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Abstract. In this paper, we consider a deterministic susceptible-infected-removed-bacteria (SIR-B) cholera epi-

demic model with water treatment as a control strategy. The infected compartments are divided into two classes

namely; symptomatic infected and asymptomatic infected individuals in order to observe the contribution of vibrio

cholerae to the environment from each compartment. The main objective of this paper is to validate the model

using Ilala† municipal council data. We estimate the model parameters using least square and Bayesian approach

via Markov chain Monte Carlo (MCMC) methods. The sample of 10,000 number of simulations was carried out in

MCMC run to study the behaviour of each parameter in the proposed model. The results show that the parameters

have good convergence, the dynamic behaviour of prediction fits the observed data.
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1. Introduction

Cholera is a water borne infectious disease caused by the ingestion of vibrio cholerae bacteria

because of insufficient access to safe water and adequate sanitation [4]. It is considered as a

serious infectious disease and can lead to high morbidity and mortality when remain untreated.

Cholera is capable to spread rapidly, basing on the contract of exposure and the population

exposed. It proved that pathogenic vibrio cholerae survive refrigeration and freezing in food

supplies [3].

Measuring cholera cases in a population is a bit challenge in most of the developing coun-

tries due to the fact that disease incidences and deaths occur outside of the formal health care,

particularly at home [8, 9]. The data from hospital provide a proxy for measuring the inci-

dence of mild, severe cholera cases and estimating the morbidity rates [10]. The analysis of this

data allows to assess and ultimately improve the health cares, assist in monitoring and planning

of resources and provide appropriate interventions. There are several measures suggested by

World Health Organization (WHO) and other scholars [1], to prevent cholera. These measures

are environmental sanitation, water treatment, provision of clean water, provision of education

on the effect of cholera [5].

The mathematical model for modeling cholera dynamics with a control strategy in Ghana is

proposed in [2]. In their study, the results showed that the disease free equilibrium is locally

asymptotically stable. But in their paper, there are some limitations such as, the model considers

the infected individuals as a single compartment (I) and limited numerical analysis. Until then

[12] developed a mathematical model that split the infected compartment (I) into two classes

namely; symptomatic infected Is(t) and asymptomatic infected Ia(t) individuals in order to

observe the contribution of vibrio cholerae to the environment from each compartment and

incorporate water treatment as a control strategy. The model was then synthetically tested,

which in some cases it is hard to prove its validity in real life. Thus, in this paper we use Ilala

municipal council data to test and validate the model developed by [12]. We use classical least

square and Bayesian approach via Markov chain Monte Carlo simulation techniques to study

uncertainties of model parameters.
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2. Cholera Model

The mathematical model for cholera dynamics with two subpopulation; bacteria (pathogen)

and individuals developed in [12]. Individuals were subdivided into four compartments namely

susceptible individuals S(t), symptomatic infected individuals Is(t), asymptomatic infected in-

dividuals Ia(t) and recovered individuals R(t). Susceptible individuals S(t) contract disease at

rate β and the influx of the susceptible comes from a constant recruitment rate b. The sympto-

matic infected individuals Is(t) become infected at a probability p and contribute vibrio cholerae

through excretion to the environment at a rate α1, dies due to natural death and due to disease

at rates µ and d respectively. The asymptomatic infected individuals Ia(t) become infected at

a probability q and contribute vibrio cholerae through excretion to the environment at a rate α2

and recovery class R(t) at rates r1 and r2 for Is(t) and Ia(t) respectively. The pathogen concen-

tration of vibrio cholerae as denoted by B(t) decrease due to mortality rate φ and due to water

treatment at a rate δ . Thus, the total human population is given by

N = S(t)+ Is(t)+ Ia(t)+R(t),

at any given time t.

The formulated model equations by [12] is as follows;

dS(t)
dt

= bN− βB(t)S(t)
κ +B(t)

−µS(t),

dIs(t)
dt

=
pβB(t)S(t)

κ +B(t)
− (µ + r1 +d) Is(t),

dIa(t)
dt

=
qβB(t)S(t)

κ +B(t)
− (µ + r2) Ia(t),

dR(t)
dt

= r1Is(t)+ r2Ia(t)−µR(t),

dB(t)
dt

= α1Is(t)+α2Ia(t)− (δ +φ)B(t),

(2.1)

with initial conditions S(0)> 0, Is(0)≥ 0, Ia(0)≥ 0, R(0)≥ 0, B(0)≥ 0 and p+q = 1.

Theoretically, the stability of equilibrium points were proved and the value of R0 was com-

puted using literature values, estimated values and MCMC mean and was found to be greater

than 1. Numerically, the results showed that the parameters were identifiable[12]. However,
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this model was not tested using the real data. Therefore, in this paper we validate the model

using real data from ilala municipal council.

3. Materials and Methods

Bayesian approach via Markov chain Monte Carlo (MCMC), least square methods and model

fitting are considered in this section.

