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Abstract: In this paper, we use the elastic membrane model to calculate Apéry’s constant and others associated series. 

The de Saint-Venant’s solution of Poisson’s partial differential equation with rectangular boundary is used for the two 

limit cases of thin and square membranes. Gradient calculations at the boundaries give a relationship involving ratio 

𝜋 𝐺 𝜁(3)⁄   where 𝐺  is the Catalan’s constant and a rapidly convergent series for 𝜁(3)  analogous to famous 

Ramanujan’s series. 
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1. INTRODUCTION 

The Riemann zeta function or Euler-Riemann zeta function 𝜁(𝑠) is a function of complex variable 

𝑠 given by: 

𝜁(𝑠) = ∑
1

𝑘𝑠
         

+∞

𝑘=1

 

With ℛ𝑒(𝑠) > 1. 
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In 1735, Euler solved the famous Basel problem [1] and found 𝜁(2) =
𝜋2

6
 using the polynomial 

development of 
𝑠𝑖𝑛𝑥

𝑥
. He also brilliantly showed that 𝜁(4) =

𝜋4

90
 and 𝜁(6) =

𝜋6

945
. Finally, for even 

integers greater than 1, he established the general formula: 

∀𝑘 > 0        𝜁(2𝑘) =∣ 𝐵2𝑘 ∣
(2𝜋)2𝑘

2(2𝑘)!
   

where 𝐵2𝑘 are the Bernoulli numbers (𝐵2 =
1

6
 ; 𝐵4 = −

1

30
 ; …) [2,3]. 

But for odd integers, the problem appeared much more complicated [4-7] and Euler himself was 

not able to find a closed form for 𝜁(3). The Indian mathematician Ramanujan [8] worked a lot on 

this problem without success. We had to wait for Apery’s work in 1978, who demonstrated that 

𝜁(3) is an irrational number. This number was called Apery’s constant in honour of this important 

result. But even now, there exists no analytical or closed form expression for 𝜁(3) and for all 

others values of zeta function for odd integers i.e. 𝜁(2𝑘 + 1)  𝑘 ≥ 1. 

This problem remains of major interest in mathematics for numbers theory [9] particularly for 

prime numbers determination. From Euler work, the zeta function is related to prime numbers 

through Euler product formula: 

𝜁(𝑠) = ∑
1

𝑘𝑠

+∞

𝑘=1

= ∏
1

1 − 𝑝−𝑠
        

𝑝 𝑝𝑟𝑖𝑚𝑒

  

And, as reported in [10-11], the reciprocal of 𝜁(3)  is the probability that any three positive 

integers chosen at random will be coprime.  

Moreover, odd integers zeta function is of interest in physics particularly for quantum 

electrodynamics [12]. 

The objective of this paper is to show, that famous elastic membrane deformation problem, 

introduced by L. Prandtl [13], and widely used in elasticity theory [14] and in fluid mechanics [15], 

can be of major interest for Apéry’s and Catalan’s constant calculation and other values of 

𝜁(2𝑘 + 1)  𝑘 ≥ 1.  

We will first recall some useful technics and results, giving important relationships, which are 

good candidates on the way to solve this secular problem described by Van der Poorten [16] as “a 
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mystery wrapped in an enigma”. 

Then, the elastic membrane approach will be developed using old de Saint-Venant [17] solution 

available for rectangular shapes boundaries. Two limit cases will be particularly explored: the often 

called “thin membrane” and the highly symmetric square boundary. 

Finally, some consequences of the results will be given for unknown series calculations. 

 

2. PRELIMINARIES 

2.1 A relationship between 𝜁(𝑠) values. 

 

As recently showed in [18-19], the sum of 𝜁(𝑠) values can be related to the following series: 

𝜙(𝑠) = ∑
1

𝑛𝑠(𝑛 − 1)

+∞

𝑛=2

     (1) 

Giving, 

𝜙(𝑠) = 𝑠 − ∑ 𝜁(𝑛)

𝑠

𝑛=2

     (2) 

𝜙(1)  and 𝜙(2)  can easily be calculated as respectively a telescopic series and using partial 

fraction decomposition: 

𝜙(1) = 1  

And 

𝜙(2) = 2 −  𝜁(2)  

But for larger powers of the first factor of the denominator, it is, to our knowledge, impossible to 

obtain a closed form. For example, we can write Apéry’s constant as followed: 

𝜁(3) = 3 − 𝜁(2) − 𝜙(3)  

But there exists no closed form for 𝜙(3) = 0.15300902995… 

Using that method, Delplace [19] found: 

𝜁(3) = 4 −
9𝜋

400
−

𝜋2

6
−

𝜋4

90
= 1.202056864734… 

As an approximative value of Apéry’s constant. But until now, nobody was able to find a closed 
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form of 𝜁(3) as a sum of terms involving powers of 𝜋. 

