THE MONOCHROMATIC CONNECTIVITY OF 3-CHROMATIC GRAPHS

YIRONG YANG1,*, HUAPING WANG2

1Department of Mathematics, Zhejiang Normal University, Jinhua 321004, P.R. China
2Department of Mathematics, Jiangxi Normal University, Nanchang 330022, P.R. China

Copyright \textcopyright{} 2019 the authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, we solve completely the monochromatic connectivity of 3-chromatic graphs.

Keywords: monochromatic connection number; MC-coloring; 3-chromatic graphs.

2010 AMS Subject Classification: 05C15, 05C40.

1. INTRODUCTION

An edge-coloring of a connected graph is a \textit{monochromatically connecting} coloring (MC-coloring, for short) if there is a monochromatic path joining any two vertices. The \textit{monochromatic connection number} of a graph G, denoted by $mc(G)$, is defined to be the maximum number of colors used in an MC-coloring of a graph G. As proved in \cite{3}, an important property of an extremal MC-coloring (a coloring that use $mc(G)$ colors) is that each color forms a tree.

For a color c, let T_c be the tree whose edges colored c. The color c is nontrivial if T_c has at least two edges. Otherwise c is trivial. A nontrivial color tree with m edges is said waste $m-1$ colors. For any two nontrivial colors b and c, the corresponding trees T_b and T_c intersect in at most one vertex \cite{3}. Such an extremal coloring is called simple. Every connected graph has

*Corresponding author

E-mail address: 15558699651@163.com

Received May 14, 2019
a simple extremal MC-coloring[3]. These concepts were introduced by Caro and Yuster in [3] and they gave some upper and lower bounds for $mc(G)$ characterized by other graph parameters. A straightforward lower bounds for $mc(G)$ is $m - n + 2$ (throughout this paper, n and m denote the number of vertices and edges respectively), which can be verified by coloring the edges of a spanning tree with one color, and coloring the remaining edges by new distinct colors.

Now we present some definitions and notations necessary. For a graph G, we use $V(G)$, $E(G)$, $|V(G)|$, $|E(G)|$ to denote the vertex set, edge set, number of vertices, number of edges of G, respectively. Given a graph G and $D \subseteq V(G)$, let $|D|$ be the number of vertices in D and $G[D]$ be the subgraph of G induced by D. If $\chi(G) = k$, then G is k-chromatic.

2. Preliminaries

Let $V_i, i = 1, 2, 3$, be the vertex parts of the graph K_{n_1,n_2,n_3}. Let $E_{i,j}$ be the set of edges between V_i and V_j, $i, j \in \{1, 2, 3\}, i \neq j$. Let E_0 be a subset of $E(K_{n_1,n_2,n_3})$.

Lemma 2.1. [3] If G is K_3-free, then $mc(G) = m - n + 2$.

Lemma 2.2. [3] Any graph G satisfies $mc(G) \leq m - n + \chi(G)$.

The join of two disjoint graphs G and H, denoted by $G + H$, is defined to be the graph $\overline{G + H}$.

Lemma 2.3. [4] Let G be the join of two disconnected graphs G_1 and G_2. Then $mc(G) = |E(G)| - |V(G)| + 2$.

Moreover we have the following properties of the simple extremal MC-coloring.

Lemma 2.4. If G is a connected spanning subgraph of some graph H, then $mc(G) \leq mc(H) - (|E(H)| - |E(G)|)$.

Proof. It is clear that G has a simple extremal MC-coloring. Let f be an MC-coloring of G realizing $mc(G)$. Let the remaining $|E(H)| - |E(G)|$ edges of H receive trivial colors. Then we get an MC-coloring, denoted by f' of H. Clearly, f' is simple and it use $mc(G) + (|E(H)| - |E(G)|)$ colors. Then $mc(H) \geq mc(G) + (|E(H)| - |E(G)|)$, i.e., $mc(G) \leq mc(H) - (|E(H)| - |E(G)|)$, and we are done. The proof is completed.

