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Abstract: This article presents the chaos synchronization problem of the restricted three body problem (RTBP) 

when the massive primary is supposed to be oblate spheroid and the smaller one is a uniform circular ring. The 

feedback controller for the stability of the closed-loop system are designed using the active control and adaptive 

control strategy. It is shown that the two methods have excellent performance, with the active control marginally 

outperforming the adaptive control in terms of transient analysis. Simulation results satisfy the theoretical findings. 

For validation of results by numerical simulations, the Mathematica 10 is used when the primaries are Saturn and 

Jupiter.  
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1. INTRODUCTION 

Pecora and Carroll [1] gave idea of synchronization of chaotic systems using the concept of 
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master and slave system and they demonstrated that chaotic synchronization could be achieved 

by driving or replacing one of the variables of a chaotic system with a variable of another similar 

chaotic device. Many methods for chaos synchronization of various chaotic systems have been 

developed, such as non linear feedback control [2], OGY approach [3], sliding mode control [4], 

anti synchronization method [5], adaptive synchronization [6], active control [7] and so on. The 

active control methods for synchronizing the chaotic systems has been applied to many practical 

systems such as spatiotemporal dynamical systems (Codreanu [8]), the Rikitake two-disc 

dynamo-a geographical systems (Vincent 9]), Complex dynamos (Mahmoud [10]) and 

Hyper-chaotic and time delay systems (Israr Ahmad et al. [11]) etc. Shihua Chen and Jinhu [12] 

proposed a new adaptive control method for adaptive synchronization of two uncertain chaotic 

systems, using a speci_c uncertain uni_ed chaotic model. 

Many mathematicians have investigated the circular restricted three body problem such as the 

Euler [13], Hill [14], Poincare [15], Lagrange [16], Deprit [17], Hadjidemetriou [18], Bhatnagar 

[19,20], Sharma et al. [21,22], Sahoo and Ishwar [23] and many others. These studies focus on 

the analytical, qualitative and numerical studies of the problem. A detailed analysis of this 

problem is illustrated in the work of American mathematician Szebehely [24]. Khan and Shahzad 

[25] investigated the synchronization behavior of the two identical circular restricted three body 

problem inuenced by radiation evolving from di_erent initial conditions via the active control 

Arif [26] studied the complete synchronization, anti-synchronization and hybrid synchronization 

in the planar restricted three p0roblem by taking into consideration the small primary is ellipsoid 

and bigger primary an oblate spheroid via active control technique. 

Being motivated by the above discussion, in this article, the equation of motion of the restricted 

three body problem when the massive primary is supposed to be oblate spheroid and the smaller 

one is a uniform circular ring in a dimensionless rotating, co-ordinate system is formulated. we 

have also designed the controller for the stability of the closed-loop system by using the active 

control and adaptive control strategy It has been observed that the system is chaotic for some 

values of parameter. Hence the slave chaotic system completely traces the dynamics of the 
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master system in the course of time. The paper is organized as follows. In section 2 we derive 

the equations of motion of the system. Section 3 deals with the complete synchronization of the 

problem via active control and section 4 via adaptive control. Finally, we conclude the paper in 

section 5. 

2. Equation of motion  

The equation of motion for the restricted three body problem when the massive primary is 

supposed to be oblate spheroid and the smaller one is a uniform circular ring in a dimensionless 

rotating, co-ordinate system are as follows, 

  �̈� − 2 𝜔 �̇�   =   𝑈𝑥                                                        (1)  

  �̈� + 2 𝜔 �̇�   =   𝑈𝑦                                                         (2)                                                                                                                                                                                                                                                                               

