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Abstract. In this paper, we investigate L-fuzzy closure operators and L-fuzzy cotopologies in a complete residuated

lattice. Also, we study the categorical relationship between L-fuzzy closure spaces and L-fuzzy cotopological

space. Finally, we give their examples.
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1. Introduction

Hájek [7] introduced a complete residuated lattice which is an algebraic structure for many

valued logic. Bělohlávek [2] investigated information systems and decision rules in complete

residuated lattices. Höhle [8]introduced L-fuzzy topological structure with algebraic structure

L(cqm, quantales, MV -algebra).
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Fuzzy topological structures were extended and applied in many directions [3-6, 8-12]. Fang

and Yue [6] studied the relationship between L-fuzzy closure systems and L-fuzzy topological

spaces from a category viewpoint for a complete residuated lattice L.

We investigate L-fuzzy closure operators and L-fuzzy cotopologies in a complete residuated

lattice. Also, we study the categorical relationship between L-fuzzy closure spaces and L-

fuzzy cotopological space. Moreover, there exists the Galois correspondence between L-fuzzy

cotopological spaces and L-fuzzy closure spaces. In particular, we give their examples.

2. Preliminaries

Definition 2.1. [2,7,8] An algebra (L,∧,∨,�,→,⊥,>) is called a complete residuated lattice

if it satisfies the following conditions:

(L1) (L,≤,∨,∧,⊥,>) is a complete lattice with the greatest element > and the least element

⊥;

(L2) (L,�,>) is a commutative monoid;

(L3) x� y≤ z iff x≤ y→ z for x,y,z ∈ L.

In this paper, we assume that L = (L,∨,∧,�,→,⊥,>) be a complete residuated lattice which

is defined by x⊕ y = x∗→ y, x∗ = x→ 0.

Lemma 2.2. [2,7,8] For each x,y,z,xi,yi,w ∈ L, we have the following properties.

(1) 1→ x = x, 0� x = 0 and x→ 0 = x∗,

(2) If y≤ z, then x� y≤ x� z, x⊕ y≤ x⊕ z, x→ y≤ x→ z and z→ x≤ y→ x.

(3) x� y≤ x∧ y≤ x∨ y≤ x⊕ y,

(4) (
∨

i yi)
∗ =

∧
i y∗i ,

(5) x� (
∧

i yi)≤
∧

i(x� yi),

(6) x⊕ (
∧

i yi) =
∧

i(x⊕ yi),

(7) x→ (
∧

i yi) =
∧

i(x→ yi),

(8) (
∨

i xi)→ y =
∧

i(xi→ y),

(9) x→ (
∨

i yi)≥
∨

i(x→ yi),

(10) (
∧

i xi)→ y≥
∨

i(xi→ y),
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(11) (x� y)→ z = x→ (y→ z) = y→ (x→ z),

(12) x� (x→ y)≤ y and x→ y≤ (y→ z)→ (x→ z),

(13) x≤ x∗∗ and x→ y≤ y∗→ x∗,

(14) (x→ y)� (z→ w)≤ (x� z)→ (y�w),

(15) x→ y≤ (x� z)→ (y� z) and (x→ y)� (y→ z)≤ x→ z,

For α ∈ L,λ ∈ LX , we denote (α→ λ ),(α�λ ),αX ∈ LX as (α→ λ )(x) = α→ λ (x), (α�

λ )(x) = α�λ (x), αX(x) = α .

Definition 2.3.[2,7,8] Let X be a set. A mapping R : X ×X → L is called an L-partial order

if it satisfies the following conditions:

(E1) reflexive if R(x,x) => for all x ∈ X ,

(E2) transitive if R(x,y)�R(y,z)≤ R(x,z), for all x,y,z ∈ X ,

(E3) antisymmetric if R(x,y) = R(y,x) =>, then x = y.

Lemma 2.4. [2,5,10] For a given set X , define a binary mapping S : LX ×LX → L by

S(λ ,µ) =
∧
x∈X

(λ (x)→ µ(x)).

Then, for each λ ,µ,ρ,ν ∈ LX , and α ∈ L, the following properties hold.

(1) S is an L-partial order on LX .

