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Abstract. In this paper, we study a new kind of existence of solution for set valued exponential type mixed vector

variational-like inequality problem in Euclidean space and proposed αg-relaxed exponentially (γ,η)-monotone

mapping. Moreover, we established an example in order to illustrate the main problem. We proved the existence

results by KKM-technique with αg-relaxed exponentially (γ,η)-monotone mapping. Further, we give some con-

sequences of the main result. The results presented in this paper unifies and extends some known results in this

area.
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1. INTRODUCTION

The theory of vector variational inequality has been introduced by Giannessi [7] in 1980 for

finite dimensional space. Later, it has been studied by Chen et al. [4] in abstract spaces and
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obtained existence theorems. Wu and Huang [16] defined the concepts of relaxed η−α pseu-

domonotone mappings to study vector variational-like inequality problem in Banach spaces.

The generalized variational-like inequalities with generalized α-monotone multifunctions stud-

ied by Ceng et al. [3] [see for instance, [6, 12, 14]]. In 2004, Antczak [1] introduced the class

of exponential (p,r)-invex functions for differentiable case [see for more details [8, 13]]. The

exponential and logarithmic functions are very important in mathematical modeling of various

real-life problems, for example, in mathematical modeling of growth and decline of populations,

digital circuit optimization in the field of electrical engineering. Very recently, Jayswal et al.

[9, 10] introduced exponential type vector variational-like inequality problems with exponential

invexities.

Motivated by the work of Antczak [1], Jayswal et al. [9, 10], Ho et al. [8] and by the

ongoing research in this direction, we introduced a generalized mixed exponential type vector

variational-like inequality problem (in short, GMEVVLIP) in Euclidean space and defined a

new kind of αg-relaxed exponential (γ,η)-monotone mappings. We proved the existence results

of GMEVVLIP by KKM-technique and Nadler results. The results presented in this paper

extend and generalize many previously known results in this research area.

2. PRELIMINARIES

Now, we recall some useful concepts and results which are necessary for proving our main

result. Throughout the paper unless otherwise stated, we consider E1 and E2 as Euclidean spaces

of dimensions m and n, K and C be nonempty subsets of E1 and E2 respectively.

Let K be a nonempty subset of E1. Then, K is said to be

(i) cone if λK ⊂ K, ∀ λ ≥ 0;

(ii) convex cone if K +K ⊂ K;

(iii) pointed cone if K is cone and K
⋂
{−K}= {0};

(iv) proper cone if K 6= E2.

Let K : C → 2E2 be a closed pointed convex cone valued mapping with intK(u) 6= /0 with

apex at origin, where intK(u) be a set of interior points of K(u). Then, K(u) induces a partial

ordering in E2 as:
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(i) v≤K(u) w⇔ w− v ∈ K(u);

(ii) v�K(u) w⇔ w− v /∈ K(u);

(iii) v≤intK(u) w⇔ w− v ∈ intK(u);

(iv) v�intK(u) w⇔ w− v /∈ intK(u).

Let (E2,K) be an ordered space with the ordering of E2 defined by a set K(u) and ordering

relation ′′ ≤K(u)
′′ is a partial order. Then

(i) v�K(u) w⇔ v+ s� w+ s, for any u,v,w,s ∈ E2;

(ii) v�K(u) w⇔ λv� λw, for any λ ≥ 0.

Let C ⊆ E1 be a nonempty closed convex subset of an Euclidean space E1 = Rm and (E2,K)

be an ordered space induces by the closed convex pointed cone K(u) whose apex at origin with

intK(u) 6= /0.

Lemma 1. [3] Let (E2,K) be an ordered space induced by the pointed closed convex cone K

with intK(u) 6= /0. Then, for any u,v,w ∈ E2, the following relation hold:

(i) w�intK x≥K v⇒ w�intK v;

(ii) w�intK x≤K v⇒ w�intK v.

Definition 1. A mapping F : E1→ E2 is a K(u)− convex on E1 if

F(λu+(1−λ )v)≤K(u) λF(u)+(1−λ )F(v), ∀u,v ∈ E1, λ ∈ [0,1],

that is,

λF(u)+(1−λ )F(v)−F(λu+(1−λ )v) ∈ K(u).

Remark 1. (i) If K(u) = K, for all u ∈ E1, where K is convex in E2 then Definition 1

reduces to the vector convexity of F that is

F(λu+(1−λ )v)≤K λF(u)+(1−λ )F(v), ∀u,v ∈ E1, λ ∈ [0,1].

(ii) If E2 = R and K = [0,+∞) in (i) then Definition 1 reduces to the convex function that is

λF(u)+(1−λ )F(v)−F(λu+(1−λ )v)≥ 0, ∀u,v ∈ E1, λ ∈ [0,1].
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Definition 2. A mapping F : C→ E2 is said to be completely continuous if for any sequence

{un} ∈C, un ⇀ u0 weakly, then F(un)→ F(u0).

