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Abstract. Tungiasis is a parasitic skin disease caused by jiggers, also known as sand fleas. The disease pre-

dominantly affects impoverished populations living in Sub-Saharan Africa, the Caribbean and South America.

Mathematical models have been used for decades to inform public health policies and have been useful for the

evaluation of control strategies and interventions. In this paper we consider a deterministic model with four com-

partments that represent the dynamics of the human population and a stage-structured model for the flea. The

model equilibria are computed and stability analyses carried out based on the reproduction number R0. Sensi-

tivity analysis is carried out on the model parameters and it is observed that the epidemic is driven by infested

humans and the survival of the flea through its developmental stages. The model points to a focused control of the

flea through larvicides and treatment of infested humans. The paper is concluded by discussing the public health

implications of the mathematical results.
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1. INTRODUCTION

Tungapenetran also known as chigger, jigger, chigoe or sand flea, is a flea mainly found in East

and West Africa, the Caribbean, especially in Trinidad, Central and South America and India

[10]. As of 2009, Tungiasis was present in 88 countries, with varying degrees of incidence. In

2010 alone, Busoga region in Uganda registered 20 deaths and 20,000 severe cases related to

jiggers infestation [16]. According to a study carried out in Muranga South District in Kenya on

children between the ages of 5 and 12, the prevalence of Tungiasis was at 57 percent suggesting

that it is highly endemic in rural central Kenya [14].The prevalence of jigger infestation further

is found to be, 45.2 percent in Nigerian community in Lagos state [33], 51.1 percent in North

Eastern Brazil [25], 75 percent in the village of Rural Haiti [17] and 65.9 percent in Murang’a

North District, Kenya [32].

Jiggers are small pin-head-sized chigoe fleas found in sandy terrains of warm, dry climates. It

hides in the crevices and cracks found on the floors, walls of dwellings and items like furniture

and it feeds on warm blooded hosts including man, cats, dogs, rats, pigs, cattle and sheep. The

female flea feeds by burrowing into the skin of its host. The abdomen becomes enormously

enlarged between the second and third segments so that the flea forms a round sac with the

shape and size of a pea. The impregnated female Tunga embeds itself in the skin under the

toe-nails and fingernails of humans, where the resultant sores may fill with pus and become

infected. After two weeks, over 100 eggs are released through the exposed skin opening and

fall to the ground. The flea then dies and is slowly sloughed by the host’s skin. The eggs hatch

in the dust within 3-4 days. In 21-28 days, they go through their larval and pupal stages and

become adults. The complete life cycle of a Tungapenetrans lasts for about a month [1].

In Kenya, all the eight provinces, now the fourty seven counties, have reported cases of jigger

infestation, with a few isolated cases in the capital, Nairobi. The effects of jigger infestation are

profound. School children often drop out of school, and HIV/AIDS spreads among the infested

communities through sharing of pins and other jiggers removing equipment. Heavy infestations

may lead to severe inflammation, ulceration, and fibrosis. Lymphangitis, gangrene, sepsis, the

loss of toenails, auto amputation of the digits, and even death may occur. The risk of secondary
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infections is high with Tetanus being the most common secondary infection associated with

jiggers. Jiggers infestation is linked with poverty and lack of proper hygiene [1].

The social implications of jiggers infestation on communities has also been investigated and

specifically its effects on development in Kenya, see [27] and knowledge, attitude and practices

on jigger infestation among house hold members , see [3]. The effects on academic achievement

in public primary schools [26] and the epidemiology of tunga penetrans infestation in selected

areas in Kahuru constituency, Murang’a County [14], have also been carried out. The control

of tungiasis in impoverished communities [6], and the seasonal variation of tungiasis [11] have

also been investigated. Other studies have been done in rural Cameroon, see [8], Lagos state,

Nigeria [33] and globally [20]. From a health point of view, a number of studies have also been

done, see for instance [9, 30]. Research on similar diseases in areas where tungiasis is common

has been done in recent years. These include vector-borne diseases distribution [19, 23, 4],

onchocerciasis [18] and the impact of mass administration of ivemectin in the treatment of

onchocerciasis [7].

While a lot of research has been done on jiggers, most of it has focused on social and community

awareness. Very little has been done on the mathematical modeling of jigger infestation and

interventions in humans which might be key to the fight against the infestation. The most

recent ones have been on the dynamics of tungiasis transmission in endemic areas [13] and in

zoonotic areas [12]. In the later, the authors formulated a deterministic model of tungiasis which

involved the interactions between humans, animals and the sand fleas in the environment. We

argue that the two models do not capture the interactions of the humans and the environment

adequately as they left out the source of the larvae, i.e the eggs. The authors assumed that

that the flea dynamics are such that infested humans and animals contribute the flea larvae into

the environment and not the eggs and also that the adult fleas directly develop from severely

infested animals, see [12].

In this paper, we consider a model for jiggers infestation with the aim of determining threshold

conditions for the persistence of the infestation and parameters that influence the dynamics

of Tungiasis. We present a model that comprehensively represents the dynamics of the flea
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population’s developmental stages. We strictly consider the flea as the sole driver of infestation

. The pregnant female flea barrows in a human host for the purposes of laying eggs and our

model considers a complete cycle of the flea population. We determine the steady states and

their stabilities. Sensitivity analysis and numerical simulations are carried out with the aim of

determining the potential impact of some parameters on the Tungapenetrans dynamics.

This work is arranged as follows. In Section 2 we perform model formulation and in Section 2.1

we carry out analysis of the model by establishing important thresholds such as the reproduction

number R0 and different equilibria of the model. We then demonstrate the stability of equilibria

and carry out some bifurcation analysis. In section 3, we carry out numerical simulations which

include, sensitivity analysis, parameter variation and contour plots which are used to assess the

influence of some important parameters in the jiggers infestation. Section 3.3 concludes the

paper.

