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Abstract. Let H (D) be the space of all analytic functions on the open unit disk D. Let ψ1 and ψ2 be analytic

functions on D, and φ be an analytic self-map of D. We consider the operator Tψ1,ψ2,φ that is defined on H (D) by

(
Tψ1,ψ2,φ f

)
(z) = ψ1(z) f (φ(z))+ψ2(z) f ′(φ(z)).

In this paper, we characterize the boundedness and compactness of the operator Tψ1,ψ2,φ that act from the Hardy

spaces H p into the weighted-type space H∞
µ and the little weighted-type space H∞

µ,0.
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1. Introduction

Let D be the open unit disk {z ∈ C : |z|< 1} in the complex plane C, H (D) be the space of

all analytic functions on D, and H∞ = H∞(D) be the space of all bounded analytic functions on
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D such that ‖ f‖∞ = sup
z∈D
| f (z)| is finite. For 0 < p < ∞, the Hardy space H p(D) consists of all

analytic functions f on D that satisfy

‖ f‖p
H p = sup

0<r<1

∫
∂D
| f (rζ )|pdσ(ζ )< ∞,

where σ is the normalized Lebesgue measure on the boundary of the unit disk. For f belongs

to H p(D), it follows from Fatou’s theorem that the radial limit

f ∗(ζ ) = lim
r→1−

f (rζ )

exists for almost all ζ on ∂D. Moreover,

‖ f‖p
H p =

∫
∂D
| f ∗(ζ )|pdσ(ζ ),

for all finite values of p. In this paper we consider only radial weights, these arise from the

positive and continuous functions µ : [0,1)→ (0,∞). We define µ on D as µ(z) = µ(|z|) for

each z ∈ D. Given a radial weight µ : D→ C, the weighted-type space H∞
µ = H∞

µ (D) consists

of all analytic functions f on D such that

‖ f‖H∞
µ
= sup

z∈D
µ(z)| f (z)|< ∞.

The little weighted-type space H∞
µ,0 is a closed subspace of H∞

µ that contains all those functions

f ∈ H∞
µ such that

lim
|z|→1

µ(z)| f (z)|= 0.

If µ ≡ 1, we get the space H∞(D) of all bounded analytic functions on D. if µ(z) = (1−|z|2)β ,

for −1 < β < ∞, we get the Bergman-type spaces H∞

β
and H∞

β ,0. These Bergman-type spaces

are sometimes called growth or Bers type spaces, see, for example [3] and [20].

Suppose φ is an analytic function mapping D into itself and ψ is an analytic function on D,

the weighted composition operator Wψ,φ is defined on the space H (D) of all analytic functions

on D by

(Wψ,φ f )(z) = ψ(z)Cφ f (z) = ψ(z) f (φ(z)),

for all f ∈H (D) and z ∈D. It is well known that the weighted composition operator Wφ ,ψ f =

ψ( f ◦φ) defines a linear operator Wψ,φ which acts boundedly on various spaces of analytic or

harmonic functions on D. In recent years, considerable interest has emerged in the study of the
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weighted composition operators, on spaces of analytic functions, with the goal of explaining

the operator-theoretic properties of Wψ,ϕ in terms of the function-theoretic properties of the

induced maps ϕ and ψ . For the overview of the field, we refer to the monographs [1], [2], [3],

[10], [18] and [19].

The differentiation operator D is defined on H (D) as D f = f ′ and D0 f = f for f ∈H (D).

For ψ ∈H (D) the multiplication operator Mψ is defined by Mψ f (z)=ψ(z) f (z), for f ∈H (D)

and z ∈ D. Therefore, the weighted composition operator can be defined as the product of the

multiplication and composition operators, that is Wψ,φ = MψCφ .