 

2.2 A relationship with Mersenne’s numbers. 

 

From Euler’s solution of Basel problem, we have: 

𝜁(2) = 𝜋2 6⁄   

For odd terms, we have the following well-known result: 

∑
1

(2𝑛 + 1)2

+∞

𝑛=0

=
𝜋2

8
     (3) 

Giving for even terms of this series: 

∑
1

(2𝑛)2

+∞

𝑛=1

= ∑
1

𝑛2

+∞

𝑛=1

− ∑
1

(2𝑛 + 1)2

+∞

𝑛=0

=
𝜋2

24
 

We can then form the following ratio: 

∑
1

(2𝑛 + 1)2

+∞

𝑛=0

∑
1

(2𝑛)2

+∞

𝑛=1

⁄ =
𝜋2

8
 .
24

𝜋2
= 3 = 𝑀2 

 

With 𝑀2 = 22 − 1 being a Mersenne’s number. 

This result can easily be extended to all values of the power 𝑠 whatever is its parity giving the 

following simple theorem: 

∀𝑠 ∈ ℕ 𝑠 > 1 ∑
1

(2𝑛 + 1)𝑠

+∞

𝑛=0

∑
1

(2𝑛)𝑠

+∞

𝑛=1

⁄ = 2𝑠 − 1 = 𝑀𝑠     (4) 

The proof is straightforward using: 

𝜁(𝑠) = ∑
1

(2𝑛)𝑠

+∞

𝑛=1

+ ∑
1

(2𝑛 + 1)𝑠

+∞

𝑛=0

 

And 

𝜁(𝑠) = 2𝑠 . ∑
1

(2𝑛)𝑠

+∞

𝑛=1
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This result can be related to Dirichlet lambda function defined as: 

𝜆(𝑠) = ∑
1

(2𝑛 + 1)𝑠

+∞

𝑛=0

= (1 −
1

2𝑠
) . 𝜁(𝑠)     (5) 

Using above relationships for 𝑠 = 3 gives: 

𝜁(3) = 8 . ∑
1

(2𝑛)3

+∞

𝑛=1

 𝑎𝑛𝑑 𝜁(3) =
8

7
∑

1

(2𝑛 + 1)3

+∞

𝑛=0

=
8

7
. 𝜆(3) 

And using another famous Euler’s result: 

∑
(−1)𝑛

(2𝑛 + 1)3

+∞

𝑛=0

=
𝜋3

32
     (6) 

We obtain: 

𝜁(3) =
𝜋3

28
+

16

7
 . ∑

1

(4𝑛 − 1)3

+∞

𝑛=1

     (7) 

This last series converges to the value 0.041426822… but to our knowledge, there exists no closed 

form for it. 

Above equation has a well-known similar one as reported in [11]: 

𝜁(3) = −
𝜋3

28
+

16

7
 . ∑

1

(4𝑛 + 1)3

+∞

𝑛=0

     (8) 

The sum of both relationships gives: 

∑
1

(2𝑛 + 1)3

+∞

𝑛=0

= ∑
1

(4𝑛 + 1)3

+∞

𝑛=0

+ ∑
1

(4𝑛 − 1)3

+∞

𝑛=1

     (9) 

As reported in [11], above relationships might be regarded as leading candidates for determination 

of a closed form for 𝜁(2𝑘 + 1) as found for 𝜁(2𝑘). They will be useful in the following chapter 

3 for interpretation of elastic membrane results and calculation of Apéry’s constant. 

 

2.3 The use of Fourier series. 

 

The use of Fourier series is a powerful tool, used in Riemann’s original work, to obtain important 
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results about zeta function and associated series. For example, function defined as: ∀𝑥 ∈

[0, 𝜋] 𝑓(𝑥) = 1 − 2𝑥/𝜋 gives: 

∀𝑥 ∈ ℝ 𝑓(𝑥) =
8

𝜋2
 . ∑

𝑐𝑜𝑠((2𝑛 + 1)𝑥)

(2𝑛 + 1)2

+∞

𝑛=0

 

Giving for 𝑥 = 0: 

∑
1

(2𝑛 + 1)2

+∞

𝑛=0

=
𝜋2

8
 

And also 𝜁(2) after simple algebraic manipulations. 

And using Perseval formula: 

∑
1

(2𝑛 + 1)4

+∞

𝑛=0

=
𝜋4

96
 

And also 𝜁(4) after simple manipulations. 