(2) λ ≤ µ iff S(λ ,µ)≥>,

(3) If λ ≤ µ , then S(ρ,λ )≤ S(ρ,µ) and S(λ ,ρ)≥ S(µ,ρ),

(4) S(λ ,µ)�S(ν ,ρ)≤ S(λ �ν ,µ�ρ) and S(λ ,µ)�S(ν ,ρ)≤ S(λ ⊕ν ,µ⊕ρ),

(5) S(µ,ρ)≤ S(λ ,µ)→ S(λ ,ρ) and S(µ,ρ)≤ S(ρ,λ )→ S(µ,λ ),

(6) α�S(µ,ρ)≤ S(α → µ,ρ),

(7)
∨

µ∈LX (S(µ,ρ)�S(λ ,µ)) = S(λ ,ρ).

(8) If φ : X → Y is a map, then for λ ,µ ∈ LX and ρ,ν ∈ LY ,

S(λ ,µ)≤ S(φ→(λ ),φ→(µ)),

S(ρ,ν)≤ S(φ←(ρ),φ←(ν)),

and the equalities hold if φ is bijective.
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Definition 2.5. [6,8] A map F : LX → L is called an L-fuzzy cotopology on X if it satisfies

the following conditions:

(F1) F (⊥X) = F (>X) =>,

(F2) F (λ ⊕µ)≥F (λ )�F (µ), ∀ λ ,µ ∈ LX ,

(F3) F (
∧

i λi)≥
∧

i F (λi), ∀ {λi}i∈Γ ⊆ LX .

The pair (X ,F ) is called an L-fuzzy cotopological space. An L-fuzzy cotopological space is

called enriched if

(R) F (α → λ )≥F (λ ) for all λ ∈ LX and α ∈ L.

Let (X ,F1) and (Y,F2) be two L-fuzzy cotopological spaces. A mapping φ : X → Y is said

to be L-fuzzy continuous iff for each λ ∈ LY , F2(λ )≤F1(φ
←(λ )).

Remark 2.6. A set ℑ⊂ LX is called an L-cotopology on X if (t1)⊥X ,>X ∈ℑ, (t2) (λ ⊕µ)∈

ℑ, for each λ ,µ ∈ ℑ, (t3)
∧

i λi ∈ ℑ, for all λi ∈ ℑ. An L-cotopology ℑ is called enriched if

α → λ ∈ ℑ, for all λ ∈ ℑ and α ∈ L.

3. L-fuzzy closure spaces and L-fuzzy cotopological spaces

Lemma 3.1. Let L be a complete residuated lattice. Define x⊕ y = x∗→ y.

(1) (x→ y)⊕ (z→ w)≤ (x� z)→ (y⊕w).

(2) (x→ y)� (z→ w)≤ (x⊕ z)→ (y⊕w).

Proof. (1) Since (x� y∗)∗ = x→ y∗∗ ≥ x→ y, then x� y∗ ≤ (x→ y)∗.

[(x→ y)⊕ (z→ w)]� (x� z)� y∗

= [(x→ y)∗→ (z→ w)]� (x� y∗)� z

≤ [(x→ y)∗→ (z→ w)]� (x→ y)∗� z

≤ (z→ w)� z≤ w

Hence [(x→ y)⊕ (z→ w)]� (x� z)� y∗ ≤ w iff [(x→ y)⊕ (z→ w)]� (x� z) ≤ y⊕w iff

[(x→ y)⊕ (z→ w)]≤ (x� z)→ (y⊕w).
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(2)

[(x→ y)� (z→ w)]� (x⊕ z)� y∗

≤ [(y∗→ x∗)� (z→ w)]� (x∗→ z)� y∗

≤ x∗� (z→ w)� (x∗→ z)≤ (z→ w)� z≤ w

Hence [(x→ y)� (z→ w)]� (x⊕ z)� y∗ ≤ w iff [(x→ y)� (z→ w)]� (x⊕ z) ≤ y⊕w iff

[(x→ y)� (z→ w)]≤ (x⊕ z)→ (y⊕w).

Definition 3.1. A map C : LX → LX is called an L-fuzzy closure operator if it satisfies the

following conditions:

(C1) C (⊥X) =⊥X ,

(C2) for λ ∈ LX , λ ≤ C (λ ),

(C3) if λ ≤ µ , C (λ )≤ C (µ),

(C4) for all λ ,µ ∈ LX , C (λ ⊕µ)≤ C (λ )⊕C (µ).

The pair (X ,C ) is called an L-fuzzy closure space.

An L-fuzzy closure space is called stratified if

(R) C (α → λ )≤ α → C (λ ) for all λ ∈ LX and α ∈ L.