Suppose ψ1 and ψ2 are analytic functions on D, and φ is an analytic self-map of D. In this pa-

per we consider the operator Tψ1,ψ2,φ that defined on H (D) by
(
Tψ1,ψ2,φ f

)
(z)=ψ1(z) f (φ(z))+

ψ2(z) f ′(φ(z)). Moreover, this operator can be written as
(
Tψ1,ψ2,φ f

)
(z) = Mψ1Cφ D0 f (z) +

Mψ2Cφ D f (z) =Wψ1,φ D0 f (z)+Wψ2,φ D f (z). This operator has been introduced and studied on

weighted Bergman spaces by the authors of [11] and [12].

In this paper, we characterize the boundedness and compactness of the operator Tψ1,ψ2,φ

from the Hardy spaces H p to the weighted-type spaces H∞
µ and H∞

µ,0. As a consequence of the

main results, we get the characterization of the products operators MψCφ D, MψDCφ , Cφ MψD,

DMψCφ , Cφ DMψ , and DCφ Mψ that act from the Hardy spaces to the weighted-type spaces. If

we set µ(z) = (1− |z|2)β for β > −1, then by simple modifying all the results of this paper

one could also obtain similar results for all the previous operators act from Hardy spaces to the

bloch-type spaces B∞

β
and the little bloch-type spaces B∞

β ,0.

2. Preliminaries

The following are some auxiliary propositions which will be used in the proofs of this paper

main results. The next proposition is a standard result on the Hardy spaces and it is curial for

our work in this paper. For the proof, see for example [17].

Proposition 1.1. Let n be a nonnegative integer, let 0 < p < ∞. If f ∈ H p, then

| f (n)(z)| ≤C
‖ f‖H p

(1−|z|2)n+1/p
,

for some positive constant C independent of f .
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The following proposition is a basic fact about the compactness of the operator Tψ1,ψ2,φ . The

proposition’s proof follows by similar arguments to those outlined in (Proposition 3.11, [1]). So

we omit the proof’s details.

Proposition 1.2. Let 0 < p < ∞. Let ψ1,ψ2 ∈ H (D), and φ be an analytic self-map of

D such that Tψ1,ψ2,φ : H p → H∞
µ is bounded. Then Tψ1,ψ2,φ is compact if and only if when-

ever { fk} is bounded sequence in H p and fk → 0 uniformly on compact subsets of D, then

lim
k→∞
‖Tψ1,ψ2,φ fk‖H∞

µ
= 0.

The following proposition can be proved using arguments similar to those outlined in (Lemma

1, [8]). Thus, we omit the proof’s details.

Proposition 1.3. A closed set K in H∞
µ,0 is compact if and only if it is bounded and satisfies

lim
|z|→1

sup
f∈K

µ(z)| f (z)|= 0.

3. Main results

In this section we characterize the boundedness and compactness of the operator Tψ1,ψ2,φ

that acts from the Hardy spaces H p into the weighted-type spaces H∞
µ and H∞

µ,0. The following

theorem gives necessary and sufficient conditions for the boundedness of the operator Tψ1,ψ2,φ

that acts from Hardy spaces into the weighted-type spaces H∞
µ .

Theorem 3.1. Let φ be an analytic self-map of D and ψ1,ψ2 ∈H (D). Then Tψ1,ψ2,φ : H p→H∞
µ

is bounded if and only if the following conditions hold

(1) sup
z∈D

µ(z)|ψ1(z)|
(1−|φ(z)|2)1/p

< ∞;

(2) sup
z∈D

µ(z)|ψ2(z)|
(1−|φ(z)|2)1+1/p

< ∞.

Proof. First, suppose that Tψ1,ψ2,φ : H p→ H∞
µ is bounded. For f (z) = 1, we have that

(3) sup
z∈D

µ(z)|ψ1(z)|= ‖Tψ1,ψ2,φ f‖H∞
µ
< ∞.
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For f (z) = z, we have that

(4) sup
z∈D

µ(z) |ψ1(z)φ(z)+ψ2(z)|= ‖Tψ1,ψ2,φ f‖H∞
µ
< ∞.

Since φ is a self-map of D, from (3) and (4) we get that

(5) sup
z∈D

µ(z)|ψ2(z)|< ∞.

