bv2
6)v1 +µ3)

+ v4(−v2v5 +βv4−ρ(a+3bv2
6)v2 +µ4)+ v5(v1v3 + v2v4− γv5 +µ5)+ v6(v1 +µ6).
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Introducing the controllers (9) into the above equation, we have

(12)

V̇ =v1(α(v3− v1)−αv3− vk
1)+ v2(α(v4− v2)−αv4− vk

2)

+ v3(−v1v5 +βv3−ρ(a+3bv2
6)v1−βv3 +ρ(a+3bv2

6)v1− vk
3)

+ v4(−v2v5 +βv4−ρ(a+3bv2
6)v2−βv4 +ρ(a+3bv2

6)v2− vk
4)

+ v5(v1v3 + v2v4− γv5− vk
5)+ v6(v1− v1− vk

6)

=−αv2
1− vk+1

1 −αv2
2− vk+1

2 − vk+1
3 − vk+1

4 − γv2
5− vk+1

5 − vk+1
6

≤− vk+1
1 − vk+1

2 − vk+1
3 − vk+1

4 − vk+1
5 − vk+1

6

≤− (
1
2
)−

k+1
2 [(

1
2

v2
1)

k+1
2 +(

1
2

v2
2)

k+1
2 +(

1
2

v2
3)

k+1
2 +(

1
2

v2
4)

k+1
2 +(

1
2

v2
5)

k+1
2 +(

1
2

v2
6)

k+1
2 ].

According to Lemma 2, we have

(13)
V̇ ≤− (

1
2
)−

k+1
2 (

1
2

v2
1 +

1
2

v2
2 +

1
2

v2
3 +

1
2

v2
4 +

1
2

v2
5 +

1
2

v2
6)

k+1
2

=− (
1
2
)−

k+1
2 (V )

k+1
2 .

Then in light of Lemma 1, the controlled system (8) is finite-time stable. This implies there

exists a T > 0 such that vi ≡ 0(i = 1,2, ...,5) if t ≥ T .

Strategy 2:

Theorem 2. If the controllers are designed as

(14)



µ1 =−αv3− vk
1,

µ2 =−αv4− vk
2,

µ3 =−βv3− vk
3,

µ4 =−βv4− vk
4,

µ5 =−vk
5,

µ6 =−vk
6.

where k = q/p is a proper rational number, p and q are positive odd integers and p > q. The

memristor-based hyperchaotic complex Lü system will achieve finite-time stabilization, i.e., the

system (8)will be asymptotically stabilized at the equilibrium O(0,0,0,0,0,0) in a finite time.

Proof. The design procedure consists of two steps.
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Step 1. Introducing the controllers µ1 and µ2 into the first two parts of system (8) yields

(15)


v̇1 =−αv1− vk

1,

v̇2 =−αv2− vk
2.

Construct the following positive definite function

(16) V1 =
1
2
(v2

1 + v2
2).

The derivative of V1 along the trajectory of Eq.(15) is

(17)

V̇1 = v1v̇1 + v2v̇2

= v1(−αv1− vk
1)+ v2(−αv2− vk

2)

≤−vk+1
1 − vk+1

2

=−(1
2
)−

k+1
2 [(

1
2

v2
1)

k+1
2 +(

1
2

v2
2)

k+1
2 ]

≤−(1
2
)−

k+1
2 (

1
2

v2
1 +

1
2

v2
2)

k+1
2

=−(1
2
)−

k+1
2 V

k+1
2

1 .

In light of Lemma 1, system (15) is finite-time stable. That means there is a T1 > 0 such that

v1 ≡ 0 and v2 ≡ 0, for any t ≥ T1.

When t > T1 , the last four parts of system (8) become:

(18)



v̇3 = βv3 +µ3,

v̇4 = βv4 +µ4,

v̇5 =−γv5 +µ5,

v̇6 = µ6.

Construct the following candidate Lyapunov function for system (18)

(19) V2 =
1
2
(v2

3 + v2
4 + v2

5 + v2
6).

The derivative of V2 along the trajectories of Eq.(18) is

(20)
V̇2 = v3v̇3 + v4v̇4 + v5v̇5 + v6v̇6

= v3(βv3 +µ3)+ v4(βv4 +µ4)+ v5(−γv5 +µ5)+ v6µ6.
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Introducing the controllers µ3, µ4, µ5 and µ6 in Eq.(14) into the above equation, yields

(21)

V̇2 =v3(−v3−βv3− vk
3)+ v4(−v4−βv4− vk

4)+ v5(−v5− vk
5)+ v6(−v6− vk

6)

≤− vk+1
3 − vk+1

4 − vk+1
5 − vk+1

6

=− (
1
2
)−

k+1
2 [(

1
2

v2
3)

k+1
2 +(

1
2

v2
4)

k+1
2 +(

1
2

v2
5)

k+1
2 +(

1
2

v2
6)

k+1
2 ]

≤− (
1
2
)−

k+1
2 (

1
2

v2
3 +

1
2

v2
4 +

1
2

v2
5 +

1
2

v2
6)

k+1
2

=− (
1
2
)−

k+1
2 V

k+1
2

2 .

Then in light of Lemma 1, the states v3, v4, v5 and v6 will converge to zero at a finite time

T2. Then after T2, the states of system (8) will stay at zero, i.e., the trajectories of the controlled

system (8) converge to zero in a finite time.

5. Numerical simulations

In this section, we present two numerical examples to illustrate the theoretical analysis. In the

following numerical simulations, the fourth-order Runge-kutta method is applied with time step

size 0.01. The system parameters are selected as a= 4, b= 0.01,α = 36, β = 20,ρ = 3 and γ =

3, so that memristor-based hyperchaotic complex Lü system exhibits hyperchaotic behaviors.

The initial conditions for this system are given as (x(0),y(0),z(0),w(0)) = (0.2+ 0.2i,0.4+

0.4i,0.5,0.5), i.e. (v1(0),v2(0),v3(0),v4(0),v5(0),v6(0)) = (0.2,0.2,0.4,0.4,0.5,0.5).

Example 1. Consider strategy 1 with the controllers (9). We choose k = 3/5. Fig. 2 shows

the result of the numerical simulation. From Fig. 2, we can see that it takes only a very short

time to stabilize the controlled system (8) at the equilibrium O(0,0,0,0,0,0).

Example 2. Consider strategy 2 with the controllers (14). We still choose k = 3/5. Fig.3

shows that the controlled system (8) is stabilize at the equilibrium O(0,0,0,0,0,0). From Figs.2

and 3, we can see the stabilization times of the controlled system (8) are almost the same.

6. Conclusions
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FIGURE 2. The states of the controlled system (8) with controllers (9).
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FIGURE 3. The states of the controlled system (8) with controllers (14).
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In this paper, the finite-time stability of the memristor-based hyperchaotic complex Lü system

has been studied. Based on the finite-time stability theory, two kinds of simple but effective con-

trollers are proposed to stabilize the memristor-based hyperchaotic complex Lü system. From

the proof process, we can see that the two methods can be extended effectively to other sys-

tems, such as the hyperchaotic complex Lorenz system, hyperchaotic complex Chen system,

and some other hyperchaotic complex systems.
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