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Abstract: Symmetry a n a l y s i s  o f  the Ermakov s y s t e m s  has attracted enormous treatments in recent 

times. In this paper we consider three classes of the Ermakov systems and obtain their nonlocal 

symmetries using a simple algebraic reduction process. We observed that these nonlocal symmetries are 

new to the literature.  
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1. Introduction 

The Ermakov  systems  of  second-order  ordinary  differential  equations  for 

which  the  invariant  and  the  three  generators  of  the  algebra  sl(2, R) are  

well known in the literature (Ermakov [1], Harin [2], Athorne [3], Goedert and Haas 

[4], Haas and Goedert [5], Simic [6], Leach and  Karasu (Kalkanli) [7], Goodall and 

Leach [8]). The absence of sufficient numbers of Lie point symmetries for the Kepler 

problem in the context of complete symmetry group of dynamical systems brought to 

the fore the introduction of the nonlocal symmetries of dynamical systems by Krause 

[9]. Nucci [10] introduced her concept of reduction process combined with the Lie 

algorithm for obtaining the classical symmetries of differential equations to obtain the 
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complete symmetry group of the Kepler problem according to Krause [9] and as well 

voided the earlier assertions of Krause [9] that these nonlocal symmetries could not be 

obtained by Lie algorithm. The Nucci [10] reduction process became so famous (even 

still) in the literature hitherto Arunaye [11] announced a simpler reduction process for 

reducing dynamical systems to systems of oscillator and equation of motion which 

admits Lie algorithm for the computation of their infinitesimal vector fields, meanwhile 

it is already established in Leach, Andriopoulos and Nucci [12] that the Ermanno- 

Bernoulli  constants  of  dynamical  systems  are  most  suitable  for  

reducing dynamical systems to systems of oscillator and equation of motion. Arunaye 

and White  [13]  designated  alternative  constants  for  doing  same;  

which  were constructed from the Hamilton vector of dynamical systems. These 

alternative constants are equivalent to the Ermanno-Bernoulli constants in two 

dimensions and provide less cumbersome reduction variables in three-dimensions than 

the Ermanno-Bernoulli constants with less computational effort. 

It  is  well  known that the central  feature of the Ermakov systems  is  their 

property of always having first integrals (Haas and Goedert [5], Simic [6]) and that 

this invariant plays a central role in the linearization of Ermakov systems (Ray and Reid 

[14], Haas and Goedert [5], Athorne [3]). The Kepler-Ermakov systems referred to the 

perturbations of the classical Kepler problem or an autonomous Ermakov system was 

investigated by Karasu (Kalkanli) and Yildirim [15] and they found that these systems 

are the usual Ermakov systems with frequency function depending on the dynamical 

variables. Leach, Karasu (Kalkanli), Nucci and A n d r i op ou l o s  [ 7] supp l emen t ed  

t h e  ana l ys i s  o f  Karasu (Kalkanli) and Yildirim [15] by correcting some results; and 

also they carried out some investigations on the same dynamics in order to determine an 

equivalent transformation of the Kepler-Ermakov systems for the new time and 

rescaled radial distance so that in the discussion of the Kepler-Ermakov systems, 

suffices it to study its polar equivalent systems. Leach, Karasu (Kalkanli) [16] 

considered the Ermakov’s superintegrable-toy for its nonlocal symmetries and asserted 

the insufficient  Lie point  symmetries  and  the  unsuitable  algebra  sl(2, R)  

for the complete specification of the system. It were further shown by the method 
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of Nucci reduction process the five symmetries representation of the complete 

symmetry group; four of which are nonlocal symmetries and the algebra is the direct 

sum of a one-dimensional Abelian algebra and the semidirect sum of a solvable algebra 

with a two-dimensional Abelian algebra [ A1   {A2  s  2 A1}]  in the notation of the 

Mubarrakzyanov classification scheme Morozov [17], Mubarakzyanov [18, 19, 20]. 

This paper considered the reduction of three classes of the Ermakov systems by the 

method of Arunaye [11] for the nonlocal symmetries of same, the results are very 

interesting. The paper is organized as following. Section 2 dealt with the reduction of 

the three classes of Ermarkov systems to systems of oscillator and conservation law. 

Section 3 is devoted to the symmetry analysis and finally concluding remarks. 

 

1.1  Classes of Ermakov systems 

 

The three classes of the Ermakov systems under consideration are given by 
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here f and g are arbitrary functions of their arguments, H is a function of unspecified 

form of dependence upon x , y and r in which the Kepler part is to be found in the first 

term of the right sides of the system (1.1) (Leach and Karasu(Kalkanli) [16]). Systems 
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(1.1), (1.2) and (1.3) are known as Kepler-Ermakov systems, generalized Ermakov 

systems and the Ermakov-toy systems respectively. In the symmetry analysis parlance, 

Leach and Karasu (Kalkanli) [16], Leach, Karasu (Kalkanli), Nucci and Andriopoulos 

[7] established the plane polar coordinates of (1.1.), (1.2) and (1.3) for their 

generalized symmetry analysis where x  r cos, y  r sin . 

2. Preliminaries 

In the following the reduction process method for reducing dynamical systems to  

systems  of  oscillator  and  equation  of  motion  reported  in  Arunaye  [11]  

is applied to reduce these three classes of Ermakov systems (1.1), (1.2) and (1.3) to 

systems of oscillator and conservation law so that one is able to apply the Lie point 

symmetry analysis method to these classes of dynamical systems to obtain their 

generalized symmetries via their reduced systems. 

