Available online at http://scik.org
J. Math. Comput. Sci. 9 (2019), No. 5, 582-589
https://doi.org/10.28919/jmcs/4124
ISSN: 1927-5307

THE MONOCHROMATIC CONNECTIVITY OF 3-CHROMATIC GRAPHS

YIRONG YANG ${ }^{1, *}$, HUAPING WANG ${ }^{2}$
${ }^{1}$ Department of Mathematics, Zhejiang Normal University, Jinhua 321004, P.R. China
${ }^{2}$ Department of Mathematics, Jiangxi Normal University, Nanchang 330022, P.R. China

Copyright (C) 2019 the authors. This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we solve completely the monochromatic connectivity of 3-chromatic graphs.

Keywords: monochromatic connection number; MC-coloring; 3-chromatic graphs.
2010 AMS Subject Classification: 05C15, 05C40.

1. Introduction

An edge-coloring of a connected graph is a monochromatically connecting coloring (MCcoloring, for short) if there is a monochromatic path joining any two vertices. The monochromatic connection number of a graph G, denoted by $m c(G)$, is defined to be the maximum number of colors used in an MC-coloring of a graph G. As proved in [3], an important property of an extremal MC-coloring(a coloring that use $m c(G)$ colors) is that each color forms a tree. For a color c, let T_{c} be the tree whose edges colored c. The color c is nontrivial if T_{c} has at least two edges. Otherwise c is trivial. A nontrivial color tree with m edges is said waste $m-1$ colors. For any two nontrivial colors b and c, the corresponding trees T_{b} and T_{c} intersect in at most one vertex [3]. Such an extremal coloring is called simple. Every connected graph has

[^0]E-mail address: 15558699651@163.com
Received May 14, 2019
a simple extremal MC-coloring[3]. These concepts were introduced by Caro and Yuster in [3] and they gave some upper and lower bounds for $m c(G)$ characterized by other graph parameters. A straightforward lower bounds for $m c(G)$ is $m-n+2$ (throughout this paper, n and m denote the number of vertices and edges respectively), which can be verified by coloring the edges of a spanning tree with one color, and coloring the remaining edges by new distinct colors.

Now we present some definitions and notations necessary. For a graph G, we use $V(G)$, $E(G),|E(G)|,|V(G)|$ to denote the vertex set, edge set, number of vertices, number of edges of G, respectively. Given a graph G and $D \subseteq V(G)$, let $|D|$ be the number of vertices in D and $G[D]$ be the subgraph of G induced by D. If $\chi(G)=k$, then G is k-chromatic.

2. Preliminaries

Let $V_{i}, i=1,2,3$, be the vertex parts of the graph $K_{n_{1}, n_{2}, n_{3}}$. Let $E_{i, j}$ be the set of edges between V_{i} and $V_{j}, i, j \in\{1,2,3\}, i \neq j$. Let E_{0} be a subset of $E\left(K_{n_{1}, n_{2}, n_{3}}\right)$.

Lemma 2.1. [3] If G is K_{3}-free, then $m c(G)=m-n+2$.
Lemma 2.2. [3] Any graph G satisfies $m c(G) \leq m-n+\chi(G)$.
The join of two disjoint graphs G and H, denoted by $G+H$, is defined to be the graph $\overline{\bar{G}}+\overline{\bar{H}}$.
Lemma 2.3. [4] Let G be the join of two disconnected graphs G_{1} and G_{2}. Then $m c(G)=$ $|E(G)|-|V(G)|+2$.

Moreover we have the following properties of the simple extremal MC-coloring.
Lemma 2.4. If G is a connected spanning subgraph of some graph H, then $m c(G) \leq m c(H)-$ $(|E(H)|-|E(G)|)$.

Proof. It is clear that G has a simple extremal MC-coloring. Let f be an MC-coloring of G realizing $m c(G)$. Let the remaining $|E(H)|-|E(G)|$ edges of H receive trivial colors. Then we get an MC-coloring, denoted by f^{\prime} of H. Clearly, f^{\prime} is simple and it use $m c(G)+(|E(H)|-$ $|E(G)|)$ colors. Then $m c(H) \geq m c(G)+(|E(H)|-|E(G)|)$, i.e., $m c(G) \leq m c(H)-(|E(H)|-$ $|E(G)|)$, and we are done. The proof is completed.