Where  

𝑈𝑥 =
𝜕𝑈

𝜕𝑥
  and  𝑈𝑦 =

𝜕𝑈

𝜕𝑦
                                                                                

𝑈 = 
𝜔2 

2
 (𝑥2 + 𝑦2) + {

1−µ

r1
+   

𝐼

2 𝑟1
3} +

2 µ

π (𝑎2−𝑏2)
 [(𝑏 + r2) 𝐸(𝜃, 𝑘𝑏) + (𝑏 − r2) 𝐾(𝜃, 𝑘𝑏) −

(𝑎 + r2) 𝐸(𝜃, 𝑘𝑎) − (𝑎 − r2) 𝐾(𝜃, 𝑘𝑎)]                                           (3)                                                                                                                                                   

𝜔 = mean motion of the primaries, µ = mass ratio,  𝑎, 𝑏 = outer and inner radii of the ring 

respectively. 𝐼 = µ(Re
2 − Rp

2 )/5 , 𝑅𝑒  , 𝑅𝑝   equatorial and polar radius of oblate spheroid 

respectively. 

 K(𝜃, 𝑘𝑎,𝑏) = ∫
dθ

√1−𝑘𝑎,𝑏
2  𝑠𝑖𝑛2𝜃

π

2
0

 Elliptic integral of first kind, 

E(𝜃, 𝑘𝑎,𝑏) = ∫ √1 − 𝑘𝑎,𝑏
2 𝑠𝑖𝑛2𝜃 dθ

π

2
0

  Elliptic integral of second kind, 𝑘𝑎 =
√4𝑎r2

(𝑎+r2)
 , 𝑘𝑏 =

√4br2

(b+r2)
 . 

𝑟1
2= (𝑥 − µ)2+ 𝑦2,  𝑟2

2 = (𝑥 + 1 − µ)2+ 𝑦2. 

The only integral of motion available for the system of equations 1and 2 is the Jacobi constant 

�̇�2 + �̇�2 = 2U − C                                                            (4)   

Once a set of initial conditions is given, the Jacobi constant, through equation 4, defines the 
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forbidden region and allowed regions of motion bounded by the Hill’s surfaces. 

Let S be that energy surface, 

i.e., 

𝑆(𝜇, 𝐶) = {(𝑥, 𝑦, �̇�, �̇� )| 𝐶(𝑥, 𝑦, �̇�, �̇� ) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡}                                  (5)                                             

The projection of this surface onto position space is called a Hill's region 

𝑆(𝜇, 𝐶) = {(𝑥, 𝑦)| U(𝑥, 𝑦 ) ≥
𝐶

2
}.                                                 (6)                                                       

The boundary of 𝑆(𝜇, 𝐶) is the zero velocity curve. The negligible mass can move only within 

this region in the (𝑥, 𝑦)-plane. There are basic two configurations for the Hill's region for a 

given value of 𝜇. 

Figure 1 

              

        Fig (1a) 𝐶 < 𝐶1, 𝜇 =  .1                                Fig (1b) 𝐶3, < 𝐶 < 𝐶1,  𝜇 =  .1 

                  

The values of C which separate these two cases will be denoted  𝐶𝑖 𝑖 = 1,3 which are the 

values corresponding to the equilibrium points 𝐿1 and 𝐿3. These values can be easily calculated 

for small 𝜇 and their graphs are shown in Figure 1. For case 2, the Jacobi constant lies between 

𝐶1 and 𝐶3 which are the Jacobi constants of the libration points 𝐿1 and 𝐿3 respectively. In 

this case, the Hill's region contains a neck around both 𝐿1 and 𝐿3 and the negligible mass can 

transit from the interior region to the exterior region and vice versa. 
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3. Synchronization via Active Control 

Let 

𝑥 = 𝑥1,   �̇� = 𝑥2,  𝑦 = 𝑥3,  �̇� = 𝑥4 

Then the equation (1) and  (2) can be written as:  

�̇�1 = 𝑥2                                                           (7) 

�̇�2 = 2𝜔𝑥4 + 𝜔2𝑥1 + 𝐴1                                                      (8) 

�̇�3 = 𝑥4                                                          (9) 

