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Abstract. Given a graph G with n vertices v1,v2, . . . ,vn and the vertex degrees d1,d2, ...,dn respectively. We

associate to G an average degree matrix Av(G) whose (i, j)th entry is di+d j
2 . We explore some properties of the

eigenvalues and energy of Av(G).
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1. Introduction

Let G be a graph with V (G) = {1, ...,n} and E(G) = {e1, ...,en}. The adjacency matrix of G,

denoted by A(G), is the n×n matrix defined as follows. The rows and the columns of A(G) are

indexed by V (G). If i 6= j then the (i, j)-entry of A(G) is 0 for vertices i and j non-adjacent,

and the (i, j)-entry is 1 for i and j adjacent. If G is simple, the (i, i)-entry of A(G) is 0 for

i = 1, . . . ,n. We often denoted A(G) simply by A. The eigenvalues of a matrix A are called as
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the eigenvalues of the graph G. The spectrum of a finite graph G is its set of eigenvalues together

with their multiplicities. Several properties of eigenvalues of graphs and their applications have

been explored in [2,3].

We define a new matrix, called the average degree matrix of a graph, in the following way.

Definition 1.1. Let G be a graph with n vertices v1,v2, . . . ,vn and the vertex degrees d1,d2, ...,dn

respectively. Let Av(G) = (ai j) be an n×n square matrix where, ai j =
di+d j

2 . We say that Av(G)

is the average degree matrix of the graph G.

We observe that Av(G) is a real and symmetric matrix. Therefore its eigenvalues are real. We

call the eigenvalues of Av(G) as average degree eigenvalues of G. We call the set of average

degree eigenvalues of G together with their multiplicities as the average degree spectrum of G.

Example 1.2. Consider the graph G as shown in the following figure.

xx

x

G

x v4

v3v2

v1

Then the average degree matrix of G is

Av(G) =


3 5/2 5/2 2

5/2 2 2 3/2

5/2 2 2 3/2

2 3/2 3/2 1


The characteristic polynomial of Av(G) is

det(xI−Av(G)) = x2(x−4−3
√

2)(x−4+3
√

2)

Thus the average degree spectrum of G is 4+3
√

2, 4−3
√

2, 0, 0. The eigenvalues of G are

2.170, 0.311, −1, and −1.481. In this paper, we explore various properties of the average

degree eigenvalues of the graphs. For terminology in graph theory, we refer [2,6] and for matrix

theory, we refer [4].
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2. Average Degree Eigenvalues of Some Graphs

In the following proposition, we investigate average degree eigenvalues of the complete graph

Kn.

Proposition 2.1. For any positive integer n, the average degree eigenvalues of complete graph

Kn are n(n−1) with multiplicity 1 and 0 with multiplicity n−1.

Proof. Consider Jn, the n× n matrix of all entries ones. It is a symmetric, rank 1 matrix, and

hence it has only one non-zero eigenvalue, which must equal the trace.

Thus, the eigenvalues of Jn are n with multiplicity 1 and 0 with multiplicity n−1. Now,

Av (Kn) =


(n−1) (n−1) . . . (n−1)

(n−1) (n−1) . . . (n−1)
...

... . . . ...

(n−1) (n−1) . . . (n−1)


= (n−1) Jn

Therefore the eigenvalues of Av (Kn) are n(n− 1) with multiplicity 1 and 0 with multiplicity

n−1.

In the following theorem, we explore average degree eigenvalues of the complete bipartite graph

Km,n.

Theorem 2.2. For any positive integer m,n, the average degree eigenvalues of complete bipar-

tite graph Km,n are 2mn+(m+n)
√

mn
2 , 2mn−(m+n)

√
mn

2 and 0 with multiplicity m+n−2.

Proof. The average degree matrix of Km,n is

Av(Km,n ) =


nJm×m (m+n

2 )Jm×n

(m+n
2 )Jn×m mJn×n


The characteristic polynomial is CAv(x) = xm+n−2mnxm+n−1− mn(m−n)2

4 xm+n−2.

The roots of this polynomial are 2mn+(m+n)
√

mn
2 , 2mn−(m+n)

√
mn

2 and 0 with multiplicity m+n−2.
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Corollary 2.3. For any positive integer m, the average degree eigenvalues of the complete

bipartite graph Km,m are 2m2 with multiplicity 1 and 0 with multiplicity 2m−1.

