

Available online at http://scik.org
J. Math. Comput. Sci. 2 (2012), No. 5, 1353-1362

ISSN: 1927-5307

POSITIVE SOLUTIONS FOR NONLINEAR SINGULAR SECOND ORDER NEUMANN BOUNDARY VALUE PROBLEMS

SHENGJUN LI ${ }^{1, *}$, ZONGHU XIU ${ }^{2}$, AND LI LIANG ${ }^{1}$
${ }^{1}$ College of Information Sciences and Technology, Hainan University, Haikou, 570228, China
${ }^{2}$ Science and Information College, Qingdao Agricultural University, Qingdao, 266109, China

Abstract

In this paper, we study the existence of positive solutions to second order nonlinear differential equations with Neumann boundary conditions, our nonlinearity $f(t, u)$ may be singular at $u=0$ and our proof relies on a nonlinear alternative of Leray-Schauder type, together with a truncation technique. Some examples will be given.

Keywords:Positive solutions; Leray-Schauder alternative; Neumann boundary value problem 2000 AMS Subject Classification: 34B15, 34B16.

1. Introduction

In this paper, we establish the existence of positive solutions for the second order Neumann boundary value problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+a(t) u=f(t, u), \quad 0 \leq t \leq 1 \tag{1}\\
u^{\prime}(0)=0, \quad u^{\prime}(1)=0
\end{array}\right.
$$

where $a:[0,1] \rightarrow(0, \infty)$ is continuous and nonlinearity $f:[0,1] \times(0, \infty) \rightarrow(0, \infty)$. In particular, the nonlinearity may have a repulsive singularity at $u=0$, which means that

$$
\lim _{u \rightarrow 0} f(t, u)=+\infty, \quad \text { uniformly in } t
$$

[^0]Received May 6, 2012

Electrostatic or gravitational forces are the most important examples of singular interactions.

Due to a wide range of applications in physics and engineering, second order Neumann boundary value problems have been extensively investigated by numerous researchers in recent years. For a small sample of such work, we refer the reader to $[1-6,9,10,12,13,16]$ and the references therein. Here we mention the following results: if $a(t)=M>0$, in [13], Jiang and Liu obtain the existence of one positive solution of (1) when f is either superlinear or sublinear, and in [12] Sun and Li gave some existence results for at least two positive solutions to (1) under weaker conditions than [13]. In the above two papers, existence results were obtained by using Krasnoselskii's fixed point theorem on compression and expansion of cones [7]. Besides fixed point theorems in cone, the method of upper and lower solutions [10] is also used in the literature $[1,3,9]$.

The aim of this paper is to study the existence of solutions of problem (1) by using alternative of Leray-Schauder type, which was used in [11] to deal with periodic singular problems. It is proved that such a problem has at least one positive solutions under reasonable conditions (See Theorem 3.1). The paper is organized as follows. In section 2, some preliminary results will be given, including a famous nonlinear alternative of LeraySchauder type. In section 3, we will state and prove the main results, some illustrating examples will be given.

2. Preliminaries

Let $u(t)$ and $v(t)$ be the solutions of the following homogeneous equations

$$
-u^{\prime \prime}+a(t) u=0, \quad 0 \leq t \leq 1,
$$

satisfying the initial conditions

$$
u(0)=1, u^{\prime}(0)=0, v(0)=0, v^{\prime}(0)=1
$$

Lemma 2.1 [8] Suppose that $h:[0,1] \rightarrow[0, \infty)$ is continuous, then problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+a(t) u=h(t), \quad 0 \leq t \leq 1 \\
u^{\prime}(0)=0, \quad u^{\prime}(1)=0
\end{array}\right.
$$