�̇�4 = −2𝜔𝑥2 + 𝜔2𝑥3 + 𝐴2                                                    (10)                                                                                                                                                                                                                                                        

 

Where 

   𝐴1  =  
−(1 − µ )(𝑥1 − µ)

r1
3 −

3 I (𝑥1 − µ)

2r1
5

−  
2 µ (𝑥1 + 1 − µ)

𝜋(𝑎2 − 𝑏2) 𝑟2
[(E(𝜃, 𝑘𝑏) − K(𝜃, 𝑘𝑏)) (1 +

4𝑏(𝑏 − 𝑟2)

𝑘𝑏(𝑏 + r2
2)

)

+
4𝑏(𝑏 − 𝑟2)2

(𝑏 + 𝑟2)3
(

(E(𝜃, 𝑘𝑏) − (1 − 𝑘𝑏
2)K(𝜃, 𝑘𝑏))

𝑘𝑏(1 − 𝑘𝑏
2)

)

+ (E(𝜃, 𝑘𝑎) − K(𝜃, 𝑘𝑎)) (1 +
4𝑎(𝑎 − 𝑟2)

𝑘𝑎(𝑎 + r2
2)

)

+
4𝑎(𝑎 − 𝑟2)2

(𝑎 + 𝑟2)3
(

(E(𝜃, 𝑘𝑎) − (1 − 𝑘𝑏
2)K(𝜃, 𝑘𝑎))

𝑘𝑎(1 − 𝑘𝑎
2)

)] 

𝐴2 =
−(1−µ )𝑥3

r1
3 −

3I 𝑥3

2r1
5 −

2 (µ) 𝑥3

𝜋(𝑎2−𝑏2) 𝑟2
[(E(𝜃, 𝑘𝑏) − K(𝜃, 𝑘𝑏)) (1 +

4𝑏(𝑏−𝑟2)

𝑘𝑏(𝑏+r2
2)

) +

4𝑏(𝑏−𝑟2)2

(𝑏+𝑟2)3 (
(E(𝜃,𝑘𝑏)−(1−𝑘𝑏

2)K(𝜃,𝑘𝑏))

𝑘𝑏(1−𝑘𝑏
2)

) + (E(𝜃, 𝑘𝑎) − K(𝜃, 𝑘𝑎)) (1 +
4𝑎(𝑎−𝑟2)

𝑘𝑎(𝑎+r2
2)

) +

4𝑎(𝑎−𝑟2)2

(𝑎+𝑟2)3
(

(E(𝜃,𝑘𝑎)−(1−𝑘𝑏
2)K(𝜃,𝑘𝑎))

𝑘𝑎(1−𝑘𝑎
2)

)]   

  𝑟1
2= (𝑥1 − µ)2+ 𝑥3

2,   𝑟2
2 = (𝑥1 + 1 − µ)2+ 𝑥3

2. 

The state orbits of this master system are shown in Figure (2) and this figure shows that the 

system is chaotic. 
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Fig(2) 

  Corresponding to master system ((7), … (10)), the identical slave system is defined as: 

  �̇�1 = 𝑦2 + 𝑢1(𝑡)                                                 (11)                                                                                                                                                     

   �̇�2 = 2𝜔𝑦4 + 𝜔2𝑦1 + 𝐵1 + 𝑢2(𝑡)                                         (12)                                                                                                                                                                                                                                                           

   �̇�3 = 𝑦4 +𝑢3(𝑡)                                                       (13)                                                                                                                                                   

   �̇�4 = −2𝜔𝑦2 + 𝜔2𝑦3 + 𝐵2 + 𝑢4(𝑡)                                        (14)                                                                                                                                                                                                                                            

Where 

𝐵1 =
−(1 − µ )(𝑦1 − µ)

r11
3 −

3 I (𝑦1 − µ)

2r11
5

−  
2 (µ) (𝑦1 + 1 − µ)