2. PRELIMINARIES

MODEL FORMULATION

We propose a deterministic model where the human population is categorized into four com-

partments at any time t > 0, comprising of susceptible humans S(t), infested humans I(t),

chronically infested humans, C(t) and recovered humans R(t). The recovered humans are as-

sumed to recover as a result of treatment. The total size of the human population is thus given

by

N(t) = S(t)+ I(t)+C(t)+R(t).

The flea cycle is categorized into three compartments, at any t > 0, of eggs E, coming as a result

of the of adult flea from, those of the infested in compartment I and the chronically infested in

compartment C, the larvae and pupa, combined into one stage, L and the adult flea F.

The human population is recruited at the rate Π which is assumed to be generated through

births and as the female flea burrows into the susceptible human skin, a susceptible individual

moves to the infested compartment I. All recruited individuals are assumed to be susceptible.

The generation of new infestations is modeled by the expression βSF where β is the effective
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infestation rate of the susceptible humans by the adult female fleas. The expression βSF, is

basically the force of infestation. However, some infested humans may become chronically

infested and join compartment C at a rate α . By chronically infested we mean individuals

with severe infestations that may require thorough treatment. The chronically infested can be

treated and recover at a rate γ2. Once an individual is infested, recovery is possible through

treatment at a rate γ1. This could be made possible by removing the fleas from their cavity

using sterile instruments followed by thorough cleaning and covering the remaining crater with

topical antibiotic to prevent secondary infestation. This could be more difficult if the infestation

is engorged [29]. Also a two component dimethicone, administered directly to affected area

reduces all embedded sand fleas by 80 to 95 percent [22]. Recovery from infestation does not

provide protection from further infestation. Individuals in the recovered class can move back to

the susceptible class at a rate ω . Individuals in each class die naturally at a rate µ .

Fleas’ eggs are released by individuals infested, that is, those in classes I and C at rates τ1

and τ2 respectively. The parameter τ1 is assumed to be smaller than τ2 since the chronically

infested humans generate more eggs than the infested humans in I. We assume that from each

infested individual Ni and Nc eggs are released from those in I and C respectively. The laid eggs

develop into a combined pupa and larvae stage at a rate ρ and the eggs die naturally at a rate

νe. The larvae develop into adult fleas at a rate δ and die naturally at a rate νl . We assume

that a proportion ε of the larvae develop into adult female fleas. The development of the adult

fleas is modeled by a saturation function εδL
1+L where εδ is the maximum number of female adult

fleas that will eventually be involved in the transmission of jiggers to the susceptible population.

However the adult female fleas die naturally at a rate ν f . The diagram for the model describing

the dynamics of jiggers infestation is shown in Figure 1.

The model description, assumptions and Figure 1 result in the following system of non-linear

ordinary differential equations:
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TABLE 1. Symbols and descriptions of state variables considered in the model

Variables Description

S(t) Susceptible humans,

I(t) Infested humans,

C(t) Chronically infested humans,

R(t) Recovered humans,

F(t) Adult flea,

L(t) Pupa + larvae stage,

E(t) Eggs from adult fleas in humans

dS
dt

= Π+ωR−βFS−µS,

dI
dt

= βFS− (µ +α + γ1)I,

dC
dt

= αI− (µ + γ2)C,

dR
dt

= γ1I + γ2C− (µ +ω)R,

dE
dt

= Niτ1I +Ncτ2C− (νe +ρ)E,

dL
dt

= ρE−
(

νl +
εδ

1+L

)
L,

dF
dt

=
εδL
1+L

−ν f F.



(1)

The initial conditions of the system (1) are given by: S(0) = S0 > 0, I(0) = I0 ≥ 0, C(0) =C0 ≥

0, R(0) = R0 ≥ 0, E(0) = E0 ≥ 0, L(0) = L0 ≥ 0 and F(0) = F0 > 0.

2.1. Invariant region. Given that N represents the total human population so that N(t) =

S(t)+ I(t)+C(t)+R(t). On substituting the derivatives in model system (1) and simplifying,

we have

dN
dt
≤Π−µN.
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TABLE 2. Symbols and definitions of parameters used in the model

Parameter Description

Π Recruitment rate of susceptibles

β Rate at which the susceptible humans become infested with the flea

γ1 Rate at which infested humans recover after treatment

α Rate at which infested humans become chronically infested

µ Natural death rate for humans

δ Rate at which larvae develop into adult fleas

ε proportion of larvae that develop into adult female fleas

ν f Natural death rate of the adult female flea

νl Natural death rate of the larvae

νe Natural death rate of the eggs

ρ Rate at which the eggs develop into the combined pupa and larvae stage

τ1 Rate of egg production from infested humans by adult female fleas

τ2 Rate of egg production from chronially infested humans by adult female fleas

γ1 Rate at which chronically infested humans recover after treatment

ω Rate at which the recovered humans become susceptible to jigger infestation

Ni Number of eggs are released per adult flea from infested humans

Nc Number of eggs are released per adult flea from chronically infested humans

Using integrating factor, we obtain

N(t)≤ Π

µ
+

(
N0−

Π

µ

)
e−µt .

Thus as t approaches infinity the right hand side of the inequality becomes Π

µ
. Thus we conclude

that N(t)≤max
{

N(0), Π

µ

}
for all time t > 0.

From the flea cycle we consider the egg, larvae and flea populations separately. For the egg we

have

dE
dt
≤ Niτ1

Π

µ
+Ncτ2

Π

µ
− (νe +ρ)E ≤ Λ− (νe +ρ)E.
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FIGURE 1. The model diagram describing the dynamics of jigger infestaton

Through integration, we obtain

E(t) =
Λ

νe +ρ
+

(
E0−

Λ

νe +ρ

)
e−(νe+ρ).

As time t goes to infinity the right hand side of the equation approaches Λ

νe+ρ
where Λ =

Π

µ
(Niτ1 +Ncτ2).

We see that

E(t)≤max
(

E(0),
Λ

νe +ρ

)
for all time t > 0.