Lemma 2.5. If G is a connected spanning subgraph of some graph H and let $m c(G)=m(G)-$ $n(G)+k_{1}, m c(H)=m(H)-n(H)+k_{2}$, then $k_{1} \leq k_{2}$.

Proof. By Lemma 2.4, it implies that $m c(G) \leq m c(H)-(|E(H)|-|E(G)|)$. Since G is a spanning subgraph of graph $H, n(G)=n(H)$. And we have $m(G)-n(G)+k_{1} \leq m(H)-n(H)+$ $k_{2}-(|E(H)|-|E(G)|)$, i.e., $m(G)-n(G)+k_{1} \leq m(G)-n(G)+k_{2}$. Hence we get that $k_{1} \leq k_{2}$, and we are done. The proof is completed.

3. MAIN RESULTS

Lemma 3.1. Let $V_{i}, i=1,2,3$ be the vertex parts of the graph $K_{n_{1}, n_{2}, n_{3}}$. Let $G=K_{n_{1}, n_{2}, n_{3}}-$ $\{u v, x y\}, u \in V_{1}, v, x \in V_{2}, y \in V_{3}$. Then $m c(G)=m-n+2$

Proof. The lower bound $m c(G) \geq m-n+2$ is obvious and we only need to show $m c(G) \leq$ $m-n+2$.

Let f be a simple extremal MC-coloring of G. Suppose that f consists of k nontrivial color trees, denoted by T_{1}, \ldots, T_{k}, where $t_{i}=\left|V\left(T_{i}\right)\right|$. As T_{i} has $t_{i}-1$ edges, it wastes $t_{i}-2$ colors. Hence it suffices to prove that $\sum_{i=1}^{k}\left(t_{i}-2\right) \geq n-2$.

Case 1. Every vertex appears in at least two distinct nontrivial color trees.
In this case we have $\sum_{i=1}^{k} t_{i} \geq 2 n$. So if $k \leq n / 2+1$, we have $\sum_{i=1}^{k}\left(t_{i}-2\right) \geq 2 n-2 k \geq n-2$, and we are done. So let $k>n / 2+1$. Now we claim that we still have $\sum_{i=1}^{k}\left(t_{i}-2\right) \geq n-2$ when $k>n / 2+1$. Since T_{i} can monochromatically connect at most $\binom{t_{i}-1}{2}$ pairs of non-neighbors in G, we have $\sum_{i=1}^{k}\binom{t_{i}-1}{2} \geq|E(G)|=\sum_{i=1}^{3}\binom{n_{i}}{2}+2$.

Assume that $\sum_{i=1}^{k}\left(t_{i}-2\right)<n-2$. Since T_{i} is nontrivial, $t_{i}-1 \geq 2$. By the straightforward convexity, the expression $\sum_{i=1}^{k}\binom{t_{i}-1}{2}$, subject to $t_{i}-1 \geq 2$, is maximized when $k-1$ of the $t_{i}^{\prime} s$ equal 3 and one of the $t_{i}^{\prime} s$, say t_{k}, is as large as it can be, namely $t_{k}-1$ is the largest integer smaller than $n-2+k-2(k-1)=n-k$. Hence, $t_{k}-1=n-k-1$. We have $\sum_{i=1}^{k}\binom{t_{i}-1}{2} \leq k-1+\binom{n-k-1}{2}$.

Note that $g(k)=k-1+\binom{n-k-1}{2}$ is a decreasing function of k for $n / 2+1<k \leq n-3$ and then $g(k)<g(n / 2+1)$. Note that $\sum_{i=1}^{3}\binom{n_{i}}{2}+2-g(n / 2+1)>0$. This implies that $g(k)<g(n / 2+1)<$ $|E(G)|$, i.e., $\sum_{i=1}^{k}\binom{t_{i}-1}{2}<|E(G)|=\sum_{i=1}^{3}\binom{n_{i}}{2}+2$, a contradiction. Hence $\sum_{i=1}^{k}\left(t_{i}-2\right) \geq n-2$ and we are done.