𝜋(𝑎2 − 𝑏2) 𝑟21
[(E(𝜃, 𝑘𝑏) − K(𝜃, 𝑘𝑏)) (1 +

4𝑏(𝑏 − 𝑟21)

𝑘𝑏(𝑏 + r21
2 )

)

+
4𝑏(𝑏 − 𝑟21)2

(𝑏 + 𝑟21)3
(

(E(𝜃, 𝑘𝑏) − (1 − 𝑘𝑏
2)K(𝜃, 𝑘𝑏))

𝑘𝑏(1 − 𝑘𝑏
2)

)

+ (E(𝜃, 𝑘𝑎) − K(𝜃, 𝑘𝑎)) (1 +
4𝑎(𝑎 − 𝑟21)

𝑘𝑎(𝑎 + r21
2 )

)

+
4𝑎(𝑎 − 𝑟21)2

(𝑎 + 𝑟21)3
(

(E(𝜃, 𝑘𝑎) − (1 − 𝑘𝑏
2)K(𝜃, 𝑘𝑎))

𝑘𝑎(1 − 𝑘𝑎
2)

)] 

4000 2000 2000 4000
x

4000

2000

2000

4000

y
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𝐵2 =
−(1−µ )𝑦3

r11
3 −

3 I 𝑦3

2r11
5 −

2 (µ) 𝑦3

𝜋(𝑎2−𝑏2) 𝑟21
[(E(𝜃, 𝑘𝑏) − K(𝜃, 𝑘𝑏)) (1 +

4𝑏(𝑏−𝑟21)

𝑘𝑏(𝑏+r21
2 )

) +

4𝑏(𝑏−𝑟21)2

(𝑏+𝑟21)3 (
(E(𝜃,𝑘𝑏)−(1−𝑘𝑏

2)K(𝜃,𝑘𝑏))

𝑘𝑏(1−𝑘𝑏
2)

) + (E(𝜃, 𝑘𝑎) − K(𝜃, 𝑘𝑎)) (1 +
4𝑎(𝑎−𝑟21)

𝑘𝑎(𝑎+r21
2 )

) +

4𝑎(𝑎−𝑟21)2

(𝑎+𝑟21)3
(

(E(𝜃,𝑘𝑎)−(1−𝑘𝑏
2)K(𝜃,𝑘𝑎))

𝑘𝑎(1−𝑘𝑎
2)

)]   

  𝑟11
2 = (𝑦1 − µ)2+ 𝑦3

2,   𝑟21
2  = (𝑦1 + 1 − µ)2+ 𝑦3

2. 

where 𝑢𝑖(𝑡); 𝑖 =1 ,2,3,4 are control functions to be determined. 

Let 𝑒𝑖  = 𝑦𝑖 − 𝑥𝑖  ; i = 1, 2, 3, 4 be the synchronization errors. From ((7)….(10)) and 

((11)….(14)), we obtain the error dynamics as follows: 

𝑒1̇ = 𝑒2 + 𝑢1(𝑡)                                                           (15)                                                                                                                                                                                                                                                                                                                                                                                           

𝑒2̇ = 2𝜔𝑒4 + 𝜔2𝑒1 + 𝐵1 − 𝐴1 + 𝑢2(𝑡)                                         (16)                                                                                                                                              

𝑒3̇ = 𝑒4 + 𝑢3(𝑡)                                                           (17)                                                                                          

𝑒4̇ = −2𝜔𝑒2 + 𝜔2𝑒3 + 𝐵2 − 𝐴2 + 𝑢4(𝑡)                                       (18)                                                                                   

Let us redefine the control functions so that the terms in (15) to (18) which cannot be expressed 

as linear terms in 𝑒𝑖 's are eliminated : 

  𝑢1(𝑡) = 𝑣1(𝑡)   

  𝑢2(𝑡) = −𝐵1 + 𝐴1 + 𝑣2(𝑡)                                                                                                                                  

  𝑢3(𝑡) = 𝑣3(𝑡)      