The following theorem determines the average degree eigenvalues of regular graphs.

Theorem 2.4. The average degree eigenvalues of a k-regular graph on n vertices are kn with

multiplicity 1 and 0 with multiplicity n−1.

Proof. As G is a k-regular graph, the degrees of it’s all vertices are k.

The average degree matrix is

Av (G) =


k k . . . k

k k . . . k
...

... . . . ...

k k . . . k


= k Jn

The eigenvalues of Jn are n with multiplicity 1 and 0 with multiplicity n−1.

Therefore the average degree eigenvalues of G are kn with multiplicity 1 and 0 with multiplicity

n−1.

When specialized to a cycle, theorem 2.4 gives us the following corollary.

Corollary 2.5. The average degree eigenvalues of cycle graph Cn are 2n with multiplicity 1 and

0 with multiplicity n−1.

Proof. As Cn is 2− regular, therefore by theorem 2.4, the average degree eigenvalues of Cn are

2n with multiplicity 1 and 0 with multiplicity n−1.

In the following proposition, we explore average degree eigenvalues of the path graph.

Proposition 2.6. The average degree eigenvalues of the path graph Pn (n≥ 3) are
2(n−1)+

√
n2+3n(n−2)
2 with multiplicity 1, 2(n−1)−

√
n2+3n(n−2)
2 with multiplicity 1 and 0 with mul-

tiplicity n−2.

Proof. The average degree matrix of path graph Pn is
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Av (Pn) =



1 3
2 . . . 3

2 1

3
2 2 . . . 2 3

2

...
... . . . ...

...

3
2 2 . . . 2 3

2

1 3
2 . . . 3

2 1


The characteristic polynomial is CAv(x) = xn−2(x2−2(n−1)x− (n−2)

2 ).

Therefore the average degree eigenvalues of the path graph Pn (n≥ 3) are 2(n−1)+
√

n2+3n(n−2)
2 ,

2(n−1)−
√

n2+3n(n−2)
2 and 0 with multiplicity n−2.

3. Properties of Average Degree Matrix and Average Degree Eigenvalues
of Graphs

The following theorem gives the rank of average degree matrix.

Theorem 3.1. Let G be a graph with n vertices with atleast one edge and Av (G) be its average

degree matrix. Then rank of Av (G) is 1 or 2.

Proof. Let G be a graph with n vertices and m edges. Then the average degree matrix of G is

Av(G) =



d1
d1+d2

2
d1+d3

2 . . . d1+dn
2

d2+d1
2 d2

d2+d3
2 . . . d2+dn

2
...

... . . . ...
...

dn−1+d1
2

dn−1+d2
2

dn−1+d3
2

. . . dn−1+dn
2

dn+d1
2

dn+d2
2

dn+d3
2 . . . dn


Here we have to show that the rank of Av(G) is 1 or 2. We show that any minor of Av(G) of

order 3 is zero then we are through. We can write Av(G) in form
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Av(G) =



d1
2 + d1

2
d1
2 + d2

2
d1
2 + d3

2 . . . d1
2 + dn

2
d2
2 + d1

2
d2
2 + d2

2
d2
2 + d3

2 . . . d2
2 + dn

2
...

... . . . ...
...

dn−1
2 + d1

2
dn−1

2 + d2
2

dn−1
2 + d3

2
. . . dn−1

2 + dn
2

dn
2 + d1

2
dn
2 + d2

2
dn
2 + d3

2 . . . dn
2 + dn

2


Suppose we consider a minor of order 3 of Av(G) corresponding to the vertices vi,v j and vk

with respect to there degrees di,d j and dk.