Case 2. There are vertices that appear in unique nontrivial color trees.

Denote by S the vertices that appear in the unique nontrivial color trees. Note that u, v or x, y are monochromatically connected by a nontrivial color tree. So let T_{u}, T_{x} monochromatically connect u, v and x, y, respectively.

Subcase 2.1 $S \bigcap V_{1}, S \bigcap V_{2}, S \bigcap V_{3} \neq \phi$.

Notice that vertices of the same part are not adjacent in G and any two of each part are monochromatically connected in a nontrivial color tree. So all the vertices of the same part must lie in a nontrivial color tree. So we can assume that $V_{i} \subseteq T_{i}, i=1,2,3$, and we have that $V_{i} \cap V\left(T_{i}\right) \cap S \neq \emptyset$.

Sub-subcase 2.1.1 $T_{1} \neq T_{2} \neq T_{3} \neq T_{1}$.
Suppose that $T_{u}, T_{x} \notin\left\{T_{1}, T_{2}, T_{3}\right\}$. Since $V_{i} \subseteq V\left(T_{i}\right)$, we have that $t_{i} \geq n_{i}+1$, i.e., $t_{i}-2 \geq$ $n_{i}-1, i=1,2,3$. That is to say that T_{i} waste at least $n_{i}-1$ edges, $i=1,2,3$. Also, both T_{u} and T_{x} waste at least one edge. So the total waste of the coloring f is at least $n-2$ and we are done.

Suppose that $T_{u} \in\left\{T_{1}, T_{2}, T_{3}\right\}$ or $T_{x} \in\left\{T_{1}, T_{2}, T_{3}\right\}$. Without loss of generality, let $T_{u}=T_{1}$. Since $u v \notin E(G)$ and vertices of V_{1} are not adjacent, then T_{1} contains at least anther vertex besides v and vertices of V_{1}. It implies that $t_{1} \geq n_{1}+2$, i.e., $t_{1}-2 \geq n_{1}$. Similarly, $V_{i} \subseteq$ $V\left(T_{i}\right), i=2,3$, and we have that $t_{i} \geq n_{i}+1$, i.e., $t_{i}-2 \geq n_{i}-1$ for $i=2,3$. So the total waste of T_{1}, T_{2}, T_{3} is at least $n-2$ and we are done.

Sub-subcase 2.1.2 There are two trees in $\left\{T_{1}, T_{2}, T_{3}\right\}$ which are same.
Let $T_{1}=T_{2} \neq T_{3}$, now we have $V_{1} \cup V_{2} \subseteq V\left(T_{1}\right)$. Suppose that $y \in V\left(T_{1}\right)$. Then the waste of T_{1} is at least $n_{1}+n_{2}-1$. Clearly, $t_{3} \geq n_{3}+1$, i.e., $t_{3}-2 \geq n_{3}-1$. Hence the total waste of the coloring f is at least $n-2$ and we are done. Suppose that $y \in V_{3}-V\left(T_{1}\right)$. Then the waste of T_{1} is at least $n_{1}+n_{2}-2$ and $T_{x} \neq T_{1}$. This implies that $T_{x}=T_{3}$. Then $t_{3} \geq n_{3}+2$, i.e., $t_{3}-2 \geq n_{3}$. Hence the total waste of the coloring f is at least $n-2$ and we are done. By the symmetry, if $T_{2}=T_{3} \neq T_{1}$, then the total waste of the coloring f is at least $n-2$ and we are done.