  𝑢4(𝑡) = −𝐵2 + 𝐴2 + 𝑣4(𝑡)                                                                                                                                

The new error system can be expressed as:   

𝑒1̇ = 𝑒2 + 𝑣1(𝑡)                                                                                                                                      

𝑒2̇ = 2𝜔𝑒4 + 𝜔2𝑒1 + 𝑣2(𝑡)                                                                                                                          

𝑒3̇ = 𝑒4 + 𝑣3(𝑡)                                                                                                                                      

𝑒4̇ = −2𝜔𝑒2 + 𝜔2𝑒3 + 𝑣4(𝑡)                                                                                                                       

The above error system to be controlled is a linear system with a control input 𝑣𝑖(𝑡) ( 𝑖 =

1, … 4) as function of the error states 𝑒𝑖 ( 𝑖 = 1, … 4). As long as these feedbacks stabilize the 

system 𝑒𝑖 ( 𝑖 = 1, … 4) converge to zero as time 𝑡 tends to infinity. This implies that master 

and  the  slave  system are synchronized  with active control .We choose.                                                                                                                                     

(19) 
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[

𝑣1(𝑡) 
𝑣2(𝑡) 
𝑣3(𝑡) 
𝑣4(𝑡) 

] = 𝐴 [

𝑒1 
𝑒2 
𝑒3 
𝑒4 

] 

Here 𝐴 is a 4 × 4 coefficient matrix to be determined.  As per Lyapunov stability theory and 

Routh-Hurwitz criterion, in order to make the closed loop system (20) stable, proper choice of 

elements of 𝐴 has to be made so that the system (20) must have all eigen values with negative 

real parts. Choosing 

𝐴 = [

−1 −1 0 0 
−𝜔2 −1 0 −2𝜔

0 0 −1 −1
0 2𝜔 −𝜔2 −1

] 

and, defining a matrix 𝐵 as 

[

𝑒1̇ 
𝑒2̇ 
𝑒3̇ 
𝑒4̇ 

] = 𝐵 [

𝑒1 
𝑒2 
𝑒3 
𝑒4 

] 

Where 𝐵 is 

𝐵 = [

−1 0 0 0 
0 −1 0 0
0 0 −1 0
0 0 0 −1

] 

Clearly, 𝐵 has eigen values with negative real parts. This implies lim
𝑡→∞

|𝑒𝑖| = 0;  𝑖 = 1, 2, 3, 4 

and hence, complete synchronization is achieved between the master and slave systems.  

 

4. Synchronization via Adaptive Control  

In this section we design an adaptive controller for the slave system (11)...(14). Lyapunov 

stability theory state that when controller satisfies the assumption with V (e) = 
1

2
 𝑒𝑡𝑒 a positive 

definite function and the first derivative of this function �̇�< 0, the chaos synchronization of two 

identical systems (master and slave) for different initial conditions is achieved. Construct a 

Lyapunov function as: 

 

(20) 

 

(21) 

 

(22) 

 

(23) 
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�̇� =
1

2
(𝑒1

2 + 𝑒2
2 + 𝑒3

2 + 𝑒4
2). 

Then its derivative along the error system (15) to (18) is 

�̇� = 𝑒1(𝑒2 + 𝑢1) + 𝑒2{2𝜔𝑒4 + 𝜔2𝑒1 + 𝐵1 − 𝐴1 + 𝑢2} + 𝑒3(𝑒4 + 𝑢3) 

+𝑒4{−2𝜔𝑒2 + 𝜔2𝑒3 + 𝐵2 − 𝐴2 + 𝑢4} . 

