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Abstract. In this paper we study the estimate for the limit cycles of the planar differential systems of (p,q)−quasi-

homogeneous polynomials nonlinearities. We give a condition on the polynomials to let the system have at most

two limit cycles by introducing a new form of transformation. The tool that we mainly use is generalized polar

coordinates and a fact introduced by Gasull and Llibre in estimating the number of limit cycles. This is achieved

by estimating the number of isolated periodic solutions of Abel equation.
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1. INTRODUCTION

In this paper we study a significant problem in the qualitative study theory of real planar dif-

ferential systems which is to control the number of limit cycles for a given class of polynomial

systems, the quasi-homogeneous polynomial differential systems. This problem is originated

from the Hilbert’s 16th problem. These kind of systems have been studied from many different

points of view. In this paper we restrict our study to the number of limit cycles surrounding the
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origin for the planar system with quasi-homogeneous nonlinearities

�
x = ax+ xPn,(p,q)(x,y)(1.1)

�
y = ay+ yQm,(p,q)(x,y)

where Pn,(p,q)(x,y),Qn,(p,q)(x,y) are (p,q)−quasi-homogeneous polynomials of weight de-

gree n. The system is called (p,q)−quasi-homogeneous of quasi-degree n differential system.

Notice that homogeneous polynomials of degree n are quasi-homogeneous of quasi-degree n

and weight (1,1).

The quasi-homogeneous (and in general nonhomogeneous) polynomial function is defined as

follows,

Definition 1. Let p,q,n be positive integers. The polynomial Pn,(p,q)(x,y) is called a (p,q)−quasi-

homogeneous polynomial of weight degree n if

Pn,(p,q)(λ
px,λ qy) = λ

nPn,(p,q)(x,y)

for all real number λ . For instance see [15] and references therein.

Notice that Pn,(p,q)(x,y) can be written as

Pn,(p,q)(x,y) = ∑
ip+ jq=n

pi jxiy j

Or

Pn,(p,q)(x,y) =
r

∑
k=1

pik jkxiky jk , ik p+ jkq = n

= (xi1, ...,xir)
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One of the particularities of these kinds of systems is that each limit cycle surrounding the

origin can be expressed in polar coordinates as r = r(θ) with r(θ) being a smooth periodic

function. This provides us an opportunity to consider the Helbert’s 16th problem in a simple

way.

The used technique to study system (1.1) is by transforming it to Abel equation

(1.2)
dx
dt

= a3(t)x3 +a2(t)x2 +a1(t)x

where x ∈ R and ai ∈C∞([0,2π]), i = 1,2,3, applying a new form of transformation.

A solution of x(t) of 1.2 is called periodic solution, if it is defined in [0,2π] with x(0)

= x(2π). Moreover, the isolated periodic solution x = x(t) of 1.2 in the strip [0,2π]×R is

corresponding to limit cycle for system 1.1. That means the problem of estimating the number

of limit cycles of system 1.1 is reduced to the estimating the number of isolated periodic solution

of 1.2. Lins-Neto [8] and Lloyd [9-11] proved that equation 1.2 has at most one (resp. two)

periodic solution if a3 = a2 ≡ 0 (resp. a3 ≡ 0). In [5] the authors proved that for the case a2 6= 0

keeps the sign, the number of non-zero isolated periodic solutions of 1.2 is at most two. Our

result is built upon this fact.

The quasi-homogeneous polynomial differential systems have been studied from many dif-

ferent point of view, one of these studies is the centre, see for instance [1], [2], [4]. But up

to now there was not an algorithm for constructing all the quasi-homogeneous polynomial dif-

ferential systems for a given degree. Our result extends the homogeneous case as a particular

case.

2. MAIN RESULTS

We consider a class of differential system given in 1.1. In fact, in a generalized polar coordi-

nates

x = rp cosθ(2.1)

y = rq sinθ
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where p, q are positive integers p 6= q≥ 0, p,q≤ n, system 1.1 can be written in the form.