Let $T_{1}=T_{3} \neq T_{2}$, now we have $V_{1} \cup V_{3} \subseteq V\left(T_{1}\right)$. Suppose that $v \notin V\left(T_{1}\right)$ or $x \notin V\left(T_{1}\right)$. Without loss of generality, let $v \notin V\left(T_{1}\right)$, then $T_{u}=T_{2}$. It implies that $t_{2} \geq n_{2}+2$, i.e., $t_{2}-2 \geq n_{2}$. Clearly, $t_{1} \geq n_{1}+n_{3}$, i.e., $t_{1}-2 \geq n_{1}+n_{3}-2$. Hence the total waste of the coloring f is at least $n-2$ and we are done. Suppose that $v, x \in V\left(T_{1}\right)$. Since f is simple and $x, y \in V\left(T_{2}\right)$, we have that
$v=x$. Then $t_{1} \geq n_{1}+n_{3}+1$, i.e., $t_{1}-2 \geq n_{1}+n_{3}-1$. Clearly, $t_{2} \geq n_{2}+1$, i.e., $t_{2}-2 \geq n_{2}-1$.
Hence the total waste of the coloring f is at least $n-2$ and we are done.
Sub-subcase 2.1.3 $T_{1}=T_{2}=T_{3}$.
Since $S \bigcap V_{1} \bigcap V_{2} \bigcap V_{3} \neq \phi$, the tree T_{1} is a spanning tree of G. So the waste of T_{1} is $n-2$ and so we are done.

Subcase 2.2 The set S is exactly joint with two partite sets of G.
Here we only present the proof details of the case $S \cap V_{1} \neq \emptyset, S \cap V_{2} \neq \emptyset$. The other two cases can be proved similarly. Clearly, we can assume that $V_{i} \subseteq V\left(T_{i}\right), i=1,2$.

Assume that $T_{1}=T_{2}$. Then we have that $V_{1} \cup V_{2} \subseteq V\left(T_{1}\right)$. Suppose that $y \in V\left(T_{1}\right)$. Since T_{1} is not a spanning tree of G, there is a vertex $v_{3} \in V_{3}-V\left(T_{1}\right)$. Clearly, $v_{3} y \notin E(G)$. Let $T_{v_{3}}$ be the nontrivial color tree monochromatically connecting v_{3}, y. Since V_{3} is an independent set in G, we have that $\left|V\left(T_{v_{3}}\right) \cap\left(V_{1} \cup V_{2}\right)\right| \geq 1$. This implies that $\left|V\left(T_{v_{3}}\right) \cap V\left(T_{1}\right)\right| \geq 2$, a contradiction. Suppose that $y \notin V\left(T_{1}\right)$. Since $x y \notin E(G)$ and V_{3} is an independent set in G, this means that $\left|V\left(T_{x}\right) \cap\left(V_{1} \cup V_{2}\right)\right| \geq 2$, i.e., $\left|V\left(T_{x}\right) \cap V\left(T_{1}\right)\right| \geq 2$, a contradiction. So $T_{1} \neq T_{2}$. Now we claim that $\sum_{i=1}^{k}\left(t_{i}-2\right) \geq n-2$. Since we have that $S \cap V_{3}=\emptyset$, each vertex of V_{3} appears in at least two nontrivial color trees. In order to monochromatically connect the $\binom{\left|V_{3}\right|}{2}$ distinct pairs of vertices of V_{3}, we need a set of nontrivial color trees, say T_{s}, \ldots, T_{q}, and each $T_{i}, i=s, \cdots, q$ contains at least two vertices of V_{3}.

Suppose that $\left|V\left(T_{1}\right) \cap V_{3}\right| \geq 2$ and $\left|V\left(T_{2}\right) \cap V_{3}\right| \geq 2$, and let $w_{1}, w_{2} \in V\left(T_{1}\right) \cap V_{3}, z_{1}, z_{2} \in$ $V\left(T_{2}\right) \cap V_{3}$. Notice that $\left|V\left(T_{1}\right) \cap V\left(T_{2}\right)\right| \leq 1$. Let $w_{1} \in V\left(T_{1}\right) \cap V_{3}-V\left(T_{2}\right)$ and $z_{1} \in V\left(T_{2}\right) \cap$ $V_{3}-V\left(T_{1}\right)$. Since $w_{1} z_{1} \notin E(G)$, we have w_{1}, z_{1} lie in a nontrivial color tree and let T_{s} be such nontrivial color tree in f. Since V_{3} is an independent set, we have that $\left|V\left(T_{s}\right) \cap\left(V_{1} \cup V_{2}\right)\right| \geq 1$. This implies that $V\left(T_{s}\right) \cap V_{1} \neq \emptyset$ or $V\left(T_{s}\right) \cap V_{2} \neq \emptyset$. Along with $w_{1} \in V\left(T_{s}\right) \cap V\left(T_{1}\right)$ and $z_{1} \in$ $V\left(T_{s}\right) \cap V\left(T_{2}\right)$, we have that $\left|V\left(T_{1}\right) \cap V\left(T_{s}\right)\right| \geq 2$ or $\left|V\left(T_{2}\right) \cap V\left(T_{s}\right)\right| \geq 2$, a contradiction.