Let (X ,C1) and (Y,C2) be two L-fuzzy closure spaces. A mapping φ : X → Y is said to be

C-map if φ→(C1(λ ))≤ C2(φ
→(λ )) for each λ ∈ LX .

Lemma 3.2. Let C : LX → LX a map. The following statement are equivalent.

(1) For all λ ,µ ∈ LX , S(λ ,µ)≤ S(C (λ ),C (µ)).

(2) If λ ≤ µ , then C (λ )≤ C (µ) and C (α�ρ)≥ α�C (ρ) for all λ ∈ LX and α ∈ L.

(3) If λ ≤ µ , then C (λ )≤ C (µ) and C (α → ρ)≤ α → C (ρ) for all λ ∈ LX and α ∈ L.

Proof. (1) (⇒) (2). If λ ≤ µ , then > = S(λ ,µ) ≤ S(C (λ ),C (µ)). Hence C (λ ) ≤ C (µ).

Put µ = α�λ . Then S(λ ,α�λ ) = α ≤ S(C (λ ),C (α�λ )). Hence α�C (λ )≤ C (α�λ ).

(2) (⇒) (3). Since α�C (α → λ )≤ C (α� (α → λ ))≤ C (λ ), C (α → λ )≤ α → C (λ ).
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(3) (⇒) (1). Since S(λ ,µ)� λ ≤ µ iff λ ≤ S(λ ,µ) → µ , C (λ ) ≤ C (S(λ ,µ) → µ) ≤

S(λ ,µ)→ C (µ). Hence S(λ ,µ)≤ S(C (λ ),C (µ)).

Theorem 3.3. Let (X ,F ) be an L-fuzzy cotopological space. Define a map CF : LX −→ LX

as follows:

CF (λ ) =
∧

µ∈LX

(F (µ)→ (S(λ ,µ)→ µ))

Then (X ,CF ) is a stratified L-fuzzy closure space.

Proof. (C1) CF (⊥X) =
∧

µ∈LX (F (µ)→ (S(⊥X ,µ)→ µ)) ≤ F (⊥X)→ (S(⊥X ,⊥X)→

⊥X) =⊥X .

(C2), we have CF (λ )≥ λ for each λ ∈ LX from:

S(λ ,CF (λ )) =
∧
x∈X

(λ (x)→ CF (λ )(x))

=
∧
x∈X

(
λ (x)→

∧
µ∈LX

(F (µ)→ (S(λ ,µ)→ µ(x)))
)

=
∧
x∈X

∧
µ∈LX

(
(F (µ)�S(λ ,µ)�λ (x))−→ µ(x))

)
=
∧
x∈X

∧
µ∈LX

(
(F (µ)�S(λ ,µ)−→ (λ (x)−→ µ(x))

)
=

∧
µ∈LX

(
(F (µ)�S(λ ,µ))→

∧
x∈X

(λ (x)−→ µ(x))
)

=
∧

µ∈LX

(
(F (µ)�S(λ ,µ))→ S(λ ,µ)

)
≥>.

(C3) and, by Lemma 3.2, CF is stratified from

S(CF (λ ),CF (µ)) =
∧
x∈X

(CF (λ )(x)→ CF (µ)(x))
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=
∧
x∈X

( ∧
ρ∈LX

(F (ρ)�S(λ ,ρ)→ ρ(x))→
∧

ν∈LX

(F (ν)�S(µ,ν)→ ν(x))
)

≥
∧
x∈X

∧
ρ∈LX

(
(F (ρ)�S(λ ,ρ)→ ρ(x))→ ((F (ρ)�S(µ,ρ)→ ρ(x))

)
≥
∧
x∈X

∧
ρ∈LX

(
F (ρ)�S(µ,ρ)→ (F (ρ)�S(λ ,ρ)

)
(by Lemma 2.2 (12) )

≥
∧
x∈X

∧
ρ∈LX

(
S(µ,ρ)→ S(λ ,ρ)

)
≥ S(λ ,µ).(by Lemma 2.4(5) )

(C4)

CF (λ )⊕CF (µ)

=
∧

ρ∈LX

(F (ρ)→ (S(λ ,ρ)→ ρ))⊕
∧

ν∈LX

(F (ν)→ (S(µ,ν)→ ν))

(by Lemma 3.1(1) )

=
∧

ρ∈LX

∧
ν∈LX

(
(F (ρ)�S(λ ,ρ)→ ρ)⊕ (F (ν)�S(µ,ν)→ ν)

)
=

∧
ρ,ν∈LX

(
F (ρ)�F (ν)�S(λ ,ρ)�S(µ,ν)→ (ρ⊕ν)

)
≥

∧
ρ,ν∈LX

(
F (ρ�ν)�S(λ ⊕µ,(ρ⊕ν))→ (ρ⊕ν)

)
(by Lemma 2.4(4) )

≥ CF (λ ⊕µ).