Hence, if we choose the controller 𝑢 as follows, 

𝑢1 = −𝑒1 − 𝑒2                                                                     

𝑢2 = −𝜔2𝑒1 − 𝐵1 + 𝐴1 − 𝑒2 

𝑢3 = −𝑒3 − 𝑒4                                                                             

𝑢4 = −𝜔2𝑒3 − 𝐵2 + 𝐴2 − 𝑒4               

Then 

�̇� = −𝑒1
2 − 𝑒2

2 − 𝑒3
2 − 𝑒4

2 < 0.                                               

Hence the error state   

lim
𝑡→∞

‖𝑒(𝑡)‖ = 0. 

which gives asymptotic stability of the system. This means that the controlled chaotic systems  

(master and slave) are synchronized for deferent initial conditions.  

NUMERICAL SIMULATION 

Let us consider an example of Jupiter-Saturn system in the restricted three body problem in 

which the primary  𝑚2 is taken as the Saturn and primary 𝑚1 as the Jupiter and small body as 

a space- craft. From the astrophysical data we have 

Mass of the Saturn 𝑚2 = 5:683 × 1026 kg 

Mass of the Jupiter 𝑚1 = 1:89712 × 1027 kg 

The distance between the Jupiter and Saturn = 646,270,000 Km. 

In dimensionless system we have 𝑚1+𝑚2 = 1 unit and the distance between the Jupiter-Saturn 

is 1 unit. 

The initial conditions of the master system and the slave system are set to be (.967, 2.29, 0.00, 

5.0) and (-6.5, .29, 3.0, 0,0), respectively. We have simulated the system under consideration 

using mathematica 10. Results for uncontrolled system are given in figures 3,6,9,12 and that of 
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controlled system Via active control are shown in figures 4,7,10 and 13 and via Adaptive control 

are shown in figures 5,8,11,14 respectively. These figures shows that the state [𝑥1(𝑡), 𝑥2(𝑡), 

𝑥3(𝑡), 𝑥4(𝑡)] of master system [7 to 10] asymptotically synchronize with the state [𝑦1(𝑡), 𝑦2(𝑡), 

𝑦3(𝑡), 𝑦4(𝑡)]of slave system [11 to 14].  Fig. (15) shows the synchronization error (e) for the 

two system. We find that at t = 6s, the synchronization was already attained for adaptive control 

while synchronization was attained at a later time (t = 10s) for active control, the time delay 

being 4 s. Though it is clear that the adaptive control performs better and is much easier to 

design. 

 

 

Fig (3): Time series of the Uncontrolled states 𝑥1, 𝑦1. 

                                            

              

  

Fig (4): Time series of the controlled states 𝑥1, 𝑦1via Active control     Fig (5): Time series of the controlled states 𝑥1, 𝑦1via Adaptive control 
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Fig (6) :Time series of the Uncontrolled states 𝑥2, 𝑦2. 

         

 

                                          

                

               

Fig (7) :Time series of the controlled states 𝑥2, 𝑦2via Active control     Fig (8) :Time series of the controlled states 𝑥2, 𝑦2via Adaptive control 
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Fig (9) :Time series of the Uncontrolled states 𝑥3, 𝑦3. 

 

                                                                                           

                     

Fig (10) :Time series of the controlled states 𝑥2, 𝑦2via Active control  Fig (11) :Time series of the controlled states 𝑥2, 𝑦2via Adaptive  control 

 

 

Fig (12) :Time series of the Uncontrolled states 𝑥3, 𝑦3. 
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Fig (13) :Time series of the controlled states 𝑥2, 𝑦2via Active control  Fig (14) :Time series of the controlled states 𝑥2, 𝑦2via Adaptive  control 

 

        

 
     Fig (15a) :Error system via Active control                          Fig ( 15 b) :Error system via Adaptive  control 

 

5. Conclusions 

The equation of motion of the restricted three-body problem when the massive primary is 

supposed to be oblate spheroid and the smaller one is an uniform circular ring formulated. We 

have investigated the complete synchronization behavior of the problem via adaptive and active 

control method. Here two systems (master and slave) are compete synchronized when start with 

deferent initial conditions. Hence the slave chaotic system completely traces the dynamics of the 
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the Mathematica 10 when the primaries are Jupiter and Saturn. 
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