Definition 3. Let E1 and E2 be two topological vector spaces, A : E1 → 2E2 be a set valued

mapping and A−1(v) = {u ∈ E1 : v ∈ A(u)}. Then,

(i) A is said to be upper semicontinuous if for each u ∈ E1 and each open set V in E2 with

A(u)⊂V , then there exists an open neighborhood U of u in E1 such that A(u0)⊂V , for

each u0 ∈U.

(ii) A is said to be closed if for any set {uα} → u in E1 and any net {vα} in E2 such that

vα → v and vα ∈ A(uα), for any α , we have v ∈ A(u).

(iii) A is said to have a closed graph if the graph of A, Graph(A) = {(u,v) ∈ E1×E2,v ∈

A(u)} is closed in E1×E2.

Definition 4. Let F : C→ 2E1 be a set valued mapping. Then F is said to be a KKM-mapping

if for any {v1,v2, ...,vn} of C, we have co{v1,v2, ...,vn} ⊂
⋃n

i=1 F(vi), where co{v1,v2, ...,vn}

denotes the convex hull of v1,v2, ...,vn.

Lemma 2. [5] Let C be a nonempty subset of a Hausdorff topological vector space E1 and let

F : C→ 2E1 be a KKM-mapping. If F(v) is a closed in E1 for all v ∈C and compact for some

v ∈C, then
⋂

v∈C F(v) 6= /0.

Lemma 3. [11] Let E be a normed vector space and H be a Hausdorff metric on the collection

CB(E) of all closed and bounded subsets of E, induced by a metric d in terms of d(u,v) =

‖u− v‖, which is defined by

H(X ,Y ) = max{sup
u∈X

inf
v∈Y
‖u− v‖,sup

v∈Y
inf
u∈X
‖u− v‖},

for X ,Y ∈CB(E). If X and Y are compact subset in E, then for each u ∈ X, there exists v ∈ Y

such that ‖u− v‖ ≤ H(X ,Y ).

Definition 5. Let η : E1×E1 → E1 be a mapping and N : C→ L(E1,E2) be a single valued

mapping, where L(E1,E2) be the space of all continuous linear mapping from E1 to E2. Suppose

A : C→ 2L(E1,E2) be a nonempty compact set valued mapping, then
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(i) N is said to be η-hemicontinuous, if

lim
t→0+
〈N(u+ t(v−u)),η(v,u)〉= 〈Nu,η(v,u)〉, ∀u,v ∈C.

(ii) A is said to be H-hemicontinuous, if for any u,v ∈C, the mapping t → H(A(u+ t(v−

u)),Au) is continuous at 0+, where H is a Hausdorff metric defined on CB(L(E1,E2)).

Definition 6. A mapping f : Rm→ Rn is lipschitz continuous on D ⊂ Rm iff there is an L ∈ R

such that

(1) ‖ f (u)− f (v)‖ ≤ L‖u− v‖, ∀u,v ∈ D.

Definition 7. A mapping F : E1→E1 is said to be affine if for any ui ∈C and λ i≥ 0, (1≤ i≤ n)

with ∑
n
i=1 λ i = 1, we have F(∑n

i=1 λ iui) = ∑
n
i=1 λ iF(ui).

Definition 8. Let E1 be an Euclidean space. A mapping F : E1→ R is a lower semicontinuous

at u0 ∈ E1 if F(u0) ≤ liminfn F(un), for any sequence {un} ⊂ E1 such that {un} converges to

u0.

Definition 9. Let E1 be an Euclidean space. A mapping F : E1 → R is a weakly upper semi-

continuous at u0 ∈ E1 if F(u0) ≥ limsupn F(un), for any sequence {un} ⊂ E1 such that {un}

converges to u0 weakly.

Lemma 4. [2] Let S be a nonempty compact convex subset of a finite dimensional space and

T : S→ S be a continuous mapping. Then there exists x ∈ S such that T x = x.

In this paper, we introduce and study the following generalized mixed exponential type vector

variational-like inequality problem (in short, GMEVVLIP). Let C ⊆ E1 be a nonempty subset

of an Euclidean space Rn and (E2,K) be an ordered Euclidean space induces by a closed convex

pointed cone K whose apex at origin. Let K : C→ 2E2 be a closed convex pointed cone valued

mapping with intK 6= /0. Let γ be a nonzero real number, η : C×C→E1, g : C→C, F : C×C→

E2 and N : L(E1,E2)×L(E1,E2)×L(E1,E2)→ L(E1,E2) be the mappings, where L(E1,E2) be

the space of all continuous linear mappings from E1 to E2 and A1,A2,A3 : C→ 2L(E1,E2) be set
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valued mappings then GMEVVLIP is to find u0 ∈ C and x ∈ A1(u0), y ∈ A2(u0), z ∈ A3(u0)

such that

(2) 〈N(x,y,z),
1
γ
(eγη(v,g(u0))−1)〉+F(g(u0),v)�intK(u0) 0, ∀v ∈C.