=

∣∣∣∣∣∣∣∣∣
di
2 + di

2
di
2 +

d j
2

di
2 + dk

2
d j
2 + di

2
d j
2 +

d j
2

d j
2 + dk

2
dk
2 + di

2
dk
2 +

d j
2

dk
2 + dk

2

∣∣∣∣∣∣∣∣∣
We can write given minor in the form using the property of determinant

=

∣∣∣∣∣∣∣∣∣
di
2

di
2

di
2

d j
2 + di

2
d j
2 +

d j
2

d j
2 + dk

2
dk
2 + di

2
dk
2 +

d j
2

dk
2 + dk

2

∣∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣∣

di
2

d j
2

dk
2

d j
2 + di

2
d j
2 +

d j
2

d j
2 + dk

2
dk
2 + di

2
dk
2 +

d j
2

dk
2 + dk

2

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
di
2

di
2

di
2

d j
2

d j
2

d j
2

dk
2 + di

2
dk
2 +

d j
2

dk
2 + dk

2

∣∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣∣

di
2

di
2

di
2

di
2

d j
2

dk
2

dk
2 + di

2
dk
2 +

d j
2

dk
2 + dk

2

∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣
di
2

d j
2

dk
2

di
2

d j
2

dk
2

dk
2 + di

2
dk
2 +

d j
2

dk
2 + dk

2

∣∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣∣

di
2

d j
2

dk
2

d j
2

d j
2

d j
2

dk
2 + di

2
dk
2 +

d j
2

dk
2 + dk

2

∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣
di
2

di
2

di
2

d j
2

d j
2

d j
2

dk
2

dk
2

dk
2

∣∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣∣

di
2

di
2

di
2

d j
2

d j
2

d j
2

di
2

d j
2

dk
2

∣∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣∣

di
2

di
2

di
2

di
2

d j
2

dk
2

di
2

d j
2

dk
2

∣∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣∣

di
2

di
2

di
2

di
2

d j
2

dk
2

dk
2

dk
2

dk
2

∣∣∣∣∣∣∣∣∣

(1) +

∣∣∣∣∣∣∣∣∣
di
2

d j
2

dk
2

di
2

d j
2

dk
2

dk
2

dk
2

dk
2

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣

di
2

d j
2

dk
2

di
2

d j
2

dk
2

di
2

d j
2

dk
2

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣

di
2

d j
2

dk
2

d j
2

d j
2

d j
2

di
2

d j
2

dk
2

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣

di
2

d j
2

dk
2

d j
2

d j
2

d j
2

dk
2

dk
2

dk
2

∣∣∣∣∣∣∣∣∣
Observe that in equation (1) all determinants are zero. Hence any minor of Av(G) of order 3 is

zero. Hence the rank of Av(G) is less than 3, means the rank is either 1 or 2.

Corollary 3.2. Let G be a graph with n ≥ 3 vertices with atleast one edge then 0 is one of the

average degree eigenvalue of G.

Proof. By theorem 3.1, every average degree matrix of order n has rank either 1 or 2. This

implies that it has only either 1 or 2 eigenvalues are nonzero and remaining eigenvalues are 0.

Hence atleast one average degree eigenvalue of G must be 0.

Corollary 3.3. Every average degree matrix of a graph G with n ≥ 3 vertices is a singular

matrix i.e. detAv(G) = 0.

Proof. Let G be a graph with n vertices then it has n average degree eigenvalues λ1,λ2, ...,λn.

We know that the detAv(G) =
n

∏
i=1

λi. From corollary 3.2, atleast one average degree eigenvalue

of Av(G) must be 0. This implies that detAv(G) = 0.

Definition 3.4. Let A ∈ Mn. The spectral radius of A is ρ(A) = max {|λ |: λ ∈ σ(A)}, where

σ(A) is the spectrum of A.

Following theorem is well known [4].

Theorem 3.5. Let A,B∈Mn and suppose that B is non-negative. If |A|6 B, then ρ(A)6 ρ(|A|)

6 ρ(B).

A directed graph is said to be strongly connected if every vertex is reachable from every other

vertex.

One can associate with a non-negative matrix A a certain directed graph GA. It has exactly n

vertices, where n is size of A, and there is an edge from vertex i to vertex j precisely when
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ai j > 0. Then the matrix A is irreducible if and only if its associated graph GA is strongly

connected.

Let G be a graph without isolated vertices and Av be its average degree matrix. Then associ-

ated digraph of Av is strongly connected. Hence we have the following proposition.

Proposition 3.6. The average degree matrix of a connected graph is irreducible.

The following theorem is known result of Perron-Frobenius theory.

Theorem 3.7. If A≥ B are non-negative matrices and A is irreducible, then ρ(A)> ρ(B).

For a matrix A = (ai j) and B = (bi j), A≥ B denotes ai j ≥ bi j for all i, j. If A≥ B and ai j > bi j

for atleast one i, j, then we write A > B.