Lemma 2.5. If G is a connected spanning subgraph of some graph H and let $mc(G) = m(G) - n(G) + k_1$, $mc(H) = m(H) - n(H) + k_2$, then $k_1 \leq k_2$.
Proof. By Lemma 2.4, it implies that \(mc(G) \leq mc(H) - (|E(H)| - |E(G)|) \). Since \(G \) is a spanning subgraph of graph \(H, n(G) = n(H) \). And we have \(m(G) - n(G) + k_1 \leq m(H) - n(H) + k_2 - (|E(H)| - |E(G)|) \), i.e., \(m(G) - n(G) + k_1 \leq m(G) - n(G) + k_2 \). Hence we get that \(k_1 \leq k_2 \), and we are done. The proof is completed.

3. **Main results**

Lemma 3.1. Let \(V_i, i = 1, 2, 3 \) be the vertex parts of the graph \(K_{n_1,n_2,n_3} \). Let \(G = K_{n_1,n_2,n_3} - \{uv,xy\}, u \in V_1, v,x \in V_2, y \in V_3 \). Then \(mc(G) = m - n + 2 \)

Proof. The lower bound \(mc(G) \geq m - n + 2 \) is obvious and we only need to show \(mc(G) \leq m - n + 2 \).

Let \(f \) be a simple extremal MC-coloring of \(G \). Suppose that \(f \) consists of \(k \) nontrivial color trees, denoted by \(T_1, \ldots, T_k \), where \(t_i = |V(T_i)| \). As \(T_i \) has \(t_i - 1 \) edges, it wastes \(t_i - 2 \) colors. Hence it suffices to prove that \(\sum_{i=1}^{k} (t_i - 2) \geq n - 2 \).

Case 1. Every vertex appears in at least two distinct nontrivial color trees.

In this case we have \(\sum_{i=1}^{k} t_i \geq 2n \). So if \(k \leq n/2 + 1 \), we have \(\sum_{i=1}^{k} (t_i - 2) \geq 2n - 2k \geq n - 2 \), and we are done. So let \(k > n/2 + 1 \). Now we claim that we still have \(\sum_{i=1}^{k} (t_i - 2) \geq n - 2 \) when \(k > n/2 + 1 \). Since \(T_i \) can monochromatically connect at most \(\binom{n_i - 1}{2} \) pairs of non-neighbors in \(G \), we have \(\sum_{i=1}^{k} \binom{n_i - 1}{2} \geq |E(G)| = \sum_{i=1}^{3} \binom{n_i}{2} + 2 \).

Assume that \(\sum_{i=1}^{k} (t_i - 2) < n - 2 \). Since \(T_j \) is nontrivial, \(t_j - 1 \geq 2 \). By the straightforward convexity, the expression \(\sum_{i=1}^{k} \binom{n_i - 1}{2} \), subject to \(t_i - 1 \geq 2 \), is maximized when \(k - 1 \) of the \(n_i \)'s equal 3 and one of the \(n_i \)'s, say \(k \), is as large as it can be, namely \(t_k - 1 \) is the largest integer smaller than \(n - 2 + k - 2(k - 1) = n - k \). Hence, \(t_k - 1 = n - k - 1 \). We have \(\sum_{i=1}^{k} \binom{n_i - 1}{2} \leq k - 1 + \binom{n - k - 1}{2} \).

Note that \(g(k) = k - 1 + \binom{n - k - 1}{2} \) is a decreasing function of \(k \) for \(n/2 + 1 < k \leq n - 3 \) and then \(g(k) < g(n/2 + 1) \). Note that \(\sum_{i=1}^{3} \binom{n_i}{2} + 2 - g(n/2 + 1) > 0 \). This implies that \(g(k) < g(n/2 + 1) < |E(G)| \), i.e., \(\sum_{i=1}^{k} \binom{n_i - 1}{2} < |E(G)| = \sum_{i=1}^{3} \binom{n_i}{2} + 2 \), a contradiction. Hence \(\sum_{i=1}^{k} (t_i - 2) \geq n - 2 \) and we are done.

Case 2. There are vertices that appear in unique nontrivial color trees.
Denote by S the vertices that appear in the unique nontrivial color trees. Note that u,v or x,y are monochromatically connected by a nontrivial color tree. So let T_u,T_x monochromatically connect u,v and x,y, respectively.