For a fixed w ∈ D, set

fw(z) = (2+1/p)
1−|φ(w)|2(

1− zφ(w)
)1+1/p

− (1+1/p)

(
1−|φ(w)|2

)2(
1− zφ(w)

)2+1/p
.

It is easy to check that fw ∈ H p(D) and supz∈D ‖ fw‖H p ≤ C, for some positive constant C.

Moreover, f ′w (φ(w)) = 0 and

fw (φ(w)) =
1

(1−|φ(w)|2)1/p
.

Hence, for every w ∈ D we have

C ≥ ‖Tψ1,ψ2,φ fw‖H∞
µ

= sup
w∈D

µ(w)
∣∣ψ1(w) fw(φ(w))+ψ2(w) f ′w(φ(w))

∣∣
≥ µ(w)|ψ1(w)|

(1−|φ(w)|2)1/p
,

which gives condition (1). To show condition (2) holds, for a fixed w ∈ D, set

gw(z) =

(
1−|φ(w)|2

)2(
1− zφ(w)

)2+1/p
− 1−|φ(w)|2(

1− zφ(w)
)1+1/p

.

Then, gw (φ(w)) = 0 and

g′w (φ(w)) =
φ(w)

(1−|φ(w)|2)1+1/p
.

Since gw ∈ H p, by the boundedness of the operator Tψ1,ψ2,φ we get for every w ∈ D

C ≥ ‖Tψ1,ψ2,φ gw‖H∞
µ

(6) ≥ µ(w)|ψ2(w)||φ(w)|
(1−|φ(w)|2)1+1/p

.
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On the one hand, from(5) we get

sup
|φ(w)|≤ 1

2

µ(w)|ψ2(w)|
(1−|φ(w)|2)1+1/p

≤
(

4
3

)1+1/p

sup
|φ(w)|≤ 1

2

µ(w)|ψ2(w)|

(7) < ∞.

On the other hand, from (6) and

sup
1
2<|φ(w)|<1

µ(w)|ψ2(w)|
(1−|φ(w)|2)1+1/p

≤ 2 sup
1
2<|φ(w)|<1

µ(w)|ψ2(w)||φ(w)|
(1−|φ(w)|2)1+1/p

(8) ≤ 2C.

Therefore, (7) and (8) give condition (2).

For the converse, suppose that conditions (1) and (2) hold. Then for any z ∈ D and f ∈ HP,

by using Proposition 1.1, we get

µ(z)
∣∣(Tψ1,ψ2,φ f

)
(z)
∣∣

= µ(z)
∣∣ψ1(z) f (φ(z))+ψ2(z) f ′(φ(z))

∣∣
≤ Cµ(z)|ψ1(z)|‖ f‖H p

(1−|φ(z)|2)1/p
+

Cµ(z)|ψ2(z)|‖ f‖H p

(1−|φ(z)|2)1+1/p
.

Taking supremum of both sides over all z ∈ D, we get

‖Tψ1,ψ2,φ f‖H∞
µ
= sup

z∈D
µ(z)

∣∣(Tψ1,ψ2,φ f
)
(z)
∣∣< ∞,

which gives the boundedness of Tψ1,ψ2,φ . This completes the proof.

The following theorem characterizes the compactness of the operator Tψ1,ψ2,φ that acts from

Hardy spaces into the weighted-type spaces H∞
µ .
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Theorem 3.2. Let φ be an analytic self-map of D and ψ1,ψ2 ∈H (D). Then Tψ1,ψ2,φ : H p→H∞
µ

is compact if and only if ψ1,ψ2 are in H∞
µ and the following conditions hold

(9) lim
|φ(z)|→1

µ(z)|ψ1(z)|
(1−|φ(z)|2)1/p

= 0;

(10) lim
|φ(z)|→1

µ(z)|ψ2(z)|
(1−|φ(z)|2)1+1/p

= 0.

Proof. First, assume that ψ1, ψ2 are in H∞
µ and that the growth conditions (9) and (10) hold.

Using supz∈D µ(z)|ψ1(z)| is finite and condition (9) we get condition (1) in Theorem 3.1. Simi-

larly, using supz∈D µ(z)|ψ2(z)| is finite and condition (10) we get condition (2) in Theorem 3.1.