·
r =

1
pcos2 θ +qsin2

θ
[ar+ rn+1

ϕ(θ)](2.2)

·
θ =

1
pcos2 θ +qsin2

θ
[a(p−q)sinθ cosθ + rn

ψ(θ)]

where

ϕ(θ) = cos2
θP(cosθ ,sinθ)+ sin2

θQ(cosθ ,sinθ)(2.3)

ψ(θ) = −qsinθ cosθP(cosθ ,sinθ)+ psinθ cosθQ(cosθ ,sinθ)

·
r =

dr
dt

, and
·
θ =

dθ

dt
(2.4)

The limit cycles surrounding the origin do not intersect the curve
·
θ = 0. In other words, the

limit cycles surrounding the origin do not intersect the curve

a(p−q)sinθ cosθ + rn
ψ(θ) = 0

Therefore the limit cycles can be investigated by the differential equation

(2.5)
dr
dθ

=
ar+ rn+1ϕ(θ)

a(p−q)sinθ cosθ + rnψ(θ)

Furthermore, we introduce a new transformation

(2.6) ρ =
rn

a(p−q)sinθ cosθ + rnψ(θ)
,

This transformation is a modified transformation of a transformation introduced by [5]. The

modification is made according to our need. Equation 2.5 becomes an Abel equation

(2.7)
dρ

dθ
= a3(θ)ρ

3 +a2(θ)ρ
2 +a1(θ)ρ

where

(2.8)

a3(θ) =
nψ2(θ)

(p−q)sinθ cosθ
−nϕ(θ)ψ(θ)......................

a2(θ) =
−2nψ

(p−q)sinθ cosθ
+ cos2 θ−sin2

θ

sinθ cosθ
ψ(θ)+nϕ(θ)−ψ (́θ)

a1(θ) =
n

(p−q)sinθ cosθ
− cos2 θ−sin2

θ

sinθ cosθ
.......................

Here we can state our main result
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Theorem 1. If

[
2nq
p−q

+ ccos2
θ ]P(cosθ ,sinθ)+ [

−2np
p−q

+ csin2
θ ]Q(cosθ ,sinθ)

+sinθ cosθ [qṔ(cosθ ,sinθ)− pQ́(cosθ ,sinθ)] 6= 0

in the domain of definition [0,2π], then the system 1.1 has at most one limit cycle surrounding

the origin.

Proof. We have from 2.8

a2(θ) =
−2nψ

(p−q)sinθ cosθ
+

cos2 θ − sin2
θ

sinθ cosθ
ψ(θ)+nϕ(θ)−ψ (́θ)

=
−2n+(p−q)(cos2 θ − sin2

θ)

(p−q)sinθ cosθ
ψ(θ)+nϕ(θ)−ψ (́θ)

=
−2n+(p−q)(cos2 θ − sin2

θ)

(p−q)
[−qP(cosθ ,sinθ)+ pQ(cosθ ,sinθ)]

+n[cos2
θP(cosθ ,sinθ)+ sin2

θ Q́(cosθ ,sinθ)]−ψ (́θ)

From 2.3, we get

ψ (́θ) = −q(cos2
θ − sin2

θ)P(cosθ ,sinθ)−qsinθ cosθ Ṕ(cosθ ,sinθ)

+p(cos2
θ − sin2

θ)Q(cosθ ,sinθ)+ psinθ cosθ Q́(cosθ ,sinθ)

Therefore, after simplification we obtain

a2(θ) = [
2nq
p−q

+ ccos2
θ ]P(cosθ ,sinθ)+ [

−2np
p−q

+ csin2
θ ]Q(cosθ ,sinθ)

+sinθ cosθ [qṔ(cosθ ,sinθ)− pQ́(cosθ ,sinθ)]

Now we apply the following fact proved by Gasull and Llibre [7] which say, ” If a2(θ) 6= 0, in

[0,2π], then the system 1.2 has at most one isolated periodic solution”.

This proves the Theorem. �
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Conclusion 1. The validity of the condition in the Theorem 1 is equivalent to the existence of

the solution of the first order differential equation in Q(cosθ ,sinθ)

[
2nq
p−q

+ ccos2
θ ]P(cosθ ,sinθ)+ [

−2np
p−nq

+ csin2
θ ]Q(cosθ ,sinθ)

+sinθ cosθ [qṔ(cosθ ,sinθ)− pQ́(cosθ ,sinθ)] = 0

regarding that P(cosθ ,sinθ) given.

Secondly, The most classical hypothesis on which many results depend is the definite sign

hypothesis for the coefficients of 2.7, see for instance, [7, 8, 11, 14]. Generalized Abel equations

with some coefficients of definite signs are also investigated in several papers, see [3,6,12, 13].

Recently, [4] requires fixed sign hypotheses for some linear combinations of the coefficients.

The new results of this paper, on the top of Theorem 1, are the approach and introducing a new

generalized transformation, and the polynomial is quasi-homogeneous.
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