Remark 3.4. Let (X ,ℑ) be an L-cotopological space. Define a map Cℑ : LX → LX as follows:

Cℑ(λ ) =
∧
{µ ∈ LX | λ ≤ µ,µ ∈ ℑ}.

Then (X ,Cℑ) is an L-fuzzy closure space. Moreover, if (X ,ℑ) is enriched, (X ,Cℑ) is stratified.
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Corollary 3.4. Let (X ,ℑ) be an L-cotopological space. Define Cℑ : LX → LX by

Cℑ(λ ) =
∧

ρ∈ℑ

(S(λ ,ρ)→ ρ).

Then the following properties hold.

(1) (X ,Cℑ) is an L-fuzzy closure space.

(2) If (X ,ℑ) is enriched, then (X ,Cℑ) is a stratified L-fuzzy closure space.

(3) Cℑ(λ )≥
∧
{µ |λ ≤ µ,µ ∈ ℑ},

(4) If (X ,ℑ) is enriched, then the equality in (3) holds.

Theorem 3.5. Let (X ,C ) be an L-fuzzy closure space. Define a map FC : LX → L by:

FC (λ ) = S(C (λ ),λ ).

Then,

(1) FC is an L-fuzzy cotopology on X .

(2) If C is stratified, then FC is an enriched L-fuzzy cotopology.

(3) CFC
≥ C .

(4) If C (C (λ )) = C (λ ) for all λ ∈ LX , then FC (C (λ )) => and CFC
≤ C .

(5) If F is an L-fuzzy cotopology on X , then FC F ≥F .

Proof. (F1)

FC (>X) =
∧
x∈X

(C (>X)→>X(x)) =
∧
x∈X

(⊥X(x)→⊥X(x)) =>,

FC (⊥X) =
∧
x∈X

(C (⊥X)→⊥X(x)) =
∧
x∈X

(>X(x)→>X(x)) =>.

(F2) By Lemma 3.1(1), we havre

FC (λ ⊕µ) =
∧
x∈X

(C ((λ ⊕µ))(x)→ (λ ⊕µ)(x))

≥
∧
x∈X

(C (λ )(x)⊕C (µ)(x)→ λ (x)⊕µ(x))

≥
∧
x∈X

(C (λ )(x)→ λ (x))�
∧
x∈X

(C (µ)(x)→ µ(x))

= FC (λ )�FC (µ).
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(F3) By Lemma 2.2(8),we have

FC (
∧

i

λi) =
∧
x∈X

(C (
∧

i

λi)(x)→
∧

i

λi(x))

≥
∧
x∈X

(
∧

i

C (λi)(x)→
∧

i

λi(x))

≥
∧

i

∧
x∈X

(C (λi)(x)→ λi(x)) =
∧

i

FC (λi).

(2) By Lemma 2.2 (12), we have

FC (α → λ ) =
∧
x∈X

(C (α → λ )(x)→ (α → λ )(x))

≥
∧
x∈X

((α → C (λ )(x))→ (α → λ (x)))

≥
∧
x∈X

(C (λ )(x)→ λ (x)) = FC (λ ).

(3)

CFC
(λ )(x) =

∧
µ∈LX

(FC (µ)→ (S(λ ,µ)→ µ(x)))

=
∧

µ∈LX

(S(C (µ),µ)�S(λ ,µ)→ µ(x))

(by the definition of FC )

≥
∧

µ∈LX

(S(C (µ),µ)�S(C (λ ),C (µ))→ µ(x))

≥
∧

µ∈LX

(S(C (λ ),µ)→ µ(x)) (by Lemma 2.4(3))

≥ C (λ )(x).

(4) By (C2), C (C (λ ))≥ C (λ ).
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Hence F (C (λ )) = C (λ ). Thus, FC (C (λ )) =>. Moreover,

CFC
(λ )(x) =

∧
µ∈LX

(FC (µ)→ (S(λ ,µ)→ µ(x)))

≤FC (C (λ ))→ (S(λ ,C (λ ))→ C (λ )(x))

(by the definition of FC )

= C (λ )(x).