The following example is provided to illustrate problem (2)

Example 1. Let E1 = E2 = R, C = [0,+∞), K(u0) = [0,∞), ∀u0 ∈C. Define A1,A2,A3 : C→

2L(E1,E2) ≡ 2R by

For u0 ∈C

A1(u0) = {x ∈ R :
1

1+(x−1)2 ≥
1
2
}= [0,2]

A2(u0) = {y ∈ R :
1

1+(y−1)2 ≥
1
2
}= [0,2]

A3(u0) = {z ∈ R :
1

1+(z−1)2 ≥
1
2
}= [0,2].

Define N : L(E1,E2)×L(E1,E2)×L(E1,E2)→ L(E1,E2) by

N(x,y,z) = {x+ y+ z}, ∀x,y,z ∈ L(E1,E2)≡ R,

η : C×C→ E1 = R such that

η(u,v) = ln(
u
2
− v+1), ∀u,v ∈C,

g : C→C such that

g(u) =
u
2
, ∀u ∈C,

and F : C×C→ E2 = R such that

F(u,v) =
v
2
−u, ∀u,v ∈C.

Consider γ = 1.

Now,

〈N(x,y,z),
1
γ
(eγη(v,g(u0))−1)〉+F(g(u0),v) = 〈x+ y+ z,eln( v

2−
u0
2 )−1〉+ v

2
− u0

2

= (x+ y+ z+1)(
v
2
− u0

2
).
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Thus,

(x+ y+ z+1)(
v
2
− u0

2
) ≥ 0

⇒ u0 ≤ v, ∀v ∈C.

This shows that u0 = 0 is a solution of the GMEVVLIP(2).

Definition 10. The mapping A : C→ L(E1,E2) is said to be αg-relaxed exponentially (γ,η)-

monotone if for every pair of points u,v ∈C, we have

(3) 〈Au−Av,
1
γ
(eγη(u,g(v))−1)〉 ≥K(u) αg(u− v),

where αg : E1 → E2 with αg(tu) = tqαg(u), for all t > 0 and u ∈ E1, where q > 1 is a real

number.

Definition 11. Let N : L(E1,E2)×L(E1,E2)×L(E1,E2)→ L(E1,E2) be a single valued map-

pings. A multivalued mapping A : C→ L(E1,E2) with compact valued is said to be αg-relaxed

exponentially (γ,η)-monotone with respect to first argument of N and g if for each pair of points

u,v,y,z ∈C, we have

(4) 〈N(x1,y,z)−N(x2,y,z),
1
γ
(eγη(u,g(v))−1)〉 ≥K(u) αg(u− v), ∀x1 ∈ A(u), x2 ∈ A(v),

where αg : E1 → E2 with αg(tu) = tqαg(u), for all t > 0 and u ∈ E1, where q > 1 is a real

number.

Remark 2. Some special cases:

(i) If K(u) = K, g≡ I, identity mapping and αg = 0 then Definition 10 is called exponen-

tially (γ,η)-monotone that is for each pair of points u,v ∈C, we have

(5) 〈Au−Av,
1
γ
(eγη(u,g(v))−1)〉 ≥K 0.

(ii) If N(x,y,z) = N(x,y) then by Definition 11, we have for each pair of points u,v,y ∈C,

(6) 〈N(x1,y)−N(x2,y),
1
γ
(eγη(u,g(v))−1)〉 ≥K(u) αg(u− v), ∀x1 ∈ A(u), x2 ∈ A(v),

where αg : E1→ E2 with αg(tu) = tqαg(u), for all t > 0 and u ∈ E1, where q > 1 is a

real number.
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(iii) If N(x,y,z) = N(x) then by Definition 11, we have for each pair of points u,v,y ∈C,

(7) 〈N(x1)−N(x2),
1
γ
(eγη(u,g(v))−1)〉 ≥K(u) αg(u− v), ∀x1 ∈ A(u), x2 ∈ A(v),

where αg : E1→ E2 with αg(tu) = tqαg(u), for all t > 0 and u ∈ E1, where q > 1 is a

real number.

(iv) If N(x,y,z) = N(x), K(u) = K, g≡ I, identity mapping and αg = 0 then Definition 11 is

called α-relaxed exponentially (γ,η)-monotone with respect to N that is for each pair

of points u,v ∈C,

(8) 〈N(x1)−N(x2),
1
γ
(eγη(u,v)−1)〉 ≥K 0, ∀x1 ∈ A(u), x2 ∈ A(v).