For the larvae we have
dL
dt
≤
(

Λ

νe +ρ

)
ρ−

(
νe +

εδ

1+L

)
L,

but since εδ

1+L < εδ the inequality reduces to

dL
dt
≤
(

Λ

νe +ρ

)
ρ− (νe + εδ )L.

We thus obtain

L(t)≤ ρΛ

νe + εδ
−
(

L0−
ρΛ

νe + εδ

)
e−(νe+εδ )t .
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As t tends to infinity we obtain L(t)≤ ρΛ

νe+εδ
. Thus

L(t)≤max
(

L(0),
ρΛ

νe + εδ

)
.

Finally, for the flea we have
dF
dt
≤ εδKL

1+KL
−ν f F.

Through integration we obtain

F(t)≤ Γ

ν f
+

(
F0−

Γ

ν f

)
e−ν f t

where Γ = εδKL
1+KL

and as t approaches infinity we get F ≤ Γ

ν f
. Since εδ

1+KL
< εδ , the inequality

reduces to F ≤ εδ

ν f
. Clearly we have

F(t)≤max
(

F(0),
εδ

ν f

)
We have, through the above derivations, shown the existence of a bounded positive invariant

region for our model system (1). We denote this region by Ω ∈ R7
+, where

Ω =
{
(S, I,C,R,E,L,F) ∈ R7

+ : N(t)≤max
(

N(0), Π

µ

)
,E(t)≤max

(
E(0), Λ

νe+ρ

)
,

L(t)≤max
(

L(0), ρΛ

νe+εδ

)
,F(t)≤max

(
F(0), εδ

ν f

)}
Moreover, any solution of our model system (1) which commences in Ω at any time t ≥ 0 will

always remain confined in that region. We therefore deduce that the region Ω is positively in-

variant and attracting with respect to the dynamics of jigger infestation model. Our dynamics of

jigger infestation model are therefore well posed mathematically and biologically meaningful.

MODEL ANALYSIS

2.2. Basic reproduction number. In the absence of any infestation, we have the jigger free

steady state (JFS) of the system (1), given by E 0 = (S0, I0,C0,R0,E0,L0,F0). At E 0, the state

variables I(t),C(t),R(t),E(t),L(t) and F(t) are equal to zero, hence we obtain, S0 =
Π

µ
. The

JFS point (E 0) for the system (1) is thus given by

E 0 =

(
Π

µ
,0,0,0,0,0,0

)
.

Following the description in [24], the reproduction number R0 is defined as the average number

of the secondary cases arising from an average primary jiggers infestation case in an entirely
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non-infested population.

Following [24], the transmission matrix F and the matrix of transitions V at E 0, are

F =



0 0 0 0 βΠ

µ

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


and V =



µ + γ1 +α 0 0 0 0

−α µ + γ2 0 0 0

−Niτ1 −Ncτ2 ρ +νe 0 0

0 0 −ρ δε +νl 0

0 0 0 −δε ν f


.

The basic reproduction number R0, is thus the spectral radius of FV −1, and is given by

(2) R0 = RI
0 +RCI

0

where

RCI
0 =

(
Π

µ

)(
β

µ + γ2

)(
α

µ + γ1 +α

)(
ρ

ρ +νe

)(
δε

δε +νl

)(
τ2Nc

ν f

)
and

RI
0 =

(
Π

µ

)(
β

µ + γ1 +α

)(
ρ

ρ +νe

)(
δε

δε +νl

)(
τ1Ni

ν f

)
.

From the basic reproduction number R0, it can be clearly seen that; 1
µ+γ2

is the duration of

stay in class C, 1
µ+γ1+α

is the duration of stay in class I, α

µ+γ1+α
is the fraction of individual

that move from compartment I to compartment C, ρ

ρ+νe
is the fraction of eggs that become

pupa/larvae, δε

δε+νl
is the fraction of larvae/pupa that become adult fleas and 1

ν f
is the survival

of the fleas.

From Theorem 2 in [24], we have the following result:

Theorem 2.1. The JFE of the system of equations (1) is locally asymptotically stable when

R0 < 1 and unstable otherwise.

2.3. The jigger persistent equilibrium. Solving the equations in (1) at steady states by equat-

ing the left hand side to zero we obtain the following equation in terms of L, after some tedious

algebraic manipulations:

(3) (A2L2 +A1L+A0)L = 0,
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Note that the case L = 0, corresponds to the jigger-free equilibrium treated earlier. Thus, the

existence and number of endemic equilibria is determined by the positive roots of the following

polynomial

(4) h(L) = A2L2 +A1L+A0 = 0.

We note that

A0


< 0 if R0 > 1,

> 0 if R0 < 1,

where A2,A1,A0 and K1 are worked out as shown below.

We let Q1 = µ +α + γ1, Q2 = µ + γ2, Q3 = µ +ω , Q4 = νe +ρ , Q5 = νl + εδ , τ3 = Niτ1 and

τ4 = Ncτ2, so that

(5)

C = ψ1I, R = ψ2I, E = ψ3I, I =
L(δε +νl +Lνl)

(1+L)ρψ3
,

F =
Lδε

(1+L)ν f
, S =

ν f (Lω (δε +(1+L)νl)ψ2 +(1+L)Πρψ3)

ρ
(
Lβδε +(1+L)µν f

)
ψ3

,


where ψ1 =

α

Q2
, ψ2 =

γ1+γ2ψ1
Q3

and ψ3 =
τ3+τ4ψ1

Q4
.

Substituting the variables in (5), into the second equation of system (1), we obtain

L[(δε +(1+L)νl)
(
Q1
(
Lβδε +(1+L)µν f

)
−Lβδεωψ2

)
− (1+L)βδεΠρψ3] = 0,

from which we obtain L = 0 corresponding to the jiggers free equilibrium and

h(L) = (δε +(1+L)νl)
(
Q1
(
Lβδε +(1+L)µν f

)
−Lβδεωψ2

)
− (1+L)βδεΠρψ3 = 0.