Therefore, Theorem 3.1 gives Tψ1,ψ2,φ is bounded.

Now let { fk} be a bounded sequence in H p, say bounded by a positive constant M, such that

fk → 0 uniformly on compact subsets of D. To show that Tψ1,ψ2,φ is compact, by Proposition

1.2, it suffices to show ‖Tψ1,ψ2,φ fk‖H∞
µ
→ 0 as k→∞. Using the growth conditions (9) and (10),

for any ε > 0 there exists δ ∈ (0,1) such that when δ < |φ(z)|< 1

(11)
µ(z)|ψ1(z)|

(1−|φ(z)|2)1/p
< ε.

(12)
µ(z)|ψ2(z)|

(1−|φ(z)|2)1+1/p
< ε.

Therefore, since Tψ1,ψ2,φ is bounded, for δ < |φ(z)|< 1 we have

µ(z)
∣∣(Tψ1,ψ2,φ fk

)
(z)
∣∣

= µ(z)
∣∣ψ1(z) fk(φ(z))+ψ2(z) f ′k(φ(z))

∣∣
≤C sup

z∈D
‖ fk‖H p

[
µ(z)|ψ1(z)|

(1−|φ(z)|2)1/p
+

µ(z)|ψ2(z)|
(1−|φ(z)|2)1+1/p

]

(13) ≤ 2CMε.
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On the other hand, if |φ(z)| ≤ δ then we have

µ(z)
∣∣(Tψ1,ψ2,φ fk

)
(z)
∣∣

= µ(z)
∣∣ψ1(z) fk(φ(z))+ψ2(z) f ′k(φ(z))

∣∣
≤ ‖ψ1‖H∞

µ
sup
|w|≤δ

| fk(w)|+‖ψ2‖H∞
µ

sup
|w|≤δ

| f ′k(w)|

In this case, since ψ1, ψ2 are in H∞
µ , we get by using Cauchy’s estimate

(14) ‖Tψ1,ψ2,φ fk‖H∞
µ
→ 0 as k→ ∞.

Hence, (13) and (14) give the compactness of Tψ1,ψ2,φ .

For the converse, assume that Tψ1,ψ2,φ : H p→H∞
µ is compact. Then it is obvious that Tψ1,ψ2,φ

is bounded. Hence, from the proof of Theorem 3.1, we have ψ1 and ψ2 are in H∞
µ . To complete

the proof, let {zk} be a sequence in D such that |φ(zk)| → 1 as k→ ∞.

On the one hand, consider the test function

fk(z) = (2+1/p)
1−|φ(zk)|2(

1− zφ(zk)
)1+1/p

− (1+1/p)

(
1−|φ(zk)|2

)2(
1− zφ(zk)

)2+1/p
.

It is clear that fk converges to zero on compact subsets of D. Moreover, f ′k (φ(zk)) = 0 and

fk (φ(zk)) =
1

(1−|φ(zk)|2)1/p
.

Now,

‖Tψ1,ψ2,φ fk‖H∞
µ
≥ µ(zk)

∣∣ψ1(zk) fk(φ(zk))+ψ2(zk) f ′k(φ(zk))
∣∣

=
µ(zk)|ψ1(zk)|

(1−|φ(zk)|2)1/p
.

Since Tψ1,ψ2,φ is compact and fk→ 0 on compact subsets of D, by using Proposition 1.2, we get

lim
k→∞
‖Tψ1,ψ2,φ fk‖H∞

µ
= 0.

Therefore, since |φ(zk)| → 1 as k→ ∞, we get

lim
k→∞

µ(zk)|ψ1(zk)|
(1−|φ(zk)|2)1/p

= 0,

which gives condition (9).
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On the other hand, consider the test function

gk(z) =

(
1−|φ(zk)|2

)2(
1− zφ(zk)

)2+1/p
− 1−|φ(zk)|2(

1− zφ(zk)
)1+1/p

.