has a unique solution $u \in \mathbb{C}^{2}[0,1]$ given by the formula

$$
u(t)=\int_{0}^{1} G(t, s) h(s) d s
$$

where

$$
G(t, s)= \begin{cases}\frac{u(t) v^{\prime}(1)-v(t) u^{\prime}(1)}{u^{\prime}(1)} u(s), & 0 \leq s \leq t \leq 1 \\ \frac{u(s) v^{\prime}(1)-v(s) u^{\prime}(1)}{u^{\prime}(1)} u(t), & 0 \leq t \leq s \leq 1\end{cases}
$$

is the Green's function.
Remark 2.2 [13] If $a(t)=M>0$, then the Green's function $G(t, s)$ of the boundary value problem (1) has the form

$$
G(t, s)= \begin{cases}\frac{\cosh \sqrt{M}(1-t) \cosh \sqrt{M} s}{\sqrt{M} \sinh \sqrt{M}}, & 0 \leq s \leq t \leq 1 \\ \frac{\cosh \sqrt{M}(1-s) \cosh \sqrt{M} t}{\sqrt{M} \sinh \sqrt{M}}, & 0 \leq t \leq s \leq 1\end{cases}
$$

where

$$
\cosh x=\frac{e^{x}+e^{-x}}{2}, \quad \sinh x=\frac{e^{x}-e^{-x}}{2} .
$$

Lemma 2.3 [8] Suppose $a, h:[0,1] \rightarrow(0,+\infty)$ are continuous functions. Then the Green's function $G(t, s)$ of problem (1) is positive, i.e., $G(t, s)>0, t, s \in[0,1]$.

We denote

$$
A=\min _{0 \leq s, t \leq 1} G(t, s), \quad B=\max _{0 \leq s, t \leq 1} G(t, s), \quad \sigma=A / B
$$

Thus $B>A>0$ and $0<\sigma<1$. When $a(t)=M>0$, a direct calculation shows that

$$
A=\frac{1}{\sqrt{M} \sinh \sqrt{M}}, \quad B=\frac{\cosh ^{2} \sqrt{M}}{\sqrt{M} \sinh \sqrt{M}}, \quad \sigma=\frac{1}{\cosh ^{2} \sqrt{M}}<1
$$

In order to prove the main result of this paper, we need the following nonlinear alternative of Leray-Schauder, which can be found in [15] or [17], and has been used by M.Meehan, D.O'Regan in $[14,18]$.

Theorem 2.4 Assume Ω is a relatively compact subset of a convex set E in a normed space X. Let $T: \bar{\Omega} \rightarrow E$ be a compact map with $0 \in \Omega$. Then one of the following two conclusions holds:
(i) T has at least one fixed point in $\bar{\Omega}$.
(ii) There exist $u \in \partial \Omega$ and $0<\lambda<1$ such that $u=\lambda T u$.

3. Main results

In this section, we state and prove the main results of this paper. Let $\|\cdot\|$ denote the supremum norm of $\mathbb{C}[0,1]$.

Theorem 3.1 Suppose that there exists a constant $r>0$ such that
$\left(\mathrm{H}_{1}\right)$ There exists a continuous function $\phi_{r} \succ 0$ such that $f(t, u) \geq \phi_{r}(t)$ for all $(t, u) \in$ $[0,1] \times(0, r]$.
where the notation $\phi_{r} \succ 0$ means that $\phi_{r} \geq 0$ for all $t \in[0,1]$ and $\phi_{r}>0$ for t in a subset of positive measure.
$\left(\mathrm{H}_{2}\right)$ there exist continuous nonnegative function $p(u), q(u)$ such that

$$
f(t, u) \leq p(u)+q(u) \quad \text { for all }(t, u) \in[0,1] \times(0, \infty)
$$