3.1. Bayesian estimation and inference

Bayesian inference is the method of analysis that combines information collected from exper-

imental data with the knowledge one has prior to performing the experiment. In this approach

to statistics, the uncertainties are expressed in terms of probabilities. The classical approach

to statistical inference based on the random sample. That is, if a probability distribution de-

pends on a set of parameters θ , the classical approach makes inferences about θ solely on the

basis of a sample x1,x2, · · · ,xn. This approach to inference is based on the concept of sampling

distribution.

For parameter estimation approach, parameters θ are estimated based on some measurements

yi, ideally using e.g., least square method. For Bayesian estimation, parameters θ are interpreted

as a random variable and the main goal always is to find the posterior distribution P(θ |data) of

the parameters. The posterior distribution is needed because it gives the probability density for

the values of θ , given measurements yi. Using Bayes’ formula, the posterior density can be

written as

P(θ |data) =
l(data|θ)P(θ)∫
l(data|θ)P(θ)dθ

The likelihood l(data|θ) contains the measurement error model and it gives the probability

density of observing measurement data given the parameter values of θ . Consider the model

yi = f (xi,θ)+ ei,
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and employing a Gaussian i.i.d error model, i.e., e N(0,σ2I) and noting that ei = yi− f (xi,θ),

it gives the likelihood of

l(y|θ) ∝

n

∏
i=0

l(yi|θ) ∝ exp

(
−1
2σ2

n

∑
i=1

(yi− f (xi,θ))
2

)
,

where σ2 is an estimate for the measurements error which is obtained using the mean square

error (MSE)

σ
2 ≈MSE =

RSS
n− p

,

where RSS (residual sum of squares) is the fitted value of the least square function, n is the

number of measurements and p is the number of parameters.

Hence, in our typical applications, the likelihood distribution reads as

l(y|θ) = (2πσ
2)−n/2 exp

(
− 1

2σ2

n

∑
i=1

(yi− f (xi,θ))
2

)
,

and the prior distribution P(θ) contains all existing information about parameters. However, the

proposal distribution should be chosen so that it becomes easy to sample from and should be

close to the target distribution(posterior) as possible. It should be noted that unsuitable proposal

distribution has a high chance of giving inefficient implementations.

3.2. Parameter Estimation using Least square method

The least-square fit of the model provides estimates for the cholera epidemic parameters,

these estimated parameters will be further analyzed using Markov chain Monte Carlo (MCMC)

methods as initial values. For least square method, the idea is to minimize the sum of squares

of residuals defined as:

l(θ) =
n

∑
i=1

(yi− f (xi,θ))
2, (2.2)

where yi is the observed data, xi is the model state, θ is the vector of parameter and f (xi,θ) is

the measurement model function at a given parameter value.

3.3. Markov chain Monte methods
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Markov chain Monte Carlo methods are based on simulating high dimensionality and com-

plex patterns of dependence in statistical model, where the proposal distribution is used which

should result to the good mixing of chain. To determine a suitable proposal distribution for the

required target distribution is a difficult task and time consuming as it involves trials and error.

The most preferred proposal distribution is the Gaussian distribution, but we do not know how

to obtain a suitable covariance matrix, therefore to overcome this challenge we use adaptive

Markov chain Monte Carlo, where the proposal distribution is adapted during the MCMC run.

Below is the adaptive MCMC algorithm developed by [7].

Algorithm . Adaptive Markov chain Monte Carlo algorithm.

(i) Start with the initial value θ0 and initial covariance Σ0 and then select λ , ε , where ε

is a small positive value whose role is to make sure that Σn is not singular matrix, and

λ is a co-variance scaling factor which optimizes the mixing property of metropolis

algorithm and an initial non-adapting period n0. For n0 = 0 means the adaptation start

as the algorithm start. If the target density is Gaussian then

λ =
2.42

m
,

where m is the number of parameters.

(ii) For n = 1,2, · · · ,w, where w is the total number of samples

(a) Propose a new θ∗, from the Gaussian distribution N(θn−1,Σn)

(b) Accept/reject θ∗, according to the Markov chain Monte Carlo accepting probability

(c) For n≥ n0 adapt the proposal co-variance matrix using

Σn = λ (cov(θ0,θ1, · · · ,θn−1)+ εIm),

where Im is the m×m identity matrix.

4. Numerical analysis

Data were obtained from the daily cases records of all patients in hospital admissions at Ilala

municipal council, between August to December, 2015. A total of 13 deaths were recorded
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among 2010 infected individuals. Basing on our cholera model we divided the group of in-

fected individuals into two groups i.e., people with mild symptoms (asymptomatic infected

individuals) and people with severe symptoms (symptomatic infected individuals). Due to this

criteria the total number of asymptomatic infected individuals are 1472 people and symptomatic

infected individuals are 538 people. According to census report of 2012 the total population of

ilala municipal council was 1,220,611 people [11]. Then using the population growth formula,

the total population considered in this study is approximately 1,323,595 people in the year 2015.