Proposition 3.8. Let G be a graph in which the vertices vi and v j are not adjacent. Let G+ ei j

be the graph obtained from G by connecting its vertices vi and v j. Then Av(G+ ei j) > Av(G).

Proof. The transformation G−→G+ei j either increases or leaves unchanged the vertex degree

of any vertex. So Av(G+ ei j)> Av(G). In addition, ai j(G+ ei j) = ai j(G)+1.

Combining Theorem 3.7 and Proposition 3.8 , we directly arrive at:

Theorem 3.9. Suppose G be a graph without isolated vertices. Let G+ ei j be the graph as

specified in proposition 3.8. Then ρ(G+ ei j)> ρ(G).

Proposition 3.10. Let G be a graph with n vertices and without isolated vertices. Then

n ≤ ρ(G) ≤ n(n−1). The left inequality holds if and only if G is a forest of K2 (with n even)

and the right equality holds if and only if G = Kn.

Proof. We prove the first inequality. Consider the forest G1 on n vertices, where each compo-

nent is K2. Then Jn = Av(G1) < Av(G). By Perron-Frobenius Theorem, n = ρ(G1) < ρ(G).

Now if G = G1, then ρ(G) = n and the left equality holds. Suppose the left equality ρ(G) = n

holds and G 6= G1. Thus, G and G1 have n vertices and G 6= G1. There is at least one pair of

vertices say vi and v j which is adjacent in G but it is not adjacent in G1. Then Av(G1)< Av(G)

and n = ρ(G1)< ρ(G) = n. This is a contradiction. Thus G 6= G1.

We prove the second inequality. By repeated applications of the theorem 3.9, ρ(G)< ρ(Kn) =

n(n−1). If G = Kn, then ρ(G) = n(n−1) and the right equality holds. Now, suppose the right

equality ρ(G) = n(n− 1) holds and G 6= Kn. Thus, G has n vertices, Kn has n vertices and
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G 6= Kn. There is at least one pair of vertices say vi and v j in G which is not adjacent. The

consider G+ei j. By repeated applications of the theorem 3.9, n(n−1) = ρ(G)< ρ(G+ei j)≤

ρ(Kn) = n(n−1). This is a contradiction. Thus G = Kn.

In the following theorem, we investigate relation between the largest average degree eigenvalue

λ1(G) and the largest degree ∆(G) of graph G.

Theorem 3.11. For a graph G, ∆(G)≤ λ1(G).

Proof. Let Av be the average degree matrix of G and x be eigenvector of G corresponding to the

eigenvalue λ1(G).

Then Av x = λ1(G) x

λ1xi = ai1x1 +ai2x2 + · · ·+ainxn

But all ai j ≥ 1 and we have ∀ x j > 0

Therefore, λ1xi ≥ x1 + x2 + · · ·+ xn

From the ith equation of this vector equation we get

(2) λ1(G)xi ≥
n

∑
j=1

x j, i = 1,2, · · · ,n.

λ1x1 +λ1x2 + · · ·+λ1xn ≥ n∑
n
j=1 x j

λ1 ∑
n
i=1 xi ≥ n∑

n
j=1 x j

λ1 ≥ n≥ n−1

As G is a simple graph the maximum degree of any vertex in a G with n vertices is atmost n−1.

Let xk > 0 be the maximum co-ordinate of x from Eq. (2) λ1(G) xk ≥ ∆(G) xk.

In the following theorem, we give an upper bound to the sum of squares of average degree

eigenvalues.

Theorem 3.12. Let G be a graph with n vertices, m edges and let λ1,λ2, . . . ,λn be the average

degree eigenvalues of G. Then
n

∑
i=1

λ
2
i ≤ 2m2(n+1).

Proof. Let G be a graph with n vertices, m edges and d1,d2, . . . ,dn be the degrees of the vertices

v1,v2, . . . ,vn, respectively. We know that

∑
n
i=1 λi = trace of the matrix.

This implies that

(3)
n

∑
i=1

λi =
n

∑
i=1

di
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We have to find ∑
n
i=1 λ 2

i . Average degree matrix is

Av =



d1
d1+d2

2
d1+d3

2 . . . d1+dn
2

d2+d1
2 d2

d2+d3
2 . . . d2+dn

2
...