$p(u)>0$ is nonincreasing and $q(u) / p(u)$ is nondecreasing in $u \in(0, \infty)$.
$\left(\mathrm{H}_{3}\right) \frac{r}{p(\sigma r)\left\{1+\frac{q(r)}{p(r)}\right\}}>g^{*}$, here $g^{*}=\sup _{0 \leq t \leq 1} \int_{0}^{1} G(t, s) d s$.
where σ and $G(t, s)$ are given as in Section 2.
Then boundary value problem (1) has at least one solution u with $0<\|u\|<r$.
proof Since $\left(\mathrm{H}_{3}\right)$ holds, we can choose $n_{0} \in\{1,2, \cdots\}$ such that

$$
g^{*} p(\sigma r)\left\{1+\frac{q(r)}{p(r)}\right\}+\frac{1}{n_{0}}<r .
$$

Let $N_{0}=\left\{n_{0}, n_{0}+1, \cdots\right\}$. Consider the family of equation

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+a(t) u=\lambda f_{n}(t, u(t))+\frac{a(t)}{n} \tag{2}\\
u^{\prime}(0)=0, \quad u^{\prime}(1)=0
\end{array}\right.
$$

where $\lambda \in[0,1], n \in N_{0}$ and

$$
f_{n}(t, u)=\left\{\begin{array}{lll}
f(t, u), & \text { if } \quad u \geq 1 / n \\
f\left(t, \frac{1}{n}\right), & \text { if } \quad u \leq 1 / n
\end{array}\right.
$$

Problem (2) is equivalent to the following fixed point problem

$$
\begin{equation*}
u(t)=\lambda \int_{0}^{2 \pi} G(t, s) f_{n}(s, u(s)) d s+\frac{1}{n}=\lambda T_{n} u(t)+\frac{1}{n} \tag{3}
\end{equation*}
$$

where T_{n} is defined by

$$
\left(T_{n} u\right)(t)=\int_{0}^{1} G(t, s) f_{n}(s, u(s)) d s
$$

and we used the fact

$$
\int_{0}^{1} G(t, s) a(s) d s \equiv 1 . \quad(\text { see Lemma } 2.1 \text { with } h=a)
$$

We claim that any fixed point u of (3) for any $\lambda \in[0,1]$ must satisfy $\|u\| \neq r$. Otherwise assume that u is a fixed point of (3) for some $\lambda \in[0,1]$ such that $\|u\|=r$. Note that $f_{n}(t, x) \geq \phi_{r}(t)$ for $0<u \leq r$. It is to see that

$$
\begin{aligned}
u(t)-\frac{1}{n} & =\lambda \int_{0}^{1} G(t, s)\left[f_{n}(s, u(s))\right] d s \\
& \geq \lambda A \int_{0}^{1}\left[f_{n}(s, u(s))\right] d s \\
& \geq \lambda \frac{A}{B} \max _{t \in[0,1]} \int_{0}^{1} G(t, s) f_{n}(s, u(s)) d s \\
& =\sigma\left\|u-\frac{1}{n}\right\|
\end{aligned}
$$

Hence for $t \in[0,1]$, we have $u(t) \geq 1 / n$ and

$$
\begin{aligned}
u(t) \geq \sigma\left\|u-\frac{1}{n}\right\|+\frac{1}{n} & \geq \sigma\left(\|u\|-\frac{1}{n}\right)+\frac{1}{n} \\
& =\sigma\left(r-\frac{1}{n}\right)+\frac{1}{n} \\
& \geq \sigma r
\end{aligned}
$$

Thus we have from condition $\left(\mathrm{H}_{2}\right)$, for all $t \in[0,1]$,

$$
\begin{aligned}
u(t) & =\lambda \int_{0}^{1} G(t, s) f_{n}(s, u(s)) d s+\frac{1}{n} \\
& \leq \int_{0}^{1} G(t, s) f(s, u(s)) d s+\frac{1}{n} \\
& \leq \int_{0}^{1} G(t, s) p(u(s))\left\{1+\frac{q(u(s))}{p(u(s))}\right\} d s+\frac{1}{n} \\
& \leq p(\sigma r)\left\{1+\frac{q(r)}{p(r)}\right\} \int_{0}^{1} G(t, s) d s+\frac{1}{n} \\
& \leq p(\sigma r)\left\{1+\frac{q(r)}{p(r)}\right\} g^{*}+\frac{1}{n_{0}}
\end{aligned}
$$