The roots of the polynomial h(L) = 0 give the endemic equilibrium which is in our case the

jigger persistent equilibrium

A2 = βδενlQ1

(
1− ωψ2

Q1

)
+µν f νlQ1 > 0,

A1 = µν f Q1Q5(1−R0)+µν f νlQ1 +βδεQ1Q5

(
1− ωψ2

Q1

)
,

= (K1−R0)

A0 = µν f Q1Q5(1−R0),



484 N. IMBUSI, W. MUTUKU, F. NYABADZA

where K1 = µν f Q1Q5 +µν f νlQ1 +βδεQ1Q5

(
1− ωψ2

Q1

)
> 0.

The quadratic equation in (4) can be analyzed to investigate the existence of multiple equilibria

when the reproduction number is less than unity. If the parameter, ν f , that accounts for more

jigger infestations in humans in model system (1) is excluded that is, ν f = 0, (4) reduces to a

linear equation

A
′
2L+A

′
1 = 0,

where A
′
2 = βδενlQ1

(
1− ωψ2

Q1

)
and A

′
1 = βδεQ1Q5

(
1− ωψ2

Q1

)
. So the model (1) will have

a unique solution L = −A
′
1

A′2
, which is non negative if and only if R0 > 1. Hence if ν f = 0

model system (1) has a unique endemic equilibrium whenever R0 > 1 and thus equilibrium

approaches zero as R0 tends to one (R0 → 1+)because A
′
1 → 0 and there will be no positive

endemic equilibria if R0 < 1.

For the case ν f 6= 0, if R0 = 1, then A0 = 0 and there is a unique nonzero solution of equation

(4), L =− (R0−K1)
A2

which is positive if and only (K1−R0)< 0 since A2 > 0. Depending on the

signs of A1 (K1−R0) and A0, we may have a unique positive root, two or no positive roots.

In fact h(L) is quadratic function that is concave up with h(0) > 0 if R0 < 1. If h(0) > 0 then

the function h(L) has at most two positive roots. Also, if h(0) < 0, then R0 > 1. In this case a

geometrical consideration of h(L) shows that h(L) has a unique positive root. We thus have the

following results on the existence of the equilibria of the system (1).

Theorem 2.2.

(i) A unique endemic equilibrium point exists if R0 > 1,

(ii) A positive endemic equilibrium point exists if (K1−R0)< 0 and

∆ = ((K1−R0))
2−4A2A0 = 0 or R0 = 1,

(iii) Two endemic equilibria exists if (K1−R0)< 0 and R0 < 1,

(iv) No endemic equilibrium exists otherwise.

The result in Theorem 2.2 (iii), suggests that the model system (1) exhibits backward bifurca-

tion for R0 < 1 and case (i) of Theorem 2.3 demonstrates that the model has a unique endemic
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equilibrium when R0 > 1. So, case (iii) shows the possibility of backward bifurcation in which

a locally asymptotically stable jiggers free equilibrium point coexists with a locally asymptoti-

cally stable endemic equilibrium point when R0 < 1. In this case an endemic equilibrium point

is reached instead of the jigger free equilibrium point even when the reproduction number is

less than unity depending on how many infestations occur in the population at some critical

value of R0, denoted by Rc
0. Here, Rc

0 is the positive root of ∆ = 0 when solved for R0.

It is important to note that Rc
0 is critical threshold because no endemic exists when R0 < Rc

0. To

successfully clear the jiggers infestation, the reproduction number should be brought below Rc
0.

The condition R0 < 1 is not sufficient for the elimination of jiggers infestation. The direction of

bifurcation R0 = 1 of the endemic equilibrium is proved by the direct use of the Center Manifold

Theory (CMT) as described in [5]. The theorem is stated as follows;

Theorem 2.3. Considering the following general system of ordinary differential equations with

parameter ϑ

dx
dt

= f (x,θ), f : Rn×R→ R, f ∈ C2(R2×R),(6)

where 0 is the equilibrium of the model system (1) such that f (0,θ) = 0 for all θ with the

assumption that;

Let fk be the kth component and

(7)

a =
n

∑
k,i j=1

vkwiw j
∂ 2 fk

∂xi∂x j
(0,0)

b =
n

∑
k,i=1

vkwi
∂ 2 fk

∂xi∂θ
(0,0)

Thus the local dynamics of (6) around 0 are totally governed by a and b.

(1) a > 0,b > 0. When θ < 0 with |θ | ≤ 1,0 is locally asymptotically stable, and there

exists a positive unstable equilibrium; when 0 < θ ≤ 1,0 is unstable and there exists a

negative and locally asymptotically stable equilibrium;

(2) a < 0,b < 0. When θ < 0 with |θ | ≤ 1,0 unstable; when 0 < θ ≤ 1,0 is locally asymp-

totically stable, and there exists a positive unstable equilibrium;



486 N. IMBUSI, W. MUTUKU, F. NYABADZA

(3) a > 0,b < 0. When θ < 0 with |θ | ≤ 1,0 is unstable and there exists a locally asymptot-

ically stable negative equilibrium; when 0 < θ ≤ 1,0 is stable, and a positive unstable

equilibrium appears;

(4) a < 0,b > 0. When θ changes from negative to positive, 0 changes its stability from

stable to unstable. Correspondingly a negative unstable equilibrium becomes positive

and locally asymptotically stable.

In order to apply the Center Manifold Theory (CMT), it is necessary to make the following

changes to the state variables, we let S = x1, I = x2,C = x3,R = x4,E = x5,L = x6,F = x7. The

system (1) can now be written in the form d f
dx = f (x), where x = (x1,x2,x3,x4,x5,x6,x7). The

system (1) therefore becomes

(8)

ẋ1 = Π+ωx4−βx7x1−µx1,

ẋ2 = βx7x1− (µ + γ1 +α)x2,

ẋ3 = αx2− (µ + γ2)x3,

ẋ4 = γ1x2 + γ2x3− (µ +ω)x4,

ẋ5 = Niτ1x2 +Ncτ2x3− (νe +ρ)x5,

ẋ6 = ρx5−
(

νl +
εδ

1+ x6

)
x6,

ẋ7 =
εδx6

1+ x6
−ν f x7.