It is obvious that gk→ 0 on compact subsets of D. Moreover, gk (φ(zk)) = 0 and

g′k (φ(zk)) =
φ(zk)

(1−|φ(zk)|2)1+1/p
.

Using the compactness of Tψ1,ψ2,φ we get

0 = lim
k→∞
‖Tψ1,ψ2,φ gk‖H∞

µ

≥ µ(zk)|ψ2(zk)||φ(zk)|
(1−|φ(zk)|2)1+1/p

.

Since |φ(zk)| → 1 as k→ ∞, we get

lim
k→∞

µ(zk)|ψ2(zk)|
(1−|φ(zk)|2)1+1/p

= 0,

which gives condition (10). This completes the proof.

The next theorem gives necessary and sufficient conditions for the boundedness of the oper-

ator Tψ1,ψ2,φ that acts from Hardy spaces into the weighted-type spaces H∞
µ,0.

Theorem 3.3. Let φ be an analytic self-map of D and ψ1,ψ2 ∈H (D). Then Tψ1,ψ2,φ : H p→

H∞
µ,0 is bounded if and only if ψ1,ψ2 are in H∞

µ,0 and Tψ1,ψ2,φ : H p→ H∞
µ is bounded.

Proof. First, suppose that Tψ1,ψ2,φ : H p→ H∞
µ is bounded and that ψ1,ψ2 are in H∞

µ,0. Then for

each polynomial p, we have

µ(z)
∣∣(Tψ1,ψ2,φ p

)
(z)
∣∣= µ(z)

∣∣ψ1(z)p(φ(z))+ψ2(z)p′(φ(z))
∣∣

≤ µ(z)|ψ1(z)|‖p‖∞ +µ(z)|ψ2(z)|‖p′‖∞

Since the polynomials p and p′ are in H∞, taking limit as |z| → 1 we get that Tψ1,ψ2,φ p is in

H∞
µ . Now let f ∈ H p. Since the set of all polynomials is dense in H p, there is a sequence of

polynomials {pn} such that ‖ f − pn‖H p → 0 as n→ ∞. By the boundedness of Tψ1,ψ2,φ : H p→

H∞
µ , we have

‖Tψ1,ψ2,φ f −Tψ1,ψ2,φ pn‖H∞
µ
≤ ‖Tψ1,ψ2,φ‖‖ f − pn‖H p.
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Since Tψ1,ψ2,φ : H p→ H∞
µ is bounded, we get that

lim
n→∞
‖Tψ1,ψ2,φ ( f − pn)‖H∞

µ
= 0.

Since H∞
µ,0 is closed subset of H∞

µ , we get Tψ1,ψ2,φ : H p→ H∞
µ,0 is bounded.

For the converse, suppose that Tψ1,ψ2,φ : H p→H∞
µ,0 is bounded. Then it is clear that Tψ1,ψ2,φ :

H p→ H∞
µ is bounded. Taking f (z) = 1, we get

0 = lim
|z|→1

∣∣(Tψ1,ψ2,φ f
)
(z)
∣∣

(15) = lim
|z|→1

µ(z)|ψ1(z)|.

Thus, ψ1 is in H∞
µ,0. Similarly, taking f (z) = z, we get

0 = lim
|z|→1

∣∣(Tψ1,ψ2,φ f
)
(z)
∣∣

(16) = lim
|z|→1

µ(z) |ψ1(z)φ(z)+ψ2(z)| .

By using (15), (16) and the boundedness of φ , we get

lim
|z|→1

µ(z)|ψ2(z)|= 0.

Therefore, ψ2 is in H∞
µ,0. This completes the proof.

The next theorem characterizes the compactness of the operator Tψ1,ψ2,φ that acts from Hardy

spaces into the weighted-type spaces H∞
µ,0.