Therefore,

$$
r=\|u\| \leq p(\sigma r)\left\{1+\frac{q(r)}{p(r)}\right\} g^{*}+\frac{1}{n_{0}}
$$

This is a contradiction to the choice of n_{0} and the claim is proved.
From this claim, the Leray-Schauder alternative principle guarantees that

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+a(t) u=f_{n}(t, u(t))+\frac{a(t)}{n}, \tag{4}\\
u^{\prime}(0)=0, \quad u^{\prime}(1)=0
\end{array}\right.
$$

has a periodic solution u_{n} with $\left\|u_{n}\right\|<r$. Since $u_{n}(t) \geq \frac{1}{n}>0$ for all $t \in[0,1]$ and u_{n} is actually a positive periodic solution of (4).

Next we claim that these solutions u_{n} have a uniform positive lower bound, i.e., there exists a constant $\delta>0$, independent of $n \in N_{0}$, such that

$$
\begin{equation*}
\min _{t \in[0,1]} u_{n}(t) \geq \delta \tag{5}
\end{equation*}
$$

for all $n \in N_{0}$. To see this, let $u_{r}(t)$ be the unique solution to the problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+a(t) u=\phi_{r}(t), \quad 0 \leq t \leq 1 \\
u^{\prime}(0)=0, \quad u^{\prime}(1)=0
\end{array}\right.
$$

then $u_{r}(t)=\int_{0}^{1} G(t, s) \phi_{r}(t) d s \geq A\left\|\phi_{r}\right\|_{1}>0$, here $\|\cdot\|_{1}$ denotes the usual $L^{1}-$ norm over $(0,1)$.

So, we have

$$
\begin{aligned}
u_{n}(t) & =\int_{0}^{1} G(t, s) f_{n}(s, u(s)) d s+\frac{1}{n} \\
& =\int_{0}^{1} G(t, s) f(s, u(s)) d s+\frac{1}{n} \\
& \geq \int_{0}^{1} G(t, s) \phi_{r}(t) d s+\frac{1}{n} \\
& \geq A\left\|\phi_{r}\right\|_{1}:=\delta>0
\end{aligned}
$$

In order to pass the solution u_{n} of the truncations problems (2) to that of the original problem (1), we need the following fact:

$$
\begin{equation*}
\left\|u_{n}^{\prime}\right\| \leq H \tag{6}
\end{equation*}
$$

for some constant $H>0$, and for all $n \geq n_{0}$. To show this, first integrate the first equation in (4) from 0 to 1 , we obtain

$$
\int_{0}^{1} a(t) u_{n}(t) d t=\int_{0}^{1}\left[f_{n}\left(t, u_{n}(t)\right)+\frac{a(t)}{n}\right] d t
$$

Then

$$
\begin{aligned}
\left\|u_{n}^{\prime}\right\| & =\max _{0 \leq t \leq 1}\left|u_{n}^{\prime}\right|=\max _{0 \leq t \leq 1}\left|\int_{0}^{t} u_{n}^{\prime \prime}(s) d s\right| \\
& =\max _{0 \leq t \leq 1}\left|\int_{0}^{t} f_{n}\left(s, u_{n}(s)\right)+\frac{a(s)}{n}-a(s) u_{n}(s)\right| d s \\
& \leq \int_{0}^{t}\left[f_{n}\left(s, u_{n}(s)\right)+\frac{a(s)}{n}\right] d s+\int_{0}^{1} a(s) u_{n}(s) d s \\
& \leq 2 \int_{0}^{1} a(s) u_{n}(s) d s<2 r\|a\|_{1}:=H .
\end{aligned}
$$