Subcase 2.1 \(S \cap V_1, S \cap V_2, S \cap V_3 \neq \emptyset \).

Notice that vertices of the same part are not adjacent in G and any two of each part are monochromatically connected in a nontrivial color tree. So all the vertices of the same part must lie in a nontrivial color tree. So we can assume that $V_i \subseteq T_i, i = 1, 2, 3$, and we have that $V_i \cap V(T_i) \cap S \neq \emptyset$.

Sub-subcase 2.1.1 $T_1 \neq T_2 \neq T_3 \neq T_1$.

Suppose that $T_u, T_x \notin \{T_1, T_2, T_3\}$. Since $V_i \subseteq V(T_i)$, we have that $t_i \geq n_i + 1$, i.e., $t_i - 2 \geq n_i - 1$, $i = 1, 2, 3$. That is to say that T_i waste at least $n_i - 1$ edges, $i = 1, 2, 3$. Also, both T_u and T_x waste at least one edge. So the total waste of the coloring f is at least $n - 2$ and we are done.

Suppose that $T_u \in \{T_1, T_2, T_3\}$ or $T_x \in \{T_1, T_2, T_3\}$. Without loss of generality, let $T_u = T_1$. Since $uv \notin E(G)$ and vertices of V_1 are not adjacent, then T_1 contains at least another vertex besides v and vertices of V_1. It implies that $t_1 \geq n_1 + 2$, i.e., $t_1 - 2 \geq n_1$. Similarly, $V_i \subseteq V(T_i), i = 2, 3$, and we have that $t_i \geq n_i + 1$, i.e., $t_i - 2 \geq n_i - 1$ for $i = 2, 3$. So the total waste of T_1, T_2, T_3 is at least $n - 2$ and we are done.

Sub-subcase 2.1.2 There are two trees in $\{T_1, T_2, T_3\}$ which are same.

Let $T_1 = T_2 \neq T_3$, now we have $V_1 \cup V_2 \subseteq V(T_1)$. Suppose that $y \in V(T_1)$. Then the waste of T_1 is at least $n_1 + n_2 - 1$. Clearly, $t_3 \geq n_3 + 1$, i.e., $t_3 - 2 \geq n_3 - 1$. Hence the total waste of the coloring f is at least $n - 2$ and we are done. Suppose that $y \in V_3 - V(T_1)$. Then the waste of T_1 is at least $n_1 + n_2 - 2$ and $T_x \neq T_1$. This implies that $T_x = T_3$. Then $t_3 \geq n_3 + 2$, i.e., $t_x - 2 \geq n_3$. Hence the total waste of the coloring f is at least $n - 2$ and we are done. By the symmetry, if $T_2 = T_3 \neq T_1$, then the total waste of the coloring f is at least $n - 2$ and we are done.

Let $T_1 = T_3 \neq T_2$, now we have $V_1 \cup V_3 \subseteq V(T_1)$. Suppose that $v \notin V(T_1)$ or $x \notin V(T_1)$. Without loss of generality, let $v \notin V(T_1)$, then $T_u = T_2$. It implies that $t_2 \geq n_2 + 2$, i.e., $t_2 - 2 \geq n_2$. Clearly, $t_1 \geq n_1 + n_3$, i.e., $t_1 - 2 \geq n_1 + n_3 - 2$. Hence the total waste of the coloring f is at least $n - 2$ and we are done. Suppose that $v,x \in V(T_1)$. Since f is simple and $x,y \in V(T_2)$, we have that
v = x. Then \(t_1 \geq n_1 + n_3 + 1 \), i.e., \(t_1 - 2 \geq n_1 + n_3 - 1 \). Clearly, \(t_2 \geq n_2 + 1 \), i.e., \(t_2 - 2 \geq n_2 - 1 \). Hence the total waste of the coloring \(f \) is at least \(n - 2 \) and we are done.

Sub-subcase 2.1.3 \(T_1 = T_2 = T_3 \).

Since \(S \cap V_1 \cap V_2 \cap V_3 \neq \emptyset \), the tree \(T_1 \) is a spanning tree of \(G \). So the waste of \(T_1 \) is \(n - 2 \) and so we are done.

Subcase 2.2 The set \(S \) is exactly joint with two partite sets of \(G \).