Theorem 3.4. Let φ be an analytic self-map of D and ψ1,ψ2 ∈H (D). Then Tψ1,ψ2,φ : H p→

H∞
µ,0 is compact if and only if the following conditions hold

(17) lim
|z|→1

µ(z)|ψ1(z)|
(1−|φ(z)|2)1/p

= 0;

(18) lim
|z|→1

µ(z)|ψ2(z)|
(1−|φ(z)|2)1+1/p

= 0.
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Proof. First, assume that Tψ1,ψ2,φ : H p→ H∞
µ,0 is compact. Then it is clear that Tψ1,ψ2,φ : H p→

H∞
µ,0 is bounded. Then, from Theorem 3.3, we get ψ1 and ψ2 are in H∞

µ,0, that is

(19) lim
|z|→1

µ(z)|ψ1(z)|= 0.

(20) lim
|z|→1

µ(z)|ψ2(z)|= 0.

If ‖φ‖∞ < 1, then from (19) and (20) we get

lim
|z|→1

µ(z)|ψ1(z)|
(1−|φ(z)|2)1/p

≤
(
1−‖φ‖2

∞

)−1/p
lim
|z|→1

µ(z)|ψ1(z)|= 0;

and

lim
|z|→1

µ(z)|ψ2(z)|
(1−|φ(z)|2)1+1/p

≤
(
1−‖φ‖2

∞

)−(1+1/p)
lim
|z|→1

µ(z)|ψ2(z)|= 0.

Hence, we get conditions (17) and (18).

Now, assume that ‖φ‖∞ = 1. The compactness of Tψ1,ψ2,φ : H p→H∞
µ,0 implies that Tψ1,ψ2,φ :

H p→ H∞
µ is compact. Therefore, by Theorem 3.2, we have

(21) lim
|φ(z)|→1

µ(z)|ψ1(z)|
(1−|φ(z)|2)1/p

= 0.

(22) lim
|φ(z)|→1

µ(z)|ψ2(z)|
(1−|φ(z)|2)1+1/p

= 0.

By using (21), for every ε > 0 there is r ∈ (0,1) such that

µ(z)|ψ1(z)|
(1−|φ(z)|2)1/p

< ε,

whenever r < |φ(z)|< 1. By using (19), there exists δ ∈ (0,1) such that

µ(z)|ψ1(z)|< ε(1− r2)1/p,

whenever δ < |z|< 1. Therefore, if δ < |z|< 1 and r < |φ(z)|< 1 then

(23)
µ(z)|ψ1(z)|

(1−|φ(z)|2)1/p
< ε.

On the other hand, if δ < |z|< 1 and |φ(z)| ≤ r we obtain

(24)
µ(z)|ψ1(z)|

(1−|φ(z)|2)1/p
≤ µ(z)|ψ1(z)|

(1− r2)1/p
< ε.

Now combining (23) and (24) we obtain (17). Similarly, using (20) and (22) we obtain (18).
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Second, assume that conditions (17) and (18) hold. It is clear that conditions (1) and (2) hold.

Hence, by Theorem 3.1, we have Tψ1,ψ2,φ : H p → H∞
µ is bounded. On the other hand for any

f ∈ H p, by Proposition 1.1, there exists C > 0 such that

µ(z)
∣∣(Tψ1,ψ2,φ f

)
(z)
∣∣= µ(z)

∣∣ψ1(z) f (φ(z))+ψ2(z) f ′(φ(z))
∣∣

(25) ≤C‖ f‖H p

[
µ(z)|ψ1(z)|

(1−|φ(z)|2)1/p
+

µ(z)|ψ2(z)|
(1−|φ(z)|2)(1+1/p)

]
.

So using (17) and (18) we have

lim
|z|→1

µ(z)
∣∣(Tψ1,ψ2,φ f

)
(z)
∣∣= 0,

which gives that Tψ1,ψ2,φ f is in H∞
µ,0. Thus, Tψ1,ψ2,φ : H p → H∞

µ,0 is bounded. Now, let K =

{ f ∈H p : ‖ f‖H p ≤ 1}. Taking supremum in (25) over all f ∈ K and then letting |z| → 1, we get

lim
|z|→1

sup
f∈K

µ
∣∣(Tψ1,ψ2,φ f

)
(z)
∣∣= 0.