3. MAIN RESULTS

Theorem 5. Let C be a nonempty closed convex bounded subset of a real Euclidean space E1

and (E2,K) be an ordered Euclidean space induces by a pointed closed convex cone K. Let

K : C→ 2E2 be a closed convex pointed cone valued mapping with intK(u) 6= /0. Let g : C→C

be a closed convex and continuous single valued mapping and η : C×C→ E1 be an affine in

the first argument with η(u,u) = 0, for all u ∈C. Let F : C×C→ E2 be a K(u)-convex in the

second argument with the condition F(u,u) = 0, for all u ∈C. Let N : L(E1,E2)×L(E1,E2)×

L(E1,E2)→ L(E1,E2) be a Lipschitz continuous mapping with all arguments, A1,A2,A3 : C→

L(E1,E2) be the nonempty compact valued mappings which are H-hemicontinuous and αg-

relaxed exponentially (γ,η)-monotone with respect to first argument of N and g. Then the

following two statements (i) and (ii) are equivalent:

(i) there exists u0 ∈C and x ∈ A1(u0), y ∈ A2(u0), z ∈ A3(u0) such that

〈N(x,y,z),
1
γ
(eγη(v,g(u0))−1)〉+F(g(u0),v)�intK(u0) 0, ∀v ∈C,

(ii) there exists u0 ∈C such that

〈N(r,s, t),
1
γ
(eγη(v,g(u0))−1)〉 + F(g(u0),v)�intK(u0) αg(v−u0),

∀v ∈C, r ∈ A1(v), s ∈ A2(v), t ∈ A3(v).
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Proof. Let the statement (i) is true that is there exists u0 ∈C and x ∈ A1(u0), y ∈ A2(u0), z ∈

A3(u0) such that

(9) 〈N(x,y,z),
1
γ
(eγη(v,g(u0))−1)〉+F(g(u0),v)�intK(u0) 0, ∀v ∈C.

Since N is αg-relaxed exponentially (γ,η)-monotone therefore ∀v∈C, r∈A1(v), s∈A2(v), t ∈

A3(v), we have

〈N(r,s, t)−N(x,y,z),
1
γ
(eγη(v,g(u0))−1)〉+F(g(u0),v) ≥K(u0) αg(v−u0)+F(g(u0),v)

〈N(r,s, t),
1
γ
(eγη(v,g(u0))−1)〉+F(g(u0),v) ≥K(u) 〈N(x,y,z),

1
γ
(eγη(v,g(u0))−1)〉

+αg(v−u0)+F(g(u0),v)

〈N(r,s, t),
1
γ
(eγη(v,g(u0))−1)〉+F(g(u0),v)−αg(v−u0) ≥K(u) 〈N(x,y,z),

1
γ
(eγη(v,g(u0))−1)〉

+F(g(u0),v).(10)

From (9), (10) and Lemma 1, we have

〈N(r,s, t),
1
γ
(eγη(v,g(u0))−1)〉 + F(g(u0),v)�intK(u0) αg(v−u0),

∀v ∈C, r ∈ A1(v), s ∈ A2(v), t ∈ A3(v).

Conversely, consider the statement (ii) is correct, that is there exists u0 ∈C such that

〈N(r,s, t),
1
γ
(eγη(v,g(u0))−1)〉 + F(g(u0),v)�intK(u0) αg(v−u0),

∀v ∈C, r ∈ A1(v), s ∈ A2(v), t ∈ A3(v).(11)

Let v ∈C be an arbitrary element. Consider vλ = λv+(1−λ )u0, λ ∈ (0,1]. As C is convex,

vλ ∈C. Let rλ ∈ A1(vλ ), sλ ∈ A2(vλ ), tλ ∈ A3(vλ ), we get from (11)

(12) 〈N(rλ ,sλ , tλ ),
1
γ
(eγη(vλ ,g(u0))−1)〉+F(g(u0),vλ )�intK(u0) αg(vλ −u0) = tq

αg(v−u0).
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Now,

〈N(rλ ,sλ , tλ ),
1
γ
(eγη(vλ ,g(u0))−1)〉 + F(g(u0),vλ )

= 〈N(rλ ,sλ , tλ ),
1
γ
(eγη(λv+(1−λ )u0,g(u0))−1)〉

+F(g(u0),λv+(1−λ )u0)

= 〈N(rλ ,sλ , tλ ),
1
γ
(eγηλ (v,g(u0))+(1−λ )γη(u0,g(u0))−1)〉

+λF(g(u0),v)+(1−λ )F(g(u0),u0)

≤ K(u0)〈N(rλ ,sλ , tλ ),
1
γ
(λ (eγη(v,g(u0))−1)

+(1−λ )(eγη(v,g(u0))−1)〉+λF(g(u0),v)

= λ{〈N(rλ ,sλ , tλ ),
1
γ
(eγη(v,g(u0))−1)〉+F(g(u0),v)}.(13)

From (12), (13) and Lemma 1, we have

〈N(rλ ,sλ , tλ ),
1
γ
(eγη(v,g(u0))−1)〉+F(g(u0),v)�intK(u0) tq−1

αg(v−u0)(14)

Since A1(vλ ), A2(vλ ), A3(vλ ), A1(u0), A2(u0) and A3(u0) are compact, therefore by Lemma 3,

for each fixed rλ ∈A1(vλ ), sλ ∈A2(vλ ), tλ ∈A3(vλ ) there exists r
′
λ
∈A1(u0), s

′
λ
∈A2(u0), t

′
λ
∈

A3(u0) such that

‖rλ − r
′
λ
‖ ≤ H(A1(vλ ),A1(u0)),

‖sλ − s
′
λ
‖ ≤ H(A2(vλ ),A2(u0)),

‖tλ − t
′
λ
‖ ≤ H(A3(vλ ),A3(u0)).(15)

Since A1(u0), A2(u0) and A3(u0) are compact, therefore without loss of generality, we may

assume that

rλ → r0 ∈ A1u0 as λ → 0+

sλ → s0 ∈ A2u0 as λ → 0+

tλ → t0 ∈ A3u0 as λ → 0+.
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Also, A1, A2 and A3 are H-hemicontinuous, thus it follows that

H(A1(vλ ),A1(u0))→ 0 as λ → 0+

H(A2(vλ ),A2(u0))→ 0 as λ → 0+

H(A3(vλ ),A3(u0))→ 0 as λ → 0+.