Suppose that $\left|V\left(T_{1}\right) \cap V_{3}\right|<2$ and $\left|V\left(T_{2}\right) \cap V_{3}\right|<2$, then $T_{1}, T_{2} \notin\left\{T_{s}, \ldots, T_{q}\right\}$. It is clear that $t_{i} \geq n_{i}+1$, i,e., $t_{i}-2 \geq n_{i}-1$ for $i=1,2$. Notice that $t_{i} \geq 3$, i.e., $t_{i}-2 \geq 1$, for $i=s, \ldots, q$. If $q-s+1 \geq n_{3}$, then we have $\sum_{i=s}^{q}\left(t_{i}-2\right) \geq q-s+1 \geq n_{3}$. Hence we get that $\sum_{i=1}^{k}\left(t_{i}-2\right)=$ $\left(\sum_{i=s}^{q}\left(t_{i}-2\right)\right)+n_{1}+n_{2}-2 \geq n-2$ and we are done.

So let $q-s+1<n_{3}$. Since $V_{3} \subset \cup_{i=s}^{q} V\left(T_{i}\right)$ and each vertex of V_{3} appears in at least two distinct nontrivial color trees, every vertex of V_{3} is covered by at least two edges of $T_{s}, . ., T_{q}$ and each such edge in G exactly covers one vertex of V_{3}. So, the total number of edges of $T_{s}, . ., T_{q}$ is at least $2 n_{3}$ and we have $\sum_{i=s}^{q}\left(t_{i}-1\right) \geq 2 n_{3}$, i.e., $\sum_{i=s}^{q}\left(t_{i}-2\right)=\sum_{i=s}^{q}\left(t_{i}-1\right)-(q-s+1)>n_{3}$. Hence $\sum_{i=1}^{k}\left(t_{i}-2\right)=\left(\sum_{i=s}^{q}\left(t_{i}-2\right)\right)+n_{1}+n_{2}-2>n-2$ and we are done.

Suppose that $\left|V\left(T_{1}\right) \cap V_{3}\right|<2$ or $\left|V\left(T_{2}\right) \cap V_{3}\right|<2$. Without loss of generality, let $\mid V\left(T_{1}\right) \cap$ $V_{3} \mid \geq 2$ and $\left|V\left(T_{2}\right) \cap V_{3}\right|<2$. Then we have that $T_{1} \in\left\{T_{s}, . ., T_{q}\right\}$ and $T_{2} \notin\left\{T_{s}, . ., T_{q}\right\}$. It is clear that $t_{1} \geq n_{1}+2$, i.e., $t_{1}-2 \geq n_{1}$ and that $t_{2} \geq n_{2}+1$, i,e., $t_{2}-2 \geq n_{2}-1$. Notice that $t_{i} \geq 3$, i.e., $t_{i}-2 \geq 1$, for $i=s, \ldots, q$ and $t_{1}-2 \geq n_{1}$. If $q-s+1 \geq n_{3}$, then we have $\sum_{i=s}^{q}\left(t_{i}-2\right) \geq$ $n_{1}+q-s \geq n_{1}+n_{3}-1$. Hence $\sum_{i=1}^{k}\left(t_{i}-2\right) \geq n-2$ and we are done.