It is also interesting to consider periodic functions of type:  ∀𝑥 ∈ [0, 𝜋]; ∀𝑘 ∈ ℕ; 𝑘 ≥ 1 𝑓(𝑥) =

𝑥𝑘 𝜋⁄ . For example, Fourier series expansion of 𝑓(𝑥) = 𝑥3 𝜋⁄  gives: 

∑
(−1)𝑛

(2𝑛 + 1)

+∞

𝑛=0

=
𝜋

4
 

And for 𝑓(𝑥) = 𝑥5 𝜋⁄ , we obtain: 

∑
(−1)𝑛

(2𝑛 + 1)5

+∞

𝑛=0

=
5 𝜋5

1536
 

These two above series correspond to well-known 𝛽 Dirichlet function [11] defined as: 

𝛽(𝑠) = ∑
(−1)𝑛

(2𝑛 + 1)𝑠
 𝑤𝑖𝑡ℎ 

+∞

𝑛=0

𝛽(2𝑘 + 1) =
(−1)𝑘 𝐸2𝑘

2(2𝑘)!
 . (

𝜋

2
)
2𝑘+1

     (10) 

Where 𝐸2𝑘 are the Euler’s numbers. 

But despite of this successful uses of these Fourier series expansions, curious results are sometimes 

observed. The case of 𝑓(𝑥) = 𝑥6 𝜋⁄   reveals what we interpreted as a Gibbs phenomenon 

illustrated below. After 6 integration by part we obtain: 
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𝑓(𝑥) =
𝜋5

7
+ ∑ (((−1)𝑛

12𝜋3

𝑛
− (−1)𝑛

240𝜋

𝑛4
+ (−1)𝑛

1440

𝑛6𝜋
) 𝑐𝑜𝑠(𝑛𝑥))

+∞

𝑛=1

 

Which gives for 𝑥 = 0 : 𝜋2 = 12 𝐿𝑛2  which is of course false. The quantity 𝜋2 12𝐿𝑛2⁄   is a 

well-known quantity in numbers theory called the Lévy’s constant. It is quite surprising to obtain 

this constant for 𝑘 = 6 . Moreover, calculation of 𝑓(𝜋)  gives also a curious result which is 

𝜁(1) = 0 being also impossible as this series diverges. Doing the same calculations with 𝑓(𝑥) =

𝑥2 𝜋⁄  and 𝑓(𝑥) = 𝑥4 𝜋⁄  gives respectively: 

𝑓(𝑥) =
𝜋

3
+ ∑

4

𝑛2𝜋
 (−1)𝑛𝑐𝑜𝑠(𝑛𝑥)

+∞

𝑛=1

 

And 

𝑓(𝑥) =
𝜋3

5
+ ∑ ((

8𝜋

𝑛2
(−1)𝑛 −

48

𝑛4𝜋
(−1)𝑛) 𝑐𝑜𝑠(𝑛𝑥))

+∞

𝑛=1

 

These two equations perfectly verify 𝑓(0) = 0 and 𝑓(𝜋) being respectively equal to 𝜋 and 𝜋3. 

But whatever are the sometimes-surprising convergence problems encountered using Fourier 

series they allow important results for zeta function calculations to be obtained. Moreover, because 

we know, in Physics, that Fourier series describe the behaviour of waves in elastic media, we 

decided to study how mathematical description of an elastic membrane can be related to odd values 

of Euler-Riemann zeta function. 

 

3. MAIN RESULTS 

As reported in the introduction of this paper, the membrane analogy introduced by L. Prandtl [13] 

has proved very valuable. Imagine a homogeneous membrane supported at the edges subjected to 

a uniform tension at the edges and a uniform lateral pressure. If 𝑝 is the pressure per unit area of 

the membrane and 𝑞 is the uniform tension per unit length of its boundary, the tensile forces 

acting on the sides of a rectangular infinitesimal element of surface 𝑑𝑥𝑑𝑦, in the case of small 

deflection of the membrane, a resultant in the upward direction. The following figure illustrates 

this elastic membrane. 
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Figure 1: The elastic membrane system from [14]. 

The equation of equilibrium of the surface element 𝑑𝑥𝑑𝑦 gives: 

𝜕²𝑧

𝜕𝑥²
+

𝜕²𝑧

𝜕𝑦²
= −

𝑝

𝑞
 

Which is a Poisson partial differential equation (PDE). Of course, membrane deflection 𝑧 is zero 

on the boundary. We will now consider the case of a rectangular boundary and use the following 

notations for a general case: 

𝜕²𝑓

𝜕𝑥²
+

𝜕²𝑓

𝜕𝑦²
= −𝐾 

De Saint-Venant solution [17] of this PDE takes the following form: 

𝑓(𝑥, 𝑦) =
16𝐾𝑎2

𝜋3
∑

(−1)𝑛

(2𝑛 + 1)3
(1 −

𝑐ℎ (
(2𝑛 + 1)𝜋

2𝑎 𝑦)

𝑐ℎ (
(2𝑛 + 1)𝜋

2𝑎
𝑏)

) 𝑐𝑜𝑠 (
(2𝑛 + 1)𝜋

2𝑎
𝑥)

+∞

𝑛=0

 

With 2𝑎  and 2𝑏  being lengths of rectangular membrane sides as indicated in the following 

figure: 

 

Figure2: The rectangular membrane from [14]. 
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We can easily calculate both the maximum and mean values of function 𝑓(𝑥, 𝑦) corresponding 

to the maximum and mean deflection of the elastic membrane. 