The data collected for asymptomatic infected individuals from Ilala municipal council are seen

in Figure 1. From Figure 1, we see that, as the time goes Ia(t) are increasing and later, decrease

after a period of time, this is due to the immediate various measures taken by the Government

of Tanzania to stop the spread of the disease. These measures were; providing good conditions

relating to public health, especially the provision of clean drinking water, adequate sewage dis-

posal and providing antibiotics to infected individuals e.g., using first line Doxycycline, second

line Chloramphenicol for pregnant women and children, third line erythromycin.

The initial values QL used in this study are shown in Table 3.1 and the fitting of model

parameters is carried using least square method. The estimated parameters QLSQ are shown

in Table 3.1. However, the estimated parameters were further used in solving the ODE (2.1)

and the solution of the cholera ordinary differential equation model is seen in Figure 2 by blue

colour. From Figure 2, we see that the solution of ordinary differential equation cholera model

fits true data.

The parameters were further analysed using Markov chain Monte Carlo method, we gener-

ated 10000 MCMC samples using the model parameters. The results are shown in Table 1 and

in Figure 4 to Figure 8.
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FIGURE 1. The infected individuals left and cumulative frequency of infected

individuals right.

FIGURE 2. The dynamic behaviour of the solution of ODE cholera model vs

real data for asymptomatic infected individuals.
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FIGURE 3. The dynamic behaviour of the solution of ordinary differential equa-

tion cholera model vs real data for asymptomatic infected individuals, when pre-

dicted annually.

In Figure 3, we see that the model predicted well the observed data for cholera cases in Ilala

municipal council. This implies that, if measures were not taken to stop cholera outbreak, the

epidemic could continue and affects an inordinately large number of people within a very short

period of time.

We test the convergence of the chain by examining the MCMC plots, parameter estimation

by LSQ and prediction by both LSQ and MCMC estimates using cholera outbreak cases at Ilala

municipal council in Tanzania.
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TABLE 1. MCMC statistics for 10,000 numbers of simulations.

Symbol θL θLsq θmean θstd Convergence Kurtosis Skewness

b 0.000072 0.000073947 0.002851 0.000645 0.2249 4.8134 1.7833

β 0.35 0.3516 0.33331 0.018586 0.86247 3.5072 -1.3376

κ 1000000 1051296.99 1000000 0.0738 1 3.0815 1.2372

µ 0.000044 0.00004075 0.1944 0.0756 0.0340 1.2549 -0.3656

p 0.7 0.6333 0.7139 0.0035 0.9809 1.3335 -0.0044

r1 0.1 0.0859 0.1119 0.0021 0.9561 2.8123 1.1116

d 0.015 0.014945 0.014638 0.014228 0.8157 2.8917 1.2498

r2 0.5 0.4886 0.5784 0.0135 0.9389 2.9136 -1.2692

α1 1.5 1.4646 1.502 0.0583 0.9148 2.3783 -0.5904

α2 0.1 0.0893 0.10603 0.0606 0.6107 2.5767 0.9368

δ 0.05 0.0471 0.0551 0.0213 0.55905 1.9206 -0.0846

φ 0.025 0.0238 0.0137 0.0268 0.0284 3.0178 1.1438

q 0.3 0.2987 0.2781 0.0183 0.7559 1.4354 -0.05

From Table 3.1, we see that the estimates of the parameters are indeed close to the true

values. However, most of the parameters have the kurtosis values close to 3 that approximate to

the kurtosis for a standard normal distribution.
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(A) Trace plots of estimated unknown parameters b and β us-

ing MCMC method.

(B) Trace plots of estimated unknown parameter p and r1 using

MCMC method.

FIGURE 4. Trace plots of estimated unknown parameter b, β , p and r1 using

MCMC method.

(A) Trace plots of estimated parameters r2 and α1 using

MCMC method.

(B) Trace plots of estimated parameters κ and µ using MCMC

method.

FIGURE 5. Trace plots of estimated parameters r2, α1, κ and µ using MCMC method.
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(A) Trace plots of estimated parameters φ and q using MCMC

method.

(B) Trace plots of estimated parameters α2 and δ using MCMC

method.

FIGURE 6. Trace plots of estimated parameters α2, q, δ and φ using MCMC method.

From Figures 4 to 6, the results shows that the parameters have good mixing of chain.

FIGURE 7. Prediction of infected individuals using MCMC estimates.

Also, we check the accuracy of the model through MCMC predictive plot. From Figure 7, the

model predicted well the real data at 95 % posterior limits which is seen with the gray colour.
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FIGURE 8. Posterior distribution of parameters with 10000 iteration.

Figure 8 represents the posterior distribution of 13 samples that have the distributions nearly

to normal distribution.

4. Conclusion

The least square and MCMC methods are used to fit the proposed model in [12] using 2015

real data collected from Ilala municipal council in Tanzania. It was observed that both least

square and MCMC methods performed well as the estimates are close to the true values. The

parameters show good mixing of the chain with majority of posterior distributions of parameters

taking the shape nearly to normal distribution. Similarly, it was observed that the dynamic

behaviour of prediction fits the true data from Ilala municipal council.
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