Hence, by Proposition 1.3, we get that the operator Tψ1,ψ2,φ : H p → H∞
µ,0 is compact. This

completes the proof.

Note that all products of composition, multiplication, and differentiation operators can be

obtained from the operator Tψ1,ψ2,φ as follow: T0,ψ,φ = MψCφ D, T0,ψφ ′,φ = MψDCφ , T0,ψ◦φ ,φ =

Cφ MψD, Tψ ′,ψφ ′,φ = DMψCφ , Tψ ′◦φ ,ψ◦φ ,φ =Cφ DMψ , and T(ψ ′◦φ)φ ′,(ψ◦φ)φ ′,φ = DCφ Mψ . These

operator have been investigated on spaces of analytic functions by many authors, see for exam-

ple [4], [5], [6], [7], [9], [13], [14], [15], [16], [20], and the references therein.

Moreover, for f ∈H (D) and z ∈ D, those operators can be written as(
MψCφ D f

)
(z) = ψ(z) f ′(φ(z));(

MψDCφ f
)
(z) = ψ(z)φ ′(z) f ′(φ(z));(

Cφ MψD f
)
(z) = ψ(φ(z)) f ′(φ(z));(

DMψCφ f
)
(z) = ψ

′(z) f (φ(z))+ψ(z)φ ′(z) f ′(φ(z));(
Cφ DMψ f

)
(z) = ψ

′(φ(z)) f (φ(z))+ψ(φ(z)) f ′(φ(z));(
DCφ Mψ f

)
(z) = ψ

′(φ(z))φ ′(z) f (φ(z))+ψ(φ(z))φ ′(z) f ′(φ(z)).
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The following are immediate corollaries of the main results of this paper. These corollaries

characterize the boundedness and compactness of the products operators MψCφ D, MψDCφ , and

Cφ MψD. similarly, one could characterize the other product operators.

Corollary 3.5. Let φ be an analytic self-map of D and ψ ∈H (D).

(1) MψCφ D : H p→ H∞
µ is bounded if and only if

sup
z∈D

µ(z)|ψ(z)|
(1−|φ(z)|2)1+1/p

< ∞.

(2) MψCφ D : H p→ H∞
µ is compact if and only if ψ is in H∞

µ and

lim
|φ(z)|→1

µ(z)|ψ(z)|
(1−|φ(z)|2)1+1/p

= 0.

(3) MψCφ D : H p→ H∞
µ,0 is compact if and only if

lim
|z|→1

µ(z)|ψ(z)|
(1−|φ(z)|2)1+1/p

= 0.

Corollary 3.6. Let φ be an analytic self-map of D and ψ ∈H (D).

(1) MψDCφ : H p→ H∞
µ is bounded if and only if

sup
z∈D

µ(z)|ψ(z)φ ′(z)|
(1−|φ(z)|2)1+1/p

< ∞.

(2) MψDCφ : H p→ H∞
µ is compact if and only if ψφ ′ is in H∞

µ and

lim
|φ(z)|→1

µ(z)|ψ(z)φ ′(z)|
(1−|φ(z)|2)1+1/p

= 0.

(3) MψDCφ : H p→ H∞
µ,0 is compact if and only if

lim
|z|→1

µ(z)|ψ(z)φ ′(z)|
(1−|φ(z)|2)1+1/p

= 0.

Corollary 3.7. Let φ be an analytic self-map of D and ψ ∈H (D).

(1) Cφ MψD : H p→ H∞
µ is bounded if and only if

sup
z∈D

µ(z)|ψ(φ(z))|
(1−|φ(z)|2)1+1/p

< ∞.

(2) Cφ MψD : H p→ H∞
µ is compact if and only if ψ is in H∞

µ and

lim
|φ(z)|→1

µ(z)|ψ(φ(z))|
(1−|φ(z)|2)1+1/p

= 0.
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(3) Cφ MψD : H p→ H∞
µ,0 is compact if and only if

lim
|z|→1

µ(z)|ψ(φ(z))|
(1−|φ(z)|2)1+1/p

= 0.
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