Here we only present the proof details of the case \(S \cap V_1 \neq \emptyset, S \cap V_2 \neq \emptyset \). The other two cases can be proved similarly. Clearly, we can assume that \(V_i \subseteq V(T_i), i = 1, 2 \).

Assume that \(T_1 = T_2 \). Then we have that \(V_1 \cup V_2 \subseteq V(T_1) \). Suppose that \(y \in V(T_1) \). Since \(T_1 \) is not a spanning tree of \(G \), there is a vertex \(v_3 \in V_3 - V(T_1) \). Clearly, \(v_3y \notin E(G) \). Let \(T_{v_3} \) be the nontrivial color tree monochromatically connecting \(v_3, y \). Since \(V_3 \) is an independent set in \(G \), we have that \(|V(T_{v_3}) \cap (V_1 \cup V_2)| \geq 1 \). This implies that \(|V(T_{v_3}) \cap V(T_1)| \geq 2 \), a contradiction. Suppose that \(y \notin V(T_1) \). Since \(xy \notin E(G) \) and \(V_3 \) is an independent set in \(G \), this means that \(|V(T_3) \cap (V_1 \cup V_2)| \geq 2 \), i.e., \(|V(T_3) \cap V(T_1)| \geq 2 \), a contradiction. So \(T_1 \neq T_2 \). Now we claim that \(\sum_{i=1}^{k} (t_i - 2) \geq n - 2 \). Since we have that \(S \cap V_3 = \emptyset \), each vertex of \(V_3 \) appears in at least two nontrivial color trees. In order to monochromatically connect the \((|V_3|^2) \) distinct pairs of vertices of \(V_3 \), we need a set of nontrivial color trees, say \(T_s, \ldots, T_q \), and each \(T_i, i = s, \ldots, q \) contains at least two vertices of \(V_3 \).

Suppose that \(|V(T_1) \cap V_3| \geq 2 \) and \(|V(T_2) \cap V_3| \geq 2 \), and let \(w_1, w_2 \in V(T_1) \cap V_3, z_1, z_2 \in V(T_2) \cap V_3 \). Notice that \(|V(T_1) \cap V(T_2)| \leq 1 \). Let \(w_1 \in V(T_1) \cap V_3 - V(T_2) \) and \(z_1 \in V(T_2) \cap V_3 - V(T_1) \). Since \(w_1z_1 \notin E(G) \), we have \(w_1, z_1 \) lie in a nontrivial color tree and let \(T_s \) be such nontrivial color tree in \(f \). Since \(V_3 \) is an independent set, we have that \(|V(T_s) \cap (V_1 \cup V_2)| \geq 1 \). This implies that \(V(T_s) \cap V_1 \neq \emptyset \) or \(V(T_s) \cap V_2 \neq \emptyset \). Along with \(w_1 \in V(T_s) \cap V(T_1) \) and \(z_1 \in V(T_s) \cap V(T_2) \), we have that \(|V(T_1) \cap V(T_s)| \geq 2 \) or \(|V(T_2) \cap V(T_s)| \geq 2 \), a contradiction.

Suppose that \(|V(T_1) \cap V_3| < 2 \) and \(|V(T_2) \cap V_3| < 2 \), then \(T_1, T_2 \notin \{ T_s, \ldots, T_q \} \). It is clear that \(t_1 \geq n_1 + 1 \), i.e., \(t_1 - 2 \geq n_1 - 1 \) for \(i = 1, 2 \). Notice that \(t_i \geq 3 \), i.e., \(t_i - 2 \geq 1 \), for \(i = s, \ldots, q \). If \(q - s + 1 \geq n_3 \), then we have \(\sum_{i=s}^{q} (t_i - 2) \geq q - s + 1 \geq n_3 \). Hence we get that \(\sum_{i=1}^{k} (t_i - 2) = \left(\sum_{i=s}^{q} (t_i - 2) \right) + n_1 + n_2 - 2 \geq n - 2 \) and we are done.
So let $q - s + 1 < n_3$. Since $V_3 \subset \cup_{i=s}^{q} V(T_i)$ and each vertex of V_3 appears in at least two distinct nontrivial color trees, every vertex of V_3 is covered by at least two edges of T_s, \ldots, T_q and each such edge in G exactly covers one vertex of V_3. So, the total number of edges of T_s, \ldots, T_q is at least $2n_3$ and we have \(\sum_{i=s}^{q} (t_i - 1) \geq 2n_3 \), i.e., \(\sum_{i=s}^{q} (t_i - 2) = \sum_{i=s}^{q} (t_i - 1) - (q - s + 1) > n_3 \). Hence \(\sum_{i=1}^{k} (t_i - 2) = (\sum_{i=s}^{q} (t_i - 2)) + n_1 + n_2 - 2 > n - 2 \) and we are done.