The basic reproduction of the system (1) is established in a compact form to be

(9) R0 =
βΠ(αδρτ2εNc + γ2δN1ρτ1ε +δ µN1ρτ1ε)

µ (γ1 +µ)(γ2 +µ)ν f (νe +ρ)(δε +νl)
.

Suppose, we choose θ = β as the bifurcation parameter so that when R0 = 1, we have

(10) θ =
µ (γ1 +µ)(γ2 +µ)ν f (νe +ρ)(δε +νl)

Π(αδρτ2εNc + γ2δN1ρτ1ε +δ µN1ρτ1ε)

The system (8) with the bifurcation point θ , has a simple zero eigenvalue. Thus, it enables us to

use the Center Manifold Theory to analyse the stability of the system (8) near β = θ . Therefore
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a right eigenvector w associated with zero eigenvalue has components

(11)

w1 =−
(
(α +µ +ω + γ1)

µ +ω
+

αω

(µ +ω)(µ + γ2)

)
, w2 = 1, w3 =

α

µ + γ2
,

w4 =
(αγ2 + γ1 (µ + γ2))

(µ +ω)(µ + γ2)
,w5 =

(N1 (µ + γ2)τ1 +αNcτ2)

(µ + γ2)(ρ +νe)
,

w6 =
ρ (N1 (µ + γ2)τ1 +αNcτ2)

(µ + γ2)(ρ +νe)(δε +νl)
, w7 =

δερ (N1 (µ + γ2)τ1 +αNcτ2)

(µ + γ2)(ρ +νe)ν f (δε +νl)
.

Similarly, the corresponding left eigenvector v associated with zero eigenvalue has components

(12)

v1 = v4 = 0, v2 = 1, v3 =
Nc (α +µ + γ1)τ2

µN1τ1 +N1γ2τ1 +αNcτ2
,

v5 =
(α +µ + γ1)(µ + γ2)

µN1τ1 +N1γ2τ1 +αNcτ2
, v6 =

(α +µ + γ1)(µ + γ2)(ρ +νe)

ρ (µN1τ1 +N1γ2τ1 +αNcτ2)
,

v7 =
(α +µ + γ1)(µ + γ2)(ρ +νe)(δε +νl)

δερ (µN1τ1 +N1γ2τ1 +αNcτ2)
.

We now compute a and b as outlined in [5]. From the system (8), the non-zero partial derivatives

of f (x) associated with a are given by

(13)
∂ f2

∂x1∂x7
= θ .

Thus, the expression for a is given by

(14)
a = v2w1w7

∂ f2

∂x1∂x7
,

= −
(
(µ +ω)(µ + γ2)+ γ1(µ + γ2)+αω

(µ + γ2)(µ +ω)

δε

ν f

)
w6 < 0.

We finally compute the value of b. The non-zero partial derivatives of f (x) associated with b is

given by

(15)
∂ f2

∂x7∂θ
=

Π

µ
.

Therefore the expression for b is given by

(16) b = v2w7
∂ f2

∂x7∂θ
=

Π

µ

δε

ν f
w6 > 0.

Since, a < 0 and b > 0, from item 4 in [5] we conclude that E1 is locally asymptotically stable

for R0 > 1 close to R0 = 1.

The bifurcation diagrams using a selected set of parameters are given in Figure 2 and Figure



488 N. IMBUSI, W. MUTUKU, F. NYABADZA

3. We note that from the bifurcation diagrams that certain parameters have an influence on the
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FIGURE 2. Variation of the equilibrium level of L showing the backward bifur-

cation of the system (1). The following parameters were used β = 0.656,γ1 =

0.4146,γ2 = 0.0956,τ1 = 0.021,τ1 = 0.087,Nc = 0.087,Ni = 0.000001,δ =

0.025,ε = 0.025,Π = 0.0365,ν f = 0.0015,νl = 0.0016,νe = 0.043,ω =

0.15,µ = 0.000012,ρ = 0.0055,α = 0.3408

bifurcation and they bring about a forward bifurcation when their values are increased. These

include ν f , in which when its value is increased from 0.0015 to 0.002107 and νe in which when

its value is increased from 0.043 to 0.093 they bring about a forward bifurcation as shown in

the Figure 3. A similar effect is obtained when the mortality of the larvae is increased. This

means that jiggers controls can be enhanced by increasing the removal of the eggs, larvae and

fleas from the environment. While flea removal is not economically viable, the control of larvae

through larvacides and improvement of hygiene has proved to be effective in the control of

jiggers.

3. MAIN RESULTS

NUMERICAL SIMULATIONS

3.1. Parameter estimation. Since not so much has been done mathematically to model jig-

gers infestation, parameters that relate to transmission and progression rates are difficlut to find.
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FIGURE 3. Variation of the equilibrium level of L showing the forward bifurca-

tion of the system (1). The following parameters considered were same as the

ones used in Figure 2 except for ν f = 0.002107 and νe = 0.093

In this section, we assumed majority of the parameters using information collected on the pop-

ulations in Kenya. Some have been acquired from the literature mostly from [1] and also with

reference to the population infested with jiggers in Murang’a County in Kenya. Some of the

demographic parameters used in our model simulation are described as follows:

• The demographic data released by the Central Intelligence Agency [31], estimated life

expectancy at birth to be 63.52 years in 2014 and 63.4 years in 2015. This can then be

estimated from 50 to 70 years. Thus the natural death rate of humans is estimated as

0.0000291≤ µ ≤ 0.0000548 per day.