By (15), we get

‖rλ − r0‖ ≤ ‖rλ − r
′
λ
‖+‖r

′
λ
− r0‖

≤ H(A1(vλ ),A1(r0))+‖r
′
λ
− r0‖→ 0 as λ → 0+,

‖sλ − v0‖ ≤ ‖sλ − s
′
λ
‖+‖s

′
λ
− v0‖

≤ H(A2(vλ ),A2(v0))+‖s
′
λ
− v0‖→ 0 as λ → 0+,

and

‖tλ − t0‖ ≤ ‖tλ − t
′
λ
‖+‖t

′
λ
− t0‖

≤ H(A3(vλ ),A3(t0))+‖t
′
λ
− t0‖→ 0 as λ → 0+.(16)

Since N is Lipschitz continuous with all arguments therefore we get

‖〈N(rλ ,sλ , tλ ),
1
γ
(eγη(v,g(u0))−1)〉− tq−1

αg(v−u0)−〈N(r0,s0, t0),
1
γ
(eγη(v,g(u0))−1)〉‖

≤ ‖〈N(rλ ,sλ , tλ )−N(r0,s0, t0),
1
γ
(eγη(v,g(u0))−1)〉‖+‖tq−1

αg(v−u0)‖

≤ 1
γ
{‖N(rλ ,sλ , tλ )−N(r0,sλ , tλ )‖+‖N(r0,sλ , tλ )−N(r0,s0, tλ )‖

+‖N(r0,s0, tλ )−N(r0,s0, t0)‖}‖eγη(v,g(u0))−1‖+ tq−1‖αg(v−u0)‖→ 0 as λ → 0+.(17)

By (12), we get

〈N(rλ ,sλ , tλ ),
1
γ
(eγη(vλ ,g(u0))−1)〉+F(g(u0),vλ )− tq−1

αg(v−u0) ∈ E2r (intK(u0)).
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Since E2r (intK(u0)) is closed therefore from (17), we have

〈N(r0,s0, t0),
1
γ
(eγη(v,g(u0))−1)〉+F(g(u0),v) ∈ E2r (intK(u0))

〈N(r0,s0, t0),
1
γ
(eγη(v,g(u0))−1)〉+F(g(u0),v) �intK(u0) 0, ∀ v ∈ K.

�

Theorem 6. Let C be a nonempty closed convex bounded subset of a real Euclidean space E1

and (E2,K) be an ordered Euclidean space induces by a pointed closed convex cone K. Let

K : C→ 2E2 be a closed convex pointed cone valued mapping with intK(u) 6= /0. Let g : C→C

be a closed convex and continuous single valued mapping and η : C×C→ E1 be an affine in the

first argument with η(u,g(u)) = 0, for all u∈C. Let F : C×C→ E2 be a completely continuous

in the first argument and affine in the second argument with the condition F(g(u),u) = 0, for

all u ∈C. Let αg : E1→ E2 be a weakly lower semicontinuous. Let N : L(E1,E2)×L(E1,E2)×

L(E1,E2)→ L(E1,E2) be a Lipschitz continuous mapping with all arguments, A1,A2,A3 : C→

L(E1,E2) be the nonempty compact valued mappings which are H-hemicontinuous and αg-

relaxed exponentially (γ,η)-monotone with respect to first argument of N and g. Then (2) is a

solvable, that is there exists u ∈C and x ∈ A1(u), y ∈ A2(u), z ∈ A3(u) such that

〈N(x,y,z),
1
γ
(eγη(v,g(u))−1)〉+F(g(u),v)�intK(u) 0, ∀v ∈C.

Proof. Consider the set valued mapping S : C→ 2E1 such that ∀v ∈C

S(v)= {u∈C : 〈N(x,y,z),
1
γ
(eγη(v,g(u))−1)〉+F(g(u),v)�intK(u) 0, ∀x∈A1(u), y∈A2(u), z∈A3(u)}.