(5)

FCF
(λ ) = S

(
CF (λ ),λ

)
=
∧
x∈X

( ∧
µ∈LX

(F (µ)→ (S(λ ,µ)→ µ))→ λ (x)
)

≥
∧
x∈X

(
(F (λ )→ (S(λ ,λ )→ λ ))→ λ (x)

)
=
∧
x∈X

(
(F (λ )→ λ (x))→ λ (x)

)
≥F (λ ).

Remark 3.6. Let (X ,C ) be an L-fuzzy closure space. Define a subset ℑC ⊂ LX by:

ℑC = {λ ∈ LX | C (λ ) = λ}.

Then, ℑC is an L-cotopology on X with CℑC
≥ C . If C is stratified, then ℑC is an enriched

L-cotopology.

Theorem 3.7 Let (X ,FX) and (Y,FY ) be L-fuzzy cotopological spaces and φ : X → Y be a

map. Then
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(1) For each λ ∈ LX ,

∧
ν∈LY

(FY (ν)→ (FX(φ
←(ν))≤ S(φ→(CFX (λ )),CFY (φ

→(λ )))

(2) If a mapping φ : (X ,FX)→ (Y,FY ) is continuous, then φ : (X ,CFX )→ (Y,CFY ) is a

C-map.

Proof. (1)

S(φ→(CFX (λ )),CFY (φ
→(λ )))

=
∧
y∈Y

(φ→(CFX (λ ))(y)→ CFY (φ
→(λ ))(y))

=
∧
x∈X

(φ→(CFX (λ ))(φ(x))→ CFY (φ
→(λ ))(φ(x)))

=
∧
x∈X

(CFX (λ )(x)→ CFY (φ
→(λ ))(φ(x)))

=
∧
x∈X

(
∧

ρ∈LX

((FX(ρ)�S(λ ,ρ)→ ρ(x))

→
∧

ν∈LY

((FY (ν)�S(φ→(λ ),ν)→ ν(φ(x)))))

=
∧
x∈X

(
∧

ν∈LY

((FX(φ
←(ν))�S(λ ,φ←(ν))→ φ

←(ν)(x))

→
∧

ν∈LY

((FY (ν)�S(φ→(λ ),ν)→ ν(φ(x)))))

=
∧
x∈X

(
∧

ν∈LY

(
(FX(φ

←(ν))�S(λ ,φ←(ν))→ φ
←(ν)(x))

→ ((FY (ν)�S(φ→(λ ),ν)→ ν(φ(x))))
)

=
∧
x∈X

(
∧

ν∈LY

(
(FY (ν)�S(φ→(λ ),ν)→ (FX(φ

←(ν))�S(λ ,φ←(ν))
)

=
∧

ν∈LY

(FY (ν)→FX(φ
←(ν)))

(2) Since FY (ν)≤FX(φ
←(ν)), by (1), φ→(CFX (λ ))≤ CFY (φ

→(λ )).
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Theorem 3.8 Let (X ,CX) and (Y,CY ) be fuzzy closure spaces and φ : X→Y be a map. Then

(1) S(CX(φ
←(λ )),φ←(CY (λ )))≤FCY (λ )→FCX (φ

←(λ )) for each λ ∈ LY .

(2) If a mapping φ : (X ,CX)→ (Y,CY ) is an C-map, then φ : (X ,FCX )→ (Y,FCY ) is contin-

uous.

Proof. (1) By Lemma 2.2, we have

FCY (λ )→FCX (φ
←(λ ))

=
∧
y∈Y

(
CY (λ )(y)→ λ (y)

)
→
∧
x∈X

(
CX(φ

←(λ ))(x)→ φ
←(λ )(x)

)
≥
∧
x∈X

(
φ
←(CY (λ ))(x)→ φ

←(λ )(x)
)
→
∧
x∈X

(
CX(φ

←(λ ))(x)→ φ
←(λ )(x)

)
≥
∧
x∈X

(
CX(φ

←(λ ))(x)→ φ
←(CY (λ ))(x)

)

(2) Let φ→(CX(λ ))≤ CY (φ
→(λ )). Then, put λ = φ←(µ),

CX(φ
←(µ))≤ φ

←(φ→(CX(φ
←(µ))))≤ φ

←(CY (φ
→(φ←(µ))))≤ φ

←(CY (µ)).