... . . . ...
...

dn−1+d1
2

dn−1+d2
2

dn−1+d3
2

. . . dn−1+dn
2

dn+d1
2

dn+d2
2

dn+d3
2 . . . dn



Squaring both sides we can write (Av)
2 in the following form

(Av)
2 =


(d1)

2 +∑
n
i=2(

d1+di
2 )2

(d2)
2 +(d2+d1

2 )2 +∑
n
i=3(

d2+di
2 )2

. . .

(dn)
2 +∑

n−1
i=1 (

dn+di
2 )2


We know that,

(4) (
n

∑
i=1

di)
2 =

n

∑
i=1

d2
i +2(d1d2 +d1d3 + · · ·+d1dn +d2d3 + · · ·+d2dn + · · ·+dn−2dn +dn−1dn)

But, from the diagonal entries of (Av)
2 and from equation (3) we have,

n

∑
i=1

λ
2
i = d2

1 +(
d1 +d2

2
)2 + · · ·+(

d1 +dn

2
)2

+ d2
2 +(

d2 +d1

2
)2 + · · ·+(

d2 +dn

2
)2

+ · · ·+ d2
n +(

dn +d1

2
)2 + · · ·+(

dn +dn−1

2
)2,

= d2
1 +

d2
1 +2d1d2 +d2

2
4

+ · · ·+ d2
1 +2d1dn +d2

n

4

+ d2
2 +

d2
2 +2d1d2 +d2

1
4

+ · · ·+ d2
2 +2d2dn +d2

n

4

+ · · ·+d2
n +

d2
n +2dnd1 +d2

1
4

+ · · ·+
d2

n +2dndn−1 +d2
n−1

4
,

After simplification of above terms we get,

∑
n
i=1 λ 2

i =
n

∑
i=1

d2
i +(

n−1
2

)
n

∑
i=1

d2
i

+(d1d2 + · · ·+d1dn +d2d3 + · · ·+d2dn + · · ·+dn−2dn +dn−1dn)
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= (
n+1

2
)

n

∑
i=1

d2
i +(d1d2 + · · ·+d1dn +d2d3 + · · ·+d2dn + · · ·+dn−2dn +dn−1dn)

However, in this equation (d1d2 + d1d3 + · · ·+ d1dn + d2d3 + · · ·+ d2dn + · · ·+ dn−2dn + dn−1dn) > 0

because di > 0, ∀i.

Now adding the term (d1d2 + d1d3 + d1d4 + · · ·+ d1dn−1 + d1dn + d2d3 + · · ·+ d2dn + · · ·+ dn−2dn +

dn−1dn) n times to the right side of above equation we get,

n

∑
i=1

λ
2
i ≤ 1

2
[(n+1)

n

∑
i=1

d2
i +2(d1d2 + · · ·+d1dn +d2d3 + · · ·+dn−2dn +dn−1dn)]

+ n(d1d2 + · · ·+d1dn +d2d3 + · · ·+dn−2dn +dn−1dn)

≤ 1
2
[(n+1)

n

∑
i=1

d2
i +2(d1d2 + · · ·+d1dn +d2d3 + · · ·+dn−2dn +dn−1dn)

+ 2n(d1d2 + · · ·+d1dn +d2d3 + · · ·+dn−2dn +dn−1dn)]

≤ 1
2
[(n+1)

n

∑
i=1

d2
i +2(n+1)(d1d2 + · · ·+d1dn +d2d3 + · · ·+dn−2dn +dn−1dn)]

≤ n+1
2

[
n

∑
i=1

d2
i +2(d1d2 + · · ·+d1dn +d2d3 + · · ·+dn−2dn +dn−1dn)]

From equation (4), we have
n

∑
i=1

λ
2
i ≤

n+1
2

[(d1 +d2 + · · ·+dn)
2]

Using the Hand shaking Lemma, we obtain
n

∑
i=1

λ
2
i ≤

n+1
2

[(2m)2] =
n+1

2
[4m2]. This implies that

(5)
n

∑
i=1

λ
2
i ≤ 2m2(n+1).

Corollary 3.13. Let G be a graph with n vertices, m edges and let λ1 ≥ λ2 ≥ ·· · ≥ λn be the average

degree eigenvalues of G. Then λn ≤ m
√

2(n+1)
n .