• According to the World Fact Book by Central Intelligence Agency [31], the average

birth rate in Kenya was estimated to be 28.27 births per 1000 population in the year

2014 and 26.4 per 1000 population in 2015. Therefore the birthrate is estimated to be

2.85≤Π≤ 7.95 per day.

• From Ahadi Kenya Trust [1], it takes 3− 4 days for the eggs to hatch on the ground.

Therefore we approximate the rate at which the eggs develop into larvae to be, 0.001≤

ρ ≤ 0.03 per day. After the eggs have hatched onto the ground, it takes 3−4 weeks for

them to go through the larvae and pupa stage to become adults. Thus the rate at which

the larvae develops into a pupa can also be estimated as 0.03333≤ δ ≤ 0.5 per day.
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• A proportion p of the infested persons become chronically infested. We thus consider

0≤ p≤ 1.

• The natural death rates of the vector, that is, νe,νland ν f can be approximated from

the life cycle of the flea given by Ahadi Kenya Trust [1] as follows; 0.003 ≤ νe ≤

0.02,0.038≤ νl ≤ 0.081and 0.000006≤ ν f ≤ 0.1 per day.

The parameter values used in our simulation are given in the Table 3 below for illustrative

purposes.

TABLE 3. Parameter values estimates used in the model for jigger infestation

and their sources.

Parameter Range Point value Source

Π 2.85−7.95 5.36 [31]

µ 2.91e−5−5.48e−5 5.4e−5 [31]

γ1 4.85e−2−6.37e−2 5.03e−2 Estimated

γ2 0.548−0.913 0.731 Estimated

β 0.0-0.0001 8.5e−6 Estimated

τ1 0.0001-0.002 0.001 Estimated

τ2 1.0e−3−3.0e−3 1.8e−3 Estimated

Nc 50–150 100 Estimated

Ni 60–120 90 Estimated

δ 0.001-0.03 0.016665 [1]

ε 0.01-0.4 0.2 [1]

ν f 0.000006-0.1 0.09 [1]

νl 0.038-0.081 0.049525 [1]

νe 0.003-0.02 0.005 [1]

ω 0.11-0.89 0.555 Estimated

ρ 0.001-0.03 0.0126665 [1]

α 0-1 0.2 Estimated
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3.2. Sensitivity analysis. In this section we carry out sensitivity analysis of the parameters

to the model output in order to determine the important parameters that can be targeted so as

to control the jigger infestation. Sensitivity analysis is defined as the study of how uncertainty

in the output of a system can be a portioned to different sources of uncertainty in the model

parameters [2]. It is a technique for systematically varying model inputs and determining their

effect on the model output. We perform the sensitivity analysis by computing the Partial Rank

Correlation Coefficients (PRCC) with 1000 simulations per run for each of the parameter val-

ues sampled by the Latin Hypercube Sampling (LHS) scheme which belongs to the Monte

Carlo class of sampling methods [28]. The LHS is defined as a statistical method for generat-

ing a sample of possible collections of parameter values from a multidimensional distribution

[2]. Parameters with positive PRCCs will increase the model output variable when they are

increased thus the number of the new infestations may increase if the model output variable is

that of infested humans. The parameters with negative PRCCs values decrease the model output

variable when they are increased.

Applying the approach in [15], the PRCCs between the reproduction number R0 and each of

the parameters in table 2 are derived. Using 1000 simulations per run of the Latin Hypercube

Sampling (LHS) scheme [21], the established PRCCs are derived and represented in the Tor-

nado plot, Figure 4.

The model parameter with highest influence on R0 according to the PRCCs results shown in

Figure 4 is β followed with δ ,Ni,τ1,ε,Π,γ2and ρ respectively, which are positively correlated.

This parameters increase(decrease) R0 when they are increased(decreased).

The parameters µ,ν f ,and νe have the highest negative influence on jigger infestation. They are

negatively correlated.

Thus based on the result of sensitivity analysis we remark that, the parameters with most influ-

ence on R0 are the rate at which the susceptible become infested (β ), natural death rate of the

eggs (νe) and the natural death rate of the flea (ν f ). R0 increases with increase in β whereas

it decreases with increase in νe and ν f . This shows that increasing the death rate of the flea
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FIGURE 4. Tornado plots of Partial Rank Correlation Coefficients (PRCCs) plot

showing the effects of parameters on R using the parameter ranges given in Table

3.

and eggs is likely to eradicate jigger infestation. Also decreasing the rate at which susceptible

become infested would eradicate the jigger menace.

3.3. Simulation results.

Parameter variation effects. We now present some simulation results driven by observing

the time series plots of chosen state variables for different parameters of interest. We begin

by considering the potential impact of increasing the mortality of adult fleas on the number of

chronically infested individuals. This is synonymous to considering an intervention aimed at

increasing the mortality of adult fleas. The simulation results in Figure 5 show that increasing

the death rate of the adult flea, ν f , results in the reduction of the model reproduction number

R0, and consequently a reduction in the number of individuals chronically infested..
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FIGURE 5. Simulation results showing the total number of chronically infested

humans with the control associated with the parameter value ν f with the rest of

parameters given in Table 3.

We also consider how increasing ν f , impacts the infested humans. The results show a similar

trend to the ones observed in Fig. 5. Thus the reduction in ν f increases the number of in-

fested humans, see Figure 6. Overall, increasing adult fleas’ mortality is crucial for the control

of infestation. If time series data on the number of infested cases (including the chronically

infested) was available, this investigation would be critical in determining the levels of inter-

ventions aimed at reducing the adult fleas. The release of eggs into the environment buy the

female fleas burrowed in the host skin is critical for disease propagation. Determining the po-

tential impact of increased eggs’ release is thus important. From Figure 7, the variation of the

parameter τ3 = N1τ1, shows that decreasing the value of τ3 results in a reduction in the value

of the reproduction number R0, consequently leading to a reduction in the number of infested

humans.
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FIGURE 6. Simulation results showing the total number of infected humans with

the control associated with the parameter value ν f with the rest of parameters

given in Table 3.
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FIGURE 7. Simulation results showing the total number of eggs with the control

associated with the parameter value τ3 with the rest of parameters given in Table

3.