Now $\left\|u_{n}\right\|<r$ and (6) show that $\left\{u_{n}\right\}_{n \in N_{0}}$ is a bounded and equi-contioous family on $[0,1]$. The Arzela-Ascoli Theorem guarantees that $\left\{u_{n}\right\}_{n \in N_{0}}$ has a subsequence $\left\{u_{n_{i}}\right\}_{i \in N}$, converging uniformly on $[0,1]$ to a function $u \in \mathbb{C}[0,1]$. From $\left\|u_{n}\right\|<r$ and (5), u satisfies $\delta \leq u(t) \leq r$ for all t. Moreover $u_{n_{i}}$ satisfies the integral equation

$$
u_{n_{i}}(t)=\int_{0}^{1} G(t, s) f\left(s, u_{n_{i}}(s)\right) d s+\frac{1}{n_{i}}
$$

Let $i \rightarrow \infty$, we arrive at

$$
u_{n}(t)=\int_{0}^{1} G(t, s) f\left(s, u_{n}(s)\right) d s
$$

where the uniform continuity of $f(t, u)$ on $[0,1] \times[\delta, r]$ is used. Therefore, u is a positive solution of (1).

Finally it is not difficult to show that $\|u\|<r$, by noting that if $\|u\|=r$, an argument similar to the proof of the first claim will yield a contradiction.

Corollary 3.2 Assume that there exist continuous functions d, \hat{d} and $\lambda>0$ such that $0 \leq \hat{d}(t) u^{-\lambda} \leq f(t, u) \leq d(t) u^{-\lambda}$ for all $u>0$ and $t \in[0,1]$. Then problem (1) has at least one positive solution.
proof We will apply Theorem 3.1, $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ are satisfied if we take

$$
\phi_{r}(t)=\hat{d}(t) r^{-\lambda}, \quad q(u)=0, \quad p(u)=d(t) u^{-\lambda}
$$

The existence condition $\left(\mathrm{H}_{3}\right)$ become

$$
\begin{equation*}
\sigma^{\lambda} r^{\lambda+1}>\sup _{0 \leq t \leq 1} \int_{0}^{1} G(t, s) d(s) d s \tag{7}
\end{equation*}
$$

for some $r>0$. Since $\lambda>0$ and $u(t)>0$, we can choose $r>0$ large enough such that (7) is satisfied.

Corollary 3.3 Let the nonlinearity in (1) be

$$
f(t, u)=b(t) u^{-\alpha}+\mu c(t) u^{\beta}, \quad 0 \leq t \leq 1
$$

where $\alpha>0, \beta \geq 0, b(t), c(t) \in \mathbb{C}[0,1]$ are non-negative functions and $b(t)>0$ for all t, and μ is a positive parameter. Then
(i) if $\beta<1$, then (1) has at least one positive solution for each $\mu>0$,
(ii) if $\beta \geq 1$, then (1) has at least one positive solution for each $0<\mu<\mu_{1}$, where μ_{1} is some positive constant.
proof We will apply Theorem 3.1. To this end, notice assumption $\left(\mathrm{H}_{1}\right)$ is fulfilled if $\phi_{r}(t)=\mu r^{-\alpha} \min _{0 \leq t \leq 1} b(t)$. If we take

$$
p(u)=b_{0} u^{-\alpha}, \quad q(u)=\mu c_{0} u^{\beta},
$$

where

$$
b_{0}=\max _{0 \leq t \leq 1} b(t)>0, \quad c_{0}=\max _{0 \leq t \leq 1} c(t)>0,
$$

then $\left(\mathrm{H}_{2}\right)$ is satisfied.
Now the existence condition $\left(\mathrm{H}_{3}\right)$ become

$$
u<\frac{\sigma^{\alpha} r^{\alpha+1}-g^{*} b_{0}}{g^{*} c_{0} r^{\alpha+\beta}}
$$

for some $r>0$, so (1) has at least one positive periodic solution for

$$
0<\mu<\mu_{1}:=\sup _{r>0} \frac{\sigma^{\alpha} r^{\alpha+1}-g^{*} b_{0}}{g^{*} c_{0} r^{\alpha+\beta}}
$$

Note that $\mu_{1}=\infty$ if $\beta<1$ and $\mu_{1}<\infty$ if $\beta \geq 1$. We have the desired results.