2.1 Reduction process of the Kepler-Ermakov systems 

The so called Kepler-Ermakov systems studied by Leach and Karasu (Kalkanli) [16] 

in polar system has radial and transversal components of the motion respectively given 

by 
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We note that the unspecified function H in (1.1) and )(coth  in (2.1) are related by 
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  where C is an arbitrary constant (Leach and Karasu (Kalkanli) 

[16]). 

Now from (2.2) we have 
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i.e.     )(2  LL ,                                                     (2.3)  

where  L  is a constant,  2rL   defined the magnitude of the angular momentum of the 

motion which is not constant in this dynamics. 
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Now, by setting
1 ru ; Lur  ; uuLr 22  (
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then we have 
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On taking 2uL   and 1uu   then (2.4) and (2.3) respectively become 
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where ])}(tancos)(tan{sec(cot)cos1[)( 2222  Lgecfhec  . Thus (2.5) 

is the reduced system for the Kepler-Ermakov systems. 

2.2 Reduction process of the Generalized Ermakov systems 

The radial and transversal components of the motion for these dynamical systems are 

respectively given by 

         )}(tancos)(tan{sec
1 22

3

2  gecf
r

rr   ,                     (2.6) 

          )}(tancotcos)(tantan{sec
1

2 22

3
 gecf

r
rr   .      (2.7) 

Following the same procedure as above, we obtain the similar reduced system for the 

dynamical systems (1.2) as 
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where ])}(tancos)(tan{sec1[)( 2222  Lgecf  . 

2.3 Reduction process of the Ermakov-Toy systems 

The radial and transversal components of the motion for these dynamical systems are respectively 

known as 
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where prime implies derivation with respect to  . 
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Similarly, the same procedure for reduction process above , reduces systems (1.3) to 
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where ])cot(tan1[)( 222   L . 

3. Main results 

3.1 Lie point symmetries of the reduced Ermakov-toy systems 

We shall utilize (2.11) as hypothetical illustrative example of these three classes of 

Ermakov systems under investigation to present the nonlocal symmetries of the 

Ermakove-toy systems and note that it is easy to deduce the nonlocal symmetries for 

the Kepler-Ermakov systems and the generalized Ermakov systems. 

Now we note that (2.11) is a system of   dependent oscillator and a conservation law. 

The system (2.11) has nine Lie point symmetries (well known in the literature), they are 
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where   satisfies the Pinney equation 
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and )(   to be determined below. We note here that if   and   are two 

independent solutions of the oscillator in (2.11) for which   is as defined above 

then the solution for the Pinney equation satisfies  

         222 2  CBA  , 22  WBAC .                    (3.3) 

Where A , B  and C  are arbitrary real constants and  :W  is the 

wronskian where prime denotes derivation with respect to  . It is also well known 
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that the Ermakov systems are famous as a result of the fact that they always posses the 

invariant 
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where )(t is a function satisfying the Pinney equation. From the definition of the magnitude of 

the momentum L  we have 
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We note that )(  is a function of t  implicitly since   is dependent on t .  

3.2 Lie point symmetries of the reduced Ermakov-toy systems 

Substituting back for the original variables in the symmetries (3.1) of the 

Ermakov-toy systems we obtain the following generalized symmetries: 
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t and )(2  LL is obtained from (2.10) similarly as in 

(2.3). 

The 10V  is introduced as the symmetry responsible for the reduction of order by the 

change of independent variable from t  into . 

We observed that these generalized symmetries are absolutely different from those 



1546                     ARUNAYE FESTUS IRIMISOSE* 

obtained inLeach and Karasu (Kalkanli) [16], Karasu (Kalkanli) and Yildirim [15] and 

Leach, Karasu (Kalkanli), Nucci and Andriopoulos [7]. We also note that the point 

symmetries for time translation and special dilation respectively 1V  and 7V  have 

significant forms which are unparallel in the literature hitherto. 

3.3 Conclusions 

In the forgoing we are able to simply reduce the three classes of the Ermakov systems 

to systems of two equations – one time dependent oscillator another conservation law 

in a more simple and convenient method than the method of Nucci [10]. The 

application of Lie point symmetry algorithm is unique in that it produced the same 

nine point symmetries for each set of reduced systems. However the backward 

transformation to obtain the nonlocal symmetries is much simpler too although the 

generalized symmetries obtained in this case may not be identical to those from Nucci 

reduction process; consequence of the fact that nonlocal symmetries are infinite and 

have no unique algorithm for their general determination. We note the different 

manifestations of the nonlocal symmetries of these classes of Ermakov systems as 

with the realization of their complete symmetry groups, for which four are nonlocal 

symmetries and the algebra is the direct sum of a one-dimensional Abelian algebra 

and the semidirect sum of a solvable algebra with two-dimensional Abelian algebra 

}]2{[ 121 AAA s  obtained in Leach, Karasu (Kalkanli), Nucci and Andriopoulos 

[7]. The geometric implications as well as the uniqueness of the complete symmetry 

groups of these classes of Ermakov systems based on these new generalized (nonlocal) 

symmetries are subject for further discussions. 
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