So let $q-s+1<n_{3}$. Notice that each $\left\{T_{s}, . ., T_{q}\right\} \backslash\left\{T_{1}\right\}$ contains at least a vertex out of V_{3}. So the sum of the orders of $\left\{T_{s}, . ., T_{q}\right\}$ is at least $2 n_{3}+n_{1}+q-s$. This implies that $\sum_{i=s}^{q}\left(t_{i}-1\right) \geq$ $2 n_{3}+n_{1}-1$, i.e., $\sum_{i=s}^{q}\left(t_{i}-2\right)=\sum_{i=s}^{q}\left(t_{i}-1\right)-(q-s+1)>n_{3}+n_{1}-1$. Hence $\sum_{i=1}^{k}\left(t_{i}-2\right)=$ $\left(\sum_{i=s}^{q}\left(t_{i}-2\right)\right)+n_{2}-1>n-2$ and we are done.

Sub-case 2.3 The set S is exactly joint with one partite set of G.
Without loss of generality, let $S \cap V_{1} \neq \emptyset, S \cap V_{2}=\emptyset, S \cap V_{3}=\emptyset$, then $V_{1} \subseteq V\left(T_{1}\right)$ and each vertex of $V_{2} \cup V_{3}$ appears in at least two distinct nontrivial color trees. Let T_{2}, \ldots, T_{k} be the nontrivial color trees which monochromatically connect all vertices of $V_{2} \cup V_{3}$. Then each T_{i} contains at least two vertices of $V_{2} \cup V_{3}$ for $2 \leq i \leq k$.

Suppose that $\left|V\left(T_{1}\right) \cap\left(V_{2} \cup V_{3}\right)\right|<2$. Then $T_{1} \notin\left\{T_{2}, \ldots, T_{k}\right\}$. It is clearly that every vertex of $V_{2} \cup V_{3}$ appears in at least two distinct nontrivial color trees. By the same way as case 1, we we can deduce that $\sum_{i=2}^{k}\left(t_{i}-2\right) \geq n_{2}+n_{3}-1$. Since $V_{1} \subseteq V\left(T_{1}\right)$, we have that $t_{1} \geq n_{1}+1$, i.e., $t_{1}-2 \geq n_{1}-1$. Hence $\sum_{i=1}^{k}\left(t_{i}-2\right) \geq n-2$ and we are done.
Suppose that $\left|V\left(T_{1}\right) \cap\left(V_{2} \cup V_{3}\right)\right| \geq 2$. Then $T_{1} \in\left\{T_{2}, \ldots, T_{k}\right\}$. Now we still claim that $\sum_{i=1}^{k}\left(t_{i}-\right.$ 2) $\geq n-2$. Recall that we have $\sum_{i=2}^{k}\left(t_{i}-2\right) \geq n_{2}+n_{3}-1$ for $T_{1} \notin\left\{T_{2}, \ldots, T_{k}\right\}$. But now $T_{1} \in$ $\left\{T_{2}, \ldots, T_{k}\right\}$ and $V_{1} \subset V\left(T_{1}\right)$, then T_{1} will have other $n_{1}-1$ edges of $E(G)$ such that all vertices
of V_{1} are monochromatically connected. That is to say that $\sum_{i=1}^{k}\left(t_{i}-2\right) \geq n-2=\sum_{i=2}^{k}\left(t_{i}-2\right) \geq$ $n_{2}+n_{3}-1+n_{1}-1=n-2$ for this case, and we are done.

The proof is completed.
Theorem 3.2. Let G be a connected 3-chromatic spanning subgraph of $K_{n_{1}, n_{2}, n_{3}}$ with partite sets $V_{i},\left|V_{i}\right|=n_{i}, i=1,2,3$. If $G=K_{n_{1}, n_{2}, n_{3}}-E_{0}$ with $E_{0} \cap E_{i, j} \neq \emptyset$ and $E_{0} \cap E_{j, k} \neq \emptyset,\{i, j, k\}=$ $\{1,2,3\}$, then $m c(G)=m-n+2$.

Proof. The lower bound $m c(G) \geq m-n+2$ is obvious and we only need to show $m c(G) \leq$ $m-n+2$. It is clearly that G is a connected spanning subgraph of $K_{n_{1}, n_{2}, n_{3}}-\{u v, x y\}$ for some $u v \in E_{i, j}$ and $x y \in E_{j, k}$. By Lemmas 2.5-3.1, we have that $m c(G) \leq m-n+2$ and we are done.