Suppose that $|V(T_1) \cap V_3| < 2$ or $|V(T_2) \cap V_3| < 2$. Without loss of generality, let $|V(T_1) \cap V_3| \geq 2$ and $|V(T_2) \cap V_3| < 2$. Then we have that $T_1 \in \{T_s, \ldots, T_q\}$ and $T_2 \notin \{T_s, \ldots, T_q\}$. It is clear that $t_1 \geq n_1 + 2$, i.e., $t_1 - 2 \geq n_1$ and that $t_2 \geq n_2 + 1$, i.e., $t_2 - 2 \geq n_2 - 1$. Notice that $t_i \geq 3$, i.e., $t_i - 2 \geq 1$, for $i = s, \ldots, q$ and $t_1 - 2 \geq n_1$. If $q - s + 1 \geq n_3$, then we have $\sum_{i=s}^{q} (t_i - 2) \geq n_1 + q - s \geq n_1 + n_3 - 1$. Hence $\sum_{i=1}^{k} (t_i - 2) \geq n - 2$ and we are done.

So let $q - s + 1 < n_3$. Notice that each $\{T_s, \ldots, T_q\} \setminus \{T_1\}$ contains at least a vertex out of V_3. So the sum of the orders of $\{T_s, \ldots, T_q\}$ is at least $2n_3 + n_1 + q - s$. This implies that $\sum_{i=s}^{q} (t_i - 1) \geq 2n_3 + n_1 - 1$, i.e., $\sum_{i=s}^{q} (t_i - 2) = \sum_{i=s}^{q} (t_i - 1) - (q - s + 1) > n_3 + n_1 - 1$. Hence $\sum_{i=1}^{k} (t_i - 2) = (\sum_{i=s}^{q} (t_i - 2)) + n_2 - 1 > n - 2$ and we are done.

Sub-case 2.3 The set S is exactly joint with one partite set of G.

Without loss of generality, let $S \cap V_1 \neq \emptyset, S \cap V_2 = \emptyset, S \cap V_3 = \emptyset$, then $V_1 \subseteq V(T_1)$ and each vertex of $V_2 \cup V_3$ appears in at least two distinct nontrivial color trees. Let T_2, \ldots, T_k be the nontrivial color trees which monochromatically connect all vertices of $V_2 \cup V_3$. Then each T_i contains at least two vertices of $V_2 \cup V_3$ for $2 \leq i \leq k$.

Suppose that $|V(T_1) \cap (V_2 \cup V_3)| < 2$. Then $T_1 \notin \{T_2, \ldots, T_k\}$. It is clearly that every vertex of $V_2 \cup V_3$ appears in at least two distinct nontrivial color trees. By the same way as case 1, we can deduce that $\sum_{i=2}^{k} (t_i - 2) \geq n_2 + n_3 - 1$. Since $V_1 \subseteq V(T_1)$, we have that $t_1 \geq n_1 + 1$, i.e., $t_1 - 2 \geq n_1 - 1$. Hence $\sum_{i=1}^{k} (t_i - 2) \geq n - 2$ and we are done.