First, we claim that S is a KKM-mapping. If S is not a KKM-mapping then there exists

{u1,u2,u3, ...,um} ⊂ C such that co{u1,u2,u3, ...,um} *
⋃m

i=1 S(ui) that means there exists at

least u ∈ co{u1,u2,u3, ...,um}, u = ∑
m
i=1 λ iui, where λ i ≥ 0, i = 1,2,3, ...,m, ∑

m
i=1 λ i = 1 but

u /∈
⋃m

i=1 S(ui). From the construction of S, for any x ∈ A1(u), y ∈ A2(u), z ∈ A3(u), we have

(18) 〈N(x,y,z),
1
γ
(eγη(ui,g(u))−1)〉+F(g(u),ui)�intK(u) 0, for i = 1,2,3, ...,m.
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From (18) and since η and F are affine in first and second argument respectively, it follows that

0 = 〈N(x,y,z),
1
γ
(eγη(u,g(u))−1)〉+F(g(u),u)

= 〈N(x,y,z),
1
γ
(eγη(∑m

i=1 λ iui,g(u))−1)〉+F(g(u),
m

∑
i=1

λ iui)

= 〈N(x,y,z),
1
γ
(e∑

m
i=1 λ iγη(ui,g(u))−1)〉+

m

∑
i=1

λ iF(g(u),ui)

≤K(u) 〈N(x,y,z),
1
γ
(e∑

m
i=1 λ iγη(ui,g(u))−1)〉+

m

∑
i=1

λ iF(g(u),ui)

=
m

∑
i=1

λ i{〈N(x,y,z),
1
γ
(eγη(ui,g(u))−1)〉+F(g(u),ui)} ≤intK(u) 0,

this shows that 0 ∈ intK(u), which contradicts the fact that K(u) is proper. Hence, S is a KKM-

mapping. Define another set valued mapping W : C→ 2E1 such that

W (v) = {u ∈C : 〈N(p,q,r),
1
γ
(eγη(v,g(u))−1)〉+F(g(u),v)

�intK(u) αg(v−u), ∀p ∈ A1(v), q ∈ A2(v), r ∈ A3(v)}, ∀v ∈C.

Now, we will prove that S(v)⊂W (v), ∀v ∈C.

Let u ∈ S(v), there exists some x ∈ A1(u), y ∈ A2(u), z ∈ A3(u), such that

〈N(x,y,z),
1
γ
(eγη(v,g(u))−1)〉+F(g(u),v)�intK(u) 0.(19)

Since N is αg-relaxed exponentially (γ,η)-monotone therefore ∀v∈C, p∈A1(v), q∈A2(v), r∈

A3(v) we have

(20)

〈N(x,y,z),
1
γ
(eγη(v,g(u))−1)〉+F(g(u),v)≤intK(u) 〈N(p,q,r),

1
γ
(eγη(v,g(u))−1)〉+F(g(u),v)−αg(v−u).

Using (19), (20) and Lemma 1, we have

〈N(p,q,r),
1
γ
(eγη(v,g(u))−1)〉+F(g(u),v)�intK(u) αg(v−u),

∀v ∈C, p ∈ A1(v), q ∈ A2(v), r ∈ A3(v).

Therefore u ∈W (v) that is S(v)⊂W (v), ∀v ∈C. This implies that W is also a KKM-mapping.

We claim that for each v ∈C, W (v) ⊂C is closed in the weak topology of E1. Let us suppose

that u ∈W (v)
w

, the weak closure of W (v). Since E1 is reflexive, there is a sequence {un} in
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W (v) such that {un} converges weakly to u∈C. Then, for each p∈ A1(v), q∈ A2(v), r ∈ A3(v),

we have

〈N(p,q,r),
1
γ
(eγη(v,g(un))−1)〉+F(g(un),v) �intK(un) αg(v−un)

〈N(p,q,r),
1
γ
(eγη(v,g(un))−1)〉+F(g(un),v)−αg(v−un) ∈ E2r (−intK(un)).

Since N and F are completely continuous and E2r (−intK(un)) is closed, αg is weakly lower

semicontinuous therefore the sequence

{〈N(p,q,r),
1
γ
(eγη(v,g(un))−1)〉+F(g(un),v)−αg(v−un)}

converges to

〈N(p,q,r),
1
γ
(eγη(v,g(u))−1)〉+F(g(u),v)−αg(v−u)

and

〈N(p,q,r),
1
γ
(eγη(v,g(u))−1)〉+F(g(u),v)−αg(v−u) ∈ E2r (−intK(u)).

Therefore

〈N(p,q,r),
1
γ
(eγη(v,g(u))−1)〉+F(g(u),v)�intK(un) αg(v−u).

Thus, u ∈W (v). This shows that W (v), ∀v ∈C is weakly closed. Furthermore, E1 is reflexive

and C ⊂ E1 is a nonempty closed convex and bounded. Therefore, C is weakly compact subset

of E1 and so W (v) is also weakly compact. Therefore from Lemma 2 and Theorem 5, it follows

that ⋂
v∈C

W (v) 6= /0.

Thus, there exists u ∈C such that

〈N(p,q,r),
1
γ
(eγη(v,g(u))−1)〉+F(g(u),v)�intK(un) αg(v−u), ∀v∈C, p∈A1(v), q∈A2(v), r∈A3(v).