Thus, by (1), if CX(φ
←(λ ))≤ φ←(CY (λ )), then FCY (λ )≤FCX (φ

←(λ )).

Example 3.9. Let (L = [0,1],�,→) be a complete residuated lattice defined by

x� y = (x+ y−1)∨0, x→ y = (1− x+ y)∧1.

x⊕ y = (x+ y)∧1, x∗ = 1− x.

Let X = {x,y,z} be a set and ρ,ρ⊕ρ ∈ LX such that

ρ(x) = 0.4,ρ(y) = 0.8,ρ(z) = 0.7,

ρ⊕ρ(x) = 0.8,ρ⊕ρ(y) = 1,ρ⊕ρ(z) = 1.



L-FUZZY CLOSURE OPERATORS AND L-FUZZY COTOPOLOGIES 143

(1) We define an L-fuzzy cotopology F : LX → L as follows

F (λ ) =



1, if λ = 1X , λ = 0X ,

0.6, if λ = ρ,

0.3, if λ = ρ⊕ρ,

0, otherwise.

From Theorem 3.3, we obtain an L-fuzzy closure operator CF : LX → LX as follows

CF (λ ) =
∧

µ∈LX (F (µ)→ (S(λ ,µ)→ µ))

= (S(λ ,0X)→ 0X)∧ (0.6→ (S(λ ,ρ)→ ρ))∧ (0.3→ (S(λ ,ρ⊕ρ)→ ρ⊕ρ)).

For λ1 = (0.9,0.4,0.2),

CT (λ1) = (S(λ ,0X)→ 0X)∧ (0.6→ (S(λ ,ρ)→ ρ))

∧(0.3→ (S(λ ,ρ⊕ρ)→ ρ⊕ρ)) = (0.9,0.9,0.9)

FCF
(λ1) = S(CT (λ1),λ1) = 0.3≥T (λ1) = 0.

(2) We define an L-fuzzy closure operator C : LX → LX as follows

C (λ ) =



0X , if λ = 0X ,

ρ, if 0X 6= λ ≤ ρ,

ρ⊕ρ, if ρ 6≥ λ ≤ ρ⊕ρ,

1X , otherwise.

C is not stratified because

C (0.9→ ρ) = C ((0.5,0.9,0.8)) = (0.8,1,1) 6≤ 0.9→ C (ρ) = (0.5,0.9,0.8).

From Theorem 3.5, we obtain an L-fuzzy cotopology FC : LX → L as follows

FC (λ ) =



1X , if λ = 1X ,

S(ρ,λ ), if 0X 6= λ ≤ ρ, ,

S(ρ⊕ρ,λ ), if ρ 6≥ λ ≤ ρ⊕ρ,

S(1X ,λ ), otherwise.
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Definition 3.10. [1] Suppose that F : D → C , G : C → D are concrete functors. The pair

(F,G) is called a Galois correspondence between C and D if for each Y ∈C , idY : F ◦G(Y )→Y

is a C -morphism, and for each X ∈D , idX : X → G◦F(X) is a D-morphism.

If (F,G) is a Galois correspondence, then it is easy to check that F is a left adjoint of G, or

equivalently that G is a right adjoint of F.

Let FC be denote the category of L-fuzzy closure spaces and C-maps for morphisms.

Let FCTS be denote the category of L-fuzzy cotopological spaces and continuous mappings

for morphisms.

Theorem 3.12. (1) F : FC→ FCTS defined as F(X ,CX) = (X ,FCX ) is a functor.

(2) G : FCTS→ FC defined as G(X ,FX) = (X ,CFX ) is a functor.

(3) The pair (F,G) is a Galois correspondence between FC and FCTS.

Proof. (1) and (2) are follows from Theorems 3.8(2) and 3.7(2), respectively.

(3) By Theorem 3.5(5), if (X ,FX) is an L-fuzzy cotopology, then F(G(X ,FX)= (X ,FCFX
)≥

(X ,FX). Hence, the identity map idX : (X ,FCFX
) = F(G(X ,FX))→ (X ,FX) is a continuous

map. Moreover, if (X ,CX) is an L-fuzzy closure space, by Theorem 3.5(3), G(F(X ,CX) =

(X ,CFCX
)≥ (X ,CX). Hence the identity map idX : (X ,CX)→G(F(X ,CX)) = G(F(X ,CX) is a

C-map. Therefore (F,G) is a Galois correspondence.
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