Proof. If λ1 ≥ λ2 ≥ ·· · ≥ λn are the average degree eigenvalues of G then from equation (5) of the proof

of theorem 3.12, we obtain

nλ 2
n ≤ 2m2(n+1), where λn is a smallest eigenvalue of G.

Thus, λn ≤ m
√

2(n+1)
n .

4. Average Degree Energy of Graphs



ON THE AVERAGE DEGREE EIGENVALUES AND AVERAGE DEGREE ENERGY OF GRAPHS 57

The ordinary energy, E(G), of a graph G is defined to be the sum of the absolute values of the ordinary

eigenvalues of G [1,7].

Definition 4.1. Let G be a graph on n vertices. The average degree energy, AE(G) is defined as the sum

of the absolute values of the average degree eigenvalues λ1,λ2, ...,λn of G.

In the following table, we explore the average degree energy of some classes of graphs which have

two or three distinct average degree eigenvalues denoted by λ1, λ2 and λ3.

Graphs λ1 λ2 λ3 Average Degree Energy

Kn n(n−1) 0 - n(n−1)

Cn 2n 0 - 2n

Qn n2n 0 - n2n

Pn
2(n−1)+

√
n2+3n(n−2)
2

2(n−1)−
√

n2+3n(n−2)
2 0

√
n2 +3n(n−2)

Petersen

Graph

30 0 - 30

Remark 4.2. If the rank of Av(G) is 1, then Av(G) has only one non-zero average degree eigenvalue

ρ(G) and thus AE(G) = ρ(G).

Remark 4.3. If the rank of Av(G) is 2, then Av(G) has two non-zero average degree eigenvalues

say λ1 and λ2. If λ1 is much larger than λ2, then as a reasonably accurate approximation, we have

AE(G) ≈ ρ(G). As an example of this kind, consider the graph depicted in the following figure for

which λ1 = 18.721,λ2 =−0.721 and λi = 0, for i = 3,4,5,6,7.

u
u u u

u u

u

\
\\#

##

1

2
3

4

5

6

7

The following proposition shows that every positive even integer is an average degree energy of some

graph.

Proposition 4.4. Every positive even integer is an average degree energy of some graph.

Proof. Let m = 2k, (where k ≥ 1) be a positive even integer. Then consider the cycle Ck on k vertices.

The cycle has k edges and its average degree energy is 2k = m.

Proposition 4.5. Let G be a graph on n vertices and m edges. Then AE(G)≥ 2m and equality holds if G

is a regular graph.
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Proof. We know, ∑
i

λi = 2m and ∑
i
|λi| ≥∑

i
λi. This implies that AE(G) =∑

i
|λi| ≥ 2m. Clearly equal-

ity holds if G is a regular graph.

Proposition 4.6. Let G be a graph with at least one edge. Then AE(G)≥ rank Av(G).

Proof. By Theorem 3.1, rank of Av(G) is either 1 or 2 and by Proposition 4.5, AE(G) ≥ 2m. Thus,

AE(G)≥ rank Av(G).

Theorem 4.7. Let G be a graph in which the vertices vi and v j are not adjacent. Let G+ ei j be the graph

obtained from G by connecting its vertices vi and v j. Then AE(G+ ei j)> AE(G).

Proof. By Theorem 3.9, ρ(G + ei j) > ρ(G) and also we know AE(G) ≈ ρ(G). This implies that

AE(G+ ei j)> AE(G).

We have the following immediate corollaries of theorem 4.7 .

Corollary 4.8. Let G be a connected graph on n vertices, and let H 6= G be a spanning, connected sub-

graph of G. Then AE(G)> AE(H).

Corollary 4.9. Let G be a connected graph on n vertices and let H be a vertex induced subgraph of G on

n′ vertices where n′ < n. Then AE(G)> AE(H).

Conclusion. In the present paper, the concepts of average degree matrix, average degree eigenvalues and

average degree energy of a graph are given and studied. In the literature the degree sum matrix [5] of a

graph, in which diagonal entries are zero, exists, whereas in average degree matrix introduced here, the

diagonal entries are not necessarily zeros. Hence the results obtained in this paper for average degree

matrix are not overlapping with the results of degree sum matrix.
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