Acknowledgment

This work is supported by the National Natural Science Foundation of China (Grant No.11161017), Hainan Natural Science Foundation (Grant No.111002).

References

[1] A.Cabada, P.Habets and S.Lois, Monotone method for the Neumann problem with lower and upper solutions in the reversed order, Appl.Math.Comput. 117 (2001), 1-14.
[2] A.Cabada and P.Habets, Optimal existence conditions for ϕ-Laplacian equations with upper and lower solutions in the reversed order,J.Differential Equations. 166 (2000), 385-401.
[3] M.Cherpion, C.DeCoster and P.Habets, A constructive monotone iterative method for second order BVP in the presence of lower and upper solutions, Appl.Math.Comput. 123 (2001), 75-91.
[4] A.Cabada and L.Sanchez, A positive opproach to the Neumann problem for a second order ordinary differential equation, J.Math.Anal. 204 (1996), 774-785.
[5] A.Cabada and R.R.L.Pouse, Existence result for the problem $\left(\phi\left(u^{\prime}\right)\right)^{\prime}=f\left(t, u, u^{\prime}\right)$ with periodic and Neumann boundary conditions, Nonlinear Anal. 30 (1997), 1733-1742.
[6] B. D.Bonheure, C.De Coster, Forced singular oscillators and the method of lower and upper solutions, Topol. Methods Nonlinear Anal. 22 (2003), 297-317.
[7] K.Deimling, Nonlinear Functional Analysis, Springer, New York, 1985.
[8] F.Merdivenci Atici, G.Sh.Guseinov, On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions, J.Comput. Appl. Math. 132 (2001) 341-356.
[9] N.Yazidi, Monotone method for singular Neumann problem, Nonlinear Anal. 49 (2002), 589-602.
[10] C.De Coster and P.Habets, Upper and lower solutions in theory of ODE boundary value problems:Classical and recent results ,in:Nonlinear Analysis and Boundary Value Problems for Ordinary Differential Equations,F.Zanolin(ed.), CISM-ICMS 371, Springer, New York, 1996,1-78.
[11] S. Li, L. Liang, and Z. Xiu, Positive solutions for nonlinear differential equations with periodic boundary condition, J. Appl. Math. doi:10.1155/2012/528719.
[12] J.Sun and W.Li, Multiple positive solutions to second order Neumann boundary value problems, Appl.Math.Comput. 146 (2003),187-194.
[13] D.Jiang and H.Liu, Existence of positive solutions to second order Neumann boundary value problem, J.Math.Res.Exposition. 20 (2000), 360-364.
[14] M.Meehan, D.O'Regan, Existence theory for nonlinear Volterra integrodifferential and integral equations, Nonlinear Anal. 31 (1998), 317-341.
[15] A.Granas, R.B.Guenther, J.W.Lee, Some general existence principles in the Carathodory theory of nonlinear differential systems, J.Math.Pures Appl. 70(1991),153-196.
[16] Y.Dong, A Neumann problem at resonance with the nonlinearity restricted in one direction, Nonlinear Anal. 51 (2002),739-747.
[17] A.Granas, J.Dugundji, Fixed point theory,Springer Monographs in Mathematics, Springer Verlag, New York, 2003.
[18] M.Meehan, D.O'Regan, Multiple nonnegative solutions of nonlinear integral equations on compact and semi-infinite intervals, Appl.Anal. 74 (2000), 413-427.

[^0]: *Corresponding author