Hence from Theorem 5, we can conclude that there exists u ∈C and x ∈ A1(u), y ∈ A2(u), z ∈

A3(u) such that

〈N(x,y,z),
1
γ
(eγη(v,g(u))−1)〉+F(g(u),v)�intK(u) 0, ∀v ∈C,

that is (2) is solvable. �
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Theorem 7. Let C be a nonempty closed convex bounded subset of a real Euclidean space E1

with 0 ∈C and (E2,K) be an ordered Euclidean space induces by a pointed closed convex cone

K(u). Let K : C → 2E2 be a closed convex pointed cone valued mapping with intK(u) 6= /0.

Let g : C → C be a closed convex and continuous single valued mapping and η : C×C →

E1 be an affine in the first argument with η(u,u) = 0, for all u ∈ C. Let F : C×C → E2

be a completely continuous in the first argument and affine in the second argument with the

condition F(u,u) = 0, for all u ∈ C. Let αg : E1 → E2 be a weakly lower semicontinuous.

Let N : L(E1,E2)×L(E1,E2)×L(E1,E2)→ Lc(E1,E2) be a Lipschitz continuous mapping with

all arguments, where Lc(E1,E2) be a space of all completely continuous linear mapping from

E1 to E2, A1,A2,A3 : C→ L(E1,E2) be the nonempty compact valued mappings which are H-

hemicontinuous and αg-relaxed exponentially (γ,η)-monotone with respect to first argument of

N and g. If there exists one r > 0 such that

〈N(p,q,s),
1
γ
(eγη(g(0),v)−1)〉+F(v,g(0))�intK(0) 0,

∀v ∈C, p ∈ A1(v), q ∈ A2(v), s ∈ A3(v) with ‖v‖= r.(21)

Then (2) is solvable that is there exists u ∈C and x ∈ A1(u), y ∈ A2(u), z ∈ A3(u) such that

〈N(x,y,z),
1
γ
(eγη(v,g(u))−1)〉+F(g(u),v)�intK(u) 0, ∀v ∈C.

Proof. For r > 0, assume that Cr = {u ∈ E1 : ‖u‖ ≤ r}. From Theorem 6, we know that (2) is

solvable over Cr that is there exist ur ∈C
⋂

Cr and xr ∈ A1(ur), yr ∈ A2(ur), zr ∈ A3(ur) such

that

(22) 〈N(xr,yr,zr),
1
γ
(eγη(v,g(ur))−1)〉+F(g(ur),v)�intK(ur) 0, ∀v ∈C∩Cr.

Putting v = 0 in (22), we get

(23) 〈N(xr,yr,zr),
1
γ
(eγη(0,g(ur))−1)〉+F(g(ur),0)�intK(ur) 0.

If ‖ur‖ = r, for all r then it contradicts to (21). Hence ‖ur‖ < r. For any w ∈C, let us choose

λ ∈ (0,1) small enough such that (1−λ )ur +λw ∈C∩Cr. Putting v = (1−λ )ur +λw in (22),

we get

(24) 〈N(xr,yr,zr),
1
γ
(eγη((1−λ )ur+λw,g(ur))−1)〉+F(g(ur),(1−λ )ur +λw)�intK(ur) 0.



566 MOHAMMAD FARID

Since η and F are affine in the first and second variable, we have

〈N(xr,yr,zr),
1
γ
(eγη((1−λ )ur+λw,g(ur))−1)〉+F(g(ur),(1−λ )ur +λw)

= 〈N(xr,yr,zr),
1
γ
(e(1−λ )γη(ur,g(ur))+λγη(w,g(ur))−1)〉+λF(g(ur),w)

≤K(ur) 〈N(xr,yr,zr),
1
γ
(1−λ )(eγη(ur,g(ur))−1)+

1
γ

λeγη(w,g(ur))−1)〉+λF(g(ur),w)

= λ{〈N(xr,yr,zr),
1
γ

eγη(w,g(ur))−1)〉+F(g(ur),w)}.(25)

Hence from (24), (25) and Lemma 1, we get

(26) 〈N(xr,yr,zr),
1
γ

eγη(w,g(ur))−1)〉+F(g(ur),w)�intK(ur) 0, ∀w ∈C.

Thus, (2) is solvable. �

If N(x,y,z) = N(x,y) and A3 ≡ 0, a zero mapping, then Theorem 5 reduces to the following

corollary:

Corollary 8. Let C be a nonempty closed convex bounded subset of a real Euclidean space E1

and (E2,K) be an ordered Euclidean space induces by a pointed closed convex cone K. Let

K : C→ 2E2 be a closed convex pointed cone valued mapping with intK(u) 6= /0. Let g : C→C

be a closed convex and continuous single valued mapping and η : C×C→ E1 be an affine in the

first argument with η(u,u) = 0, for all u∈C. Let F : C×C→E2 be a K(u)-convex in the second

argument with the condition F(u,u)= 0, for all u∈C. Let N : L(E1,E2)×L(E1,E2)→ L(E1,E2)

be a Lipschitz continuous mapping with all arguments, A1,A2 : C→ L(E1,E2) be the nonempty

compact valued mappings which are H-hemicontinuous and αg-relaxed exponentially (γ,η)-

monotone with respect to first argument of N and g. Then the following two statements (i) and

(ii) are equivalent:

(i) there exists u0 ∈C and x ∈ A1(u0), y ∈ (A2(u0)) such that

〈N(x,y),
1
γ
(eγη(v,g(u0))−1)〉+F(g(u0),v)�intK(u0) 0, ∀v ∈C,
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(ii) there exists u0 ∈C such that

〈N(r,s),
1
γ
(eγη(v,g(u0))−1)〉+F(g(u0),v)�intK(u0) αg(v−u0),

∀v ∈C, r ∈ A1(v), s ∈ A2(v).