The proof is completed.
Theorem 3.3. Let G be a connected 3-chromatic spanning subgraph of $K_{n_{1}, n_{2}, n_{3}}$ with partite sets $V_{i},\left|V_{i}\right|=n_{i}, i=1,2,3$. If $G=K_{n_{1}, n_{2}, n_{3}}-E_{0}, E_{0} \subset E_{i, j},\{i, j\} \subset\{1,2,3\}$ such that $G\left[V_{i}, V_{j}\right]$ is disconnected, then $m c(G)=m-n+2$.

Proof. Without loss of generality, we assume that $i=1, j=2$. Then $E_{0} \subset E_{1,2}$ and $G\left[V_{1}, V_{2}\right]$ is disconnected. Let $G_{1}=G\left[V_{1}, V_{2}\right]$ and $G_{2}=G\left[V_{3}\right]$. So $G=G_{1}+G_{2}$. Notice that both G_{1} and G_{2} are disconnected. Hence, from Lemma 2.3 we have that $m c(G)=m(G)-n(G)+2$, and we are done.

The proof is completed.
Theorem 3.4. Let G be a connected 3 -chromatic spanning subgraph of $K_{n_{1}, n_{2}, n_{3}}$ with partite sets $V_{i},\left|V_{i}\right|=n_{i}, i=1,2,3$. Let $G=K_{n_{1}, n_{2}, n_{3}}-E_{0}$. Then $m c(G)=m-n+3$ if and only if $E_{0} \subseteq E_{i, j}$ and $G\left[V_{i}, V_{j}\right]$ is still connected for some $i, j \in[3]$.

Proof. Now we show the necessity of this proof. Let $m c(G)=m-n+3$. We show that $E_{0} \subseteq E_{i, j}$ and $G\left[V_{i}, V_{j}\right]$ is still connected for some $i, j \in[3]$. Suppose that E_{0} is not a subset of $E_{i, j}$ for any $i, j \in[3]$. This implies that $E_{0} \cap E_{i, j} \neq \emptyset, E_{0} \cap E_{j, k} \neq \emptyset,\{i, j, k\}=\{1,2,3\}$. Then it follows from Theorem 3.2 that $m c(G)=m-n+2$, a contradiction. So $E_{0} \subseteq E_{i, j}$ for some $i, j \in[3]$. Suppose that $G\left[V_{i}, V_{j}\right]$ is disconnected. Then it follows from Theorem 3.3 that $m c(G)=m-n+2$, a contradiction and we are done.

The sufficiency of this proof can be proved by coloring the spanning tree of $G\left[V_{i}, V_{j}\right]$ with a color c_{1} and One vertex from $V_{i} \cup V_{j}$ is adjacent to all vertices of V_{k} by a color c_{2}, where $k \neq i, j$ and $k \in[3]$. The remaining edges of G receive trivial colors. Then we get an simple extremal MC-coloring, say f of G. Clearly, f contains $m(G)-n(G)+3$ colors and we are done.

The proof is completed.

Conflict of Interests

The authors declare that there is no conflict of interests.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
[2] Q. Cai, X. Li, D. Wu, Erdős-Gallai-type results for colorful monochromatic connectivity of a graph, J. Comb. Optim. 33(2017), 123-131.
[3] Y. Caro, R. Yuster, Colorful monochromatic connectivity, Discrete Math. 311(16)(2011), 1786-1792.
[4] Z. Jin, X. Li, K. Wang, The monochromatic connectivity of some graphs, Personal communication.
[5] G. Chartrand, G.L. Johns, K. A. Mckeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133(2008) 85-98.
[6] R. Gu, X. Li, Z. Qin, Y. Zhao, More on the colorful monochromatic connectivity, Bull. Malays. Math. Sci. Soc. 40(2017), 1769-1779.
[7] X. Li, Y. Sun, Rainbow Connections of Graphs, Springer Briefs in Math, Springer, New York, 2012.
[8] X. Li, D. Wu, The (vertex-)monochromatic index of a graph, J. Comb. Optim. 33(2017), 1443-1453.

[^0]: *Corresponding author