Similarly from Figure 8 the variation of the parameter τ4 = N2τ2 leads to the results observed in

Figure 7 but for the chronically infested humans. So, the reduction in the number of eggs laid
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in the environment is critical for the control of jiggers. The control in the deposition of eggs is

synonymous to providing hygiene that ensures, the non-survival of the laid eggs.
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FIGURE 8. Simulation results showing the total number of eggs with the control

associated with the parameter value τ4 with the rest of parameters given in Table

3.

The deposited eggs often develop into adult fleas that eventually infect human, through the

cycle of the flea. We also investigated how the potential growth of the adult fleas is related

to the deposition of eggs into the environment. We consider eggs deposited by the infested

humans and similar trends are observed when eggs deposited by chronically infested humans

are considered. From Figure 9, the variation of τ3, show the levels of increase of the adult flea

as τ3 is increased.
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FIGURE 9. Simulation results showing the total number of fleas with the control

associated with the parameter value τ3 with the rest of parameters given in Table

3.

Figure 10 (a) shows the level curves of R0 with respect to the parameter values β and δ . We

find that R0 increases when both parameters increase, that is, the rate at which larvae develop

into adult flea δ and the infestation rate β . Consequently, jiggers control is achieved by the

simultaneous control of infestation and killing of larvae. So, any intervention targeting the two

parameters, is likely to yield significant results in jiggers control. Figure 10 (b) shows the level

of curves of R0 with respect to the parameter values β and ν f . We find that R0 is significantly

impacted the parameter better when compared to ν f . This important since the killing of the flea

is in itself a complicated intervention when compared to controlling the infestation rate. So

focus should be on the reduction of the infestation rate in this case.
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FIGURE 10. shows the contour plots of the reproduction number R0 with re-

spect to the given parameters.

CONCLUSION

In this paper, we formulated a deterministic model for the dynamics of jigger infestation. We

proved that the formulated model is biologically and mathematically well posed in an invariant

region Ω. The basic reproduction number was determined using the next generation method.

The steady states of the model were determined and the stability analysis carried out.

The analytical results indicated that R0 is indeed the threshold when the parameter ν f = 0.

However when the natural death rate of the flea is increased, that is ν f > 0, the dynamics of

jigger infestation model exhibits a phenomenon called backward bifurcation where a jigger free

equilibrium and two non-trivial equilibria coexists even though the basic reproduction number

is below unity. The appearance of backward bifurcation shows that it is not sufficient to de-

crease the basic reproduction number below unity for eradication of jigger infestation within

the community. Thus to effectively control the jigger infestation menace, one has to reduce R0

below another threshold known as the critical value of the basic reproduction number Rc
0. That

is jigger infestation can be eradicated if R0 < Rc
0 < 1. In general both analytical and numerical

results suggest that the natural death rate of the flea ν f , is the one responsible for backward

bifurcation.
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From the numerical results and sensitivity analysis, jigger infestation can be eradicated by re-

ducing the contact rate between humans and the fleas, β and increasing the removal of the fleas,

ν f . Thus, the numerical results show clearly where the strategies can be deployed to reduce

disease propagation and at what stage this could be done. From the parameter variation results,

clearly if the natural death rate of the adult flea ν f is increased, the rate of infestations reduces

which eventually reduces the jigger menace. Similarly if we reduce the rate at which infested

humans produce eggs τ1 and τ2, the number of adult fleas will reduce, thus consequently reduc-

ing the rate of infestation.

It is also important to note that the infestations affect children and adults, so the work can be

improved by using an age-structured model. Also, in the absence of data, verification of the

model and determination of parameter values remains a theoretical consideration. A model that

is fitted to data for a particular setting would be ideal, considering the fact that models need to

be verified by data and their applications cements their usability. Control strategies, evaluated

through mathematical models could also be incorporated in such a model, see also the work

in [13]. It is also important to look at the intensity of infections, by looking at the number of

fleas per individual as the recovery and treatment levels often depend on such. This is however

set in our current research endeavors. Despite these shortcomings, the model presents some

interesting insights, that are useful in determining the dynamics of the infestation.

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

[1] Ahadi Kenya Trust, Available at http://www.jigger-ahadi.org, Accessed August 2016.

[2] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, Gatelli D, Saisana M, Tarantola S, Introduction

to Sensitivity Analysis, in Global Sensitivity Analysis, The Primer, John Wiley & Sons, Ltd, Chichester, UK,

(2007), 1–5.

[3] B. Kimani, J. Nyagero, L. Ikamari, Knowledge, attitude and practices on jigger infestation among household

members aged 18 to 60 years: case study of a rural location in Kenya, Pan Afr. Med. J. 13(S.1) (2012), 7.

[4] B. Szymanski, T. Caraco, Spatial analysis of vector-borne disease: a four- species model, Evol. Ecol. 8(3)

(1994), 299–314.

http://www.jigger-ahadi.org


MODELLING JIGGERS 499

[5] C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng.

1(2) (2004), 361–404.

[6] D. Pilger, S. Schnalfenberg, Heukelberg et al, Controlling tungiasis in an improverished community: an

intervension study, PLOS Negl. Trop. Dis. 2 (10) (2008), e324.

[7] E. O. Omondi, F. Nyabadza, R. J. Smith, Modeling the impact of mass administration of ivemectin in the

treatment of ochoerciasis(river blindness) Cogent Math. Stat. 5 (2018), 1429700.

[8] G. Collins, T. Mcleod, N. I. Konfor, C. B. Lamnyam, L. Ngarka, N. L. Ngamnishi, Tungiasis: A neglected

health problem in rural Cameroon, Int. J. Coll. Res. Int. Med. Public Health, 1(1)(2009), 2–10.