If N(x,y,z) = N(x,y) and A3 ≡ 0, a zero mapping, and g ≡ I, an identity mapping then

Theorem 5 reduces to the following corollary:

Corollary 9. Let C be a nonempty closed convex bounded subset of a real Euclidean space

E1 and (E2,K) be an ordered Euclidean space induces by a pointed closed convex cone K.

Let K : C→ 2E2 be a closed convex pointed cone valued mapping with intK(u) 6= /0. Let η :

C×C→ E1 be an affine in the first argument with η(u,u) = 0, for all u∈C. Let F : C×C→ E2

be a K(u)-convex in the second argument with the condition F(u,u) = 0, for all u ∈ C. Let

N : L(E1,E2)×L(E1,E2)→ L(E1,E2) be a Lipschitz continuous mapping with all arguments,

A1,A2 : C→ L(E1,E2) be the nonempty compact valued mappings which are H-hemicontinuous

and α-relaxed exponentially (γ,η)-monotone with respect to first argument of N. Then the

following two statements (i) and (ii) are equivalent:

(i) there exists u0 ∈C and x ∈ A1(u0), y ∈ A2(u0) such that

〈N(x,y),
1
γ
(eγη(v,u0)−1)〉+F(u0,v)�intK(u0) 0, ∀v ∈C,

(ii) there exists u0 ∈C such that

〈N(r,s),
1
γ
(eγη(v,u0)−1)〉+F(u0,v)�intK(u0) α(v−u0),

∀v ∈C, r ∈ A1(v), s ∈ A2(v).

If N(x,y,z) = N(x) and A2,A3 ≡ 0, a zero mapping then Theorem 5 reduces to the following

corollary:

Corollary 10. Let C be a nonempty closed convex bounded subset of a real Euclidean space

E1 and (E2,K) be an ordered Euclidean space induces by a pointed closed convex cone K. Let

K : C→ 2E2 be a closed convex pointed cone valued mapping with intK(u) 6= /0. Let g : C→C

be a closed convex and continuous single valued mapping and η : C×C→ E1 be an affine in

the first argument with η(u,u) = 0, for all u ∈C. Let F : C×C→ E2 be a K(u)-convex in the
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second argument with the condition F(u,u) = 0, for all u ∈C. Let N : L(E1,E2)→ L(E1,E2) be

a Lipschitz continuous mapping, A1 : C→ L(E1,E2) be the nonempty compact valued mapping

which is H-hemicontinuous and αg-relaxed exponentially (γ,η)-monotone with respect to first

argument of N and g. Then the following two statements (i) and (ii) are equivalent:

(i) there exists u0 ∈C and x ∈ A1(u0) such that

〈N(x),
1
γ
(eγη(v,g(u0))−1)〉+F(g(u0),v)�intK(u0) 0, ∀v ∈C,

(ii) there exists u0 ∈C such that

〈N(r),
1
γ
(eγη(v,g(u0))−1)〉+F(g(u0),v)�intK(u0) αg(v−u0), ∀v ∈C, r ∈ A1(v).

If N(x,y,z) = N(x), A2,A3 ≡ 0, zero mappings and g≡ I, an identity mapping then Theorem

5 reduces to the following corollary:

Corollary 11. Let C be a nonempty closed convex bounded subset of a real Euclidean space

E1 and (E2,K) be an ordered Euclidean space induces by a pointed closed convex cone K.

Let K : C→ 2E2 be a closed convex pointed cone valued mapping with intK(u) 6= /0. Let η :

C×C→ E1 be an affine in the first argument with η(u,u) = 0, for all u ∈C. Let F : C×C→

E2 be a K(u)-convex in the second argument with the condition F(u,u) = 0, for all u ∈ C.

Let N : L(E1,E2)→ L(E1,E2) be a Lipschitz continuous mapping, A1 : C→ L(E1,E2) be the

nonempty compact valued mapping which is H-hemicontinuous and α-relaxed exponentially

(γ,η)-monotone with respect to first argument of N. Then the following two statements (i) and

(ii) are equivalent:

(i) there exist u0 ∈C and x ∈ A1(u0) such that

〈N(x),
1
γ
(eγη(v,u0)−1)〉+F(u0,v)�intK(u0) 0, ∀v ∈C,

(ii) there exists u0 ∈C such that

〈N(r),
1
γ
(eγη(v,u0)−1)〉+F(u0,v)�intK(u0) α(v−u0), ∀v ∈C, r ∈ A1(v).
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