Suppose that $|V(T_1) \cap (V_2 \cup V_3)| \geq 2$. Then $T_1 \in \{T_2, \ldots, T_k\}$. Now we still claim that $\sum_{i=1}^{k} (t_i - 2) \geq n - 2$. Recall that we have $\sum_{i=2}^{k} (t_i - 2) \geq n_2 + n_3 - 1$ for $T_1 \notin \{T_2, \ldots, T_k\}$. But now $T_1 \in \{T_2, \ldots, T_k\}$ and $V_1 \subset V(T_1)$, then T_1 will have other $n_1 - 1$ edges of $E(G)$ such that all vertices
of V_1 are monochromatically connected. That is to say that $\sum_{i=1}^{k} (t_i - 2) \geq n - 2 = \sum_{i=2}^{k} (t_i - 2) \geq n_2 + n_3 - 1 + n_1 - 1 = n - 2$ for this case, and we are done.

The proof is completed.

Theorem 3.2. Let G be a connected 3-chromatic spanning subgraph of K_{n_1,n_2,n_3} with partite sets $V_i, |V_i| = n_i, i = 1, 2, 3$. If $G = K_{n_1,n_2,n_3} - E_0$ with $E_0 \cap E_{i,j} \neq \emptyset$ and $E_0 \cap E_{j,k} \neq \emptyset$, $\{i, j, k\} = \{1, 2, 3\}$, then $mc(G) = m - n + 2$.

Proof. The lower bound $mc(G) \geq m - n + 2$ is obvious and we only need to show $mc(G) \leq m - n + 2$. It is clearly that G is a connected spanning subgraph of $K_{n_1,n_2,n_3} - \{uv, xy\}$ for some $uv \in E_{i,j}$ and $xy \in E_{j,k}$. By Lemmas 2.5-3.1, we have that $mc(G) \leq m - n + 2$ and we are done.

The proof is completed.

Theorem 3.3. Let G be a connected 3-chromatic spanning subgraph of K_{n_1,n_2,n_3} with partite sets $V_i, |V_i| = n_i, i = 1, 2, 3$. If $G = K_{n_1,n_2,n_3} - E_0, E_0 \subset E_{i,j}, \{i, j\} \subset \{1, 2, 3\}$ such that $G[V_i, V_j]$ is disconnected, then $mc(G) = m - n + 2$.

Proof. Without loss of generality, we assume that $i = 1, j = 2$. Then $E_0 \subset E_{1,2}$ and $G[V_1, V_2]$ is disconnected. Let $G_1 = G[V_1, V_2]$ and $G_2 = G[V_3]$. So $G = G_1 + G_2$. Notice that both G_1 and G_2 are disconnected. Hence, from Lemma 2.3 we have that $mc(G) = m(G) - n(G) + 2$, and we are done.

The proof is completed.

Theorem 3.4. Let G be a connected 3-chromatic spanning subgraph of K_{n_1,n_2,n_3} with partite sets $V_i, |V_i| = n_i, i = 1, 2, 3$. Let $G = K_{n_1,n_2,n_3} - E_0$. Then $mc(G) = m - n + 3$ if and only if $E_0 \subset E_{i,j}$ and $G[V_i, V_j]$ is still connected for some $i, j \in [3]$.

Proof. Now we show the necessity of this proof. Let $mc(G) = m - n + 3$. We show that $E_0 \subset E_{i,j}$ and $G[V_i, V_j]$ is still connected for some $i, j \in [3]$. Suppose that E_0 is not a subset of $E_{i,j}$ for any $i, j \in [3]$. This implies that $E_0 \cap E_{i,j} \neq \emptyset, E_0 \cap E_{j,k} \neq \emptyset, \{i, j, k\} = \{1, 2, 3\}$. Then it follows from Theorem 3.2 that $mc(G) = m - n + 2$, a contradiction. So $E_0 \subset E_{i,j}$ for some $i, j \in [3]$. Suppose that $G[V_i, V_j]$ is disconnected. Then it follows from Theorem 3.3 that $mc(G) = m - n + 2$, a contradiction and we are done.
The sufficiency of this proof can be proved by coloring the spanning tree of $G[V_i, V_j]$ with a color c_1 and one vertex from $V_i \cup V_j$ is adjacent to all vertices of V_k by a color c_2, where $k \neq i, j$ and $k \in [3]$. The remaining edges of G receive trivial colors. Then we get an simple extremal MC-coloring, say f of G. Clearly, f contains $m(G) - n(G) + 3$ colors and we are done.

The proof is completed.

Conflict of Interests

The authors declare that there is no conflict of interests.

References