𝑓𝑚𝑎𝑥 = 𝑓(0,0) =
16𝐾𝑎2

𝜋3
∑

(−1)𝑛

(2𝑛 + 1)3

+∞

𝑛=0

(1 −
1

𝑐ℎ (
(2𝑛 + 1)𝜋

2𝑎 𝑏)
) 

And, 

< 𝑓(𝑥, 𝑦) >=
1

𝑎𝑏
∫∫𝑓(𝑥, 𝑦)

𝑏

0

𝑎

0

𝑑𝑥𝑑𝑦

=
32𝐾𝑎2

𝜋4
∑

1

(2𝑛 + 1)4

+∞

𝑛=0

(1 −
2𝑎

(2𝑛 + 1)𝜋𝑏
𝑡ℎ (

(2𝑛 + 1)𝜋

2𝑎
𝑏)) 

For the case of the “thin membrane” corresponding to 𝑏 ≫ 𝑎, we can calculate the ratio of above 

quantities to obtain: 

𝑓𝑚𝑎𝑥

< 𝑓 >
=

3

2
 

Which is a well-known result in fluid mechanics for the laminar flow in ducts of rectangular cross-

section [15]. 

For the case of a square membrane i.e. 𝑏 = 𝑎, we obtained: 

 

𝑓𝑚𝑎𝑥

< 𝑓 >
=

𝜋

2
 .

𝜋3

32 − ∑
(−1)𝑛

(2𝑛 + 1)3 .
1

𝑐ℎ (
(2𝑛 + 1)𝜋

2
)

+∞
𝑛=0

𝜋4

96
−

2
𝜋

∑
1

(2𝑛 + 1)5 . 𝑡ℎ (
(2𝑛 + 1)𝜋

2
)+∞

𝑛=0

= 2.09625538… 

From above equation, we can calculate the components of the gradient ∇⃗⃗ 𝑓: 

𝜕𝑓

𝜕𝑥
=

8𝐾𝑎

𝜋2
∑

(−1)𝑛+1

(2𝑛 + 1)2
  (1 −

𝑐ℎ (
(2𝑛 + 1)𝜋

2𝑎 𝑦)

𝑐ℎ (
(2𝑛 + 1)𝜋

2𝑎 𝑏)
) 𝑠𝑖𝑛 (

(2𝑛 + 1)𝜋

2𝑎
𝑥)

+∞

𝑛=0

 

𝜕𝑓

𝜕𝑦
=

8𝐾𝑎

𝜋2
∑

(−1)𝑛+1

(2𝑛 + 1)2
  
𝑠ℎ (

(2𝑛 + 1)𝜋
2𝑎 𝑦)

𝑐ℎ (
(2𝑛 + 1)𝜋

2𝑎 𝑏)
𝑐𝑜𝑠 (

(2𝑛 + 1)𝜋

2𝑎
𝑥)

+∞

𝑛=0
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We can then calculate alongside of length 2𝑎 i.e. taking 𝑦 = 𝑏; both the maximum and mean 

values of the gradient: 

(
𝜕𝑓

𝜕𝑦
)
𝑚𝑎𝑥

= (
𝜕𝑓

𝜕𝑦
)
𝑦=𝑏
𝑥=0

=
8𝐾𝑎

𝜋2
∑

(−1)𝑛+1

(2𝑛 + 1)2
 𝑡ℎ (

(2𝑛 + 1)𝜋

2𝑎
 𝑏)

+∞

𝑛=0

 

< (
𝜕𝑓

𝜕𝑦
)
𝑦=𝑏

> =
1

𝑎
 ∫ (

𝜕𝑓

𝜕𝑦
)
𝑦=𝑏

𝑑𝑥

𝑎

0

=
16𝐾𝑎

𝜋3
∑

(−1)2𝑛+1

(2𝑛 + 1)3
 𝑡ℎ (

(2𝑛 + 1)𝜋

2𝑎
 𝑏)

+∞

𝑛=0

 

We can now consider the two limit cases i.e. the case of a thin membrane meaning 𝑏 ≫ 𝑎 and the 

case of a square membrane meaning 𝑏 = 𝑎. 

For 𝑏 ≫ 𝑎, we obtain: 

(
𝜕𝑓

𝜕𝑦
)
𝑚𝑎𝑥

= −
8𝐾𝑎

𝜋2
∑

(−1)𝑛

(2𝑛 + 1)2
 

+∞

𝑛=0

 

 

< (
𝜕𝑓

𝜕𝑦
)
𝑦=