[9] H. Feldmeier, E. Sentogo, I. Krantz, Tungiasis (sand flea disease): a parasitic disease with intruiging chal-

lenges for a transformed public health, Eur. J. Clin. Microbiol. Infect. 32(2012), 19–26.

[10] J. Heukelbach, F. A. S. De Oliveira, G. Hesse, H. Feldmeier, Tungiasis: A neglected health problem of poor

communities, Trop. Med. Int. Health, 6 (2001), 267–272.

[11] J. Heukelbach, T. Wilcke, G. Hesse, H. Feldmeier, Seasonal variation of tungiasis in an endemic community,

Amer. J. Trop. Med. Hygiene, 72(2005), 145–149.

[12] J. Kahuru, L. Luboobi, N. Yaw, Modeling the dynamics of tungiasis transmission in zoonotic areas, J. Math.

Comput. Sci., 2 (2017), 375-399.

[13] J. Kahuru, L. Luboobi, N. Yaw, Stability analysis of dynamics of tungiasis transmission in endemic areas,

Asian J. Math. App. 2017(2017), ama 0385.

[14] J. N. Mwangi, H. S. Ozwarw, M. M. Gicheru, Epidemiology of Tunga Penetrans infestation in selected areas

in Kiharu consituency, Murang’a county, Tropical Diseases, Travel Med. Vacc. 1(1) (2015), 13.

[15] J. Wu, R. Dihingra, M. Gambhir, J. V. Remais, Sensitivity analysis of infectious disease models: methods,

advanced and their application, J. Royal Soc. Interface, 10 (2013), no. 86, article 1018.

[16] K. Jawoko, Jiggers outbreak in Uganda, Canad. Med. Assoc. J. 183(1)(2011), E33–E34.

[17] K. Joseph, J. Bazile, J. Mutter, S. Shin, A. Ruddle, L. Ivers, E. Lion, P. Fauner, Tungiasis in rural Haiti: a

community-based response, Trans. Royal Soc. Trop. Med. Hygiene, 100 (10) (2006), 970–974.

[18] M. Basanez, J. Ricardez-Esquinca, Models for the population biology and control of human onchocerciasis,

Trends Parasitol, 17(9) (2001), 430–438.

[19] M. Martcheva, O. Prosper, Unstable dynamics of vector-borne diseases: Modeling through differential-delay

equations, in Rao VSH, Durvasula R (eds.), Dynamic Models of Infectious Diseases, Volume 1: Vector-Borne

Diseases, Springer, (2012), pp. 43–75.

[20] M. M. Sache, K. K. Guldbakke, A. Khachemoune, Tunga penetrans: a stowaway from around the world., J.

Eur. Acade. Dermatol. Venereol. 21(1)(2007), 11–16.

[21] M. Stein, Large sample properties of simulations using Latin hypercube sampling, Technometrics. A J. Stat.

Phys. Chem. Eng. Sci. 29 (1987), no. 2, 143–151.



500 N. IMBUSI, W. MUTUKU, F. NYABADZA

[22] M. Thielecke, P. Nordin, N. Ngomi, H. Feldmeier, Treatment of tungiasis with dimeticone: a proof of princi-

ple study in rural Kenya, PLoS Negl. Trop. Dis. 8 (7)(2014), e3058.

[23] N. H. Shah, J. Gupta, SEIR Model and simulation for vector-borne diseases, Appl. Math. 4 (2013), 13-17.

[24] O. Diekmann, J. P. A. Heesterbeek, Mathematical epidemiology of infectious diseases: model building, anal-

ysis and interpretation, John Wiley, (2000).

[25] O. R. Damazio, M. V.Silvia, Tungiasis in school children in Cuciuma, Santa Caratina State, South Brazil,

Rev. Inst. Med. Trop. 51(2) (2009), 103–108.

[26] R. K. Mucheke, P. M. Maithya, The effects of Tunga Penetrans infestation on academic achievement in public

primary schools: Kenyan perspective, Cradle Knowl. Afr. J. Educ. Soc. Sc. Res. 2(1) (2014), 109–120.

[27] S. K. Ruttoh, D. O. Omondi, Wanyama NI, Tunga penetrans- A silent setback to development in Kenya, J.

Environ. Sci. Eng. B, 1(2012), 527–534.

[28] S. M. Blower, H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmis-

sion: an HIV model, as an example, Int. Stat. Rev. 62(2)(1994), 229-243.

[29] S. S. Gibbs, The diagnosis and treatment of tungiasis, Br. J. Dermatol. 159(4) (2008), 981.

[30] T. E. Cestari, S. Pessato, M. Ramos-e-Silva, Tungiasis and myiasis, Clin. Dermatol. 25(2)(2007), 158–1164.

[31] The world fact book, Available at https://www.cia.gov/library/publications/

the-world-factbook/fields/2054.html, Accessed August 2016.

[32] T. M. Kamau, R. N. Ngechu, Z. T. Haile, J. Mwitari, An exploration of factors associated with jigger infes-

tation (tungiasis) among residents of Murang’a North District, kenya, Int. J. Health Sci. Res. 4 (3)(2014),

1–8.

[33] U. S. Ugbomoiko, I. E. Ofoezie, J. Heukelbach, Tungiasis: High privalence, parasite load and morbility in a

rural community in Lagos state, Nigeria Int. Dermatol. 46(5)(2007), 475–481.

https://www.cia.gov/library/publications/the-world-factbook/fields/2054.html
https://www.cia.gov/library/publications/the-world-factbook/fields/2054.html

	1.  Introduction 
	2. Preliminaries
	Model formulation
	2.1. Invariant region

	Model analysis
	2.2. Basic reproduction number 
	2.3. The jigger persistent equilibrium

	3.  Main results 
	Numerical simulations
	3.1. Parameter estimation
	3.2. Sensitivity analysis
	3.3. Simulation results
	Parameter variation effects

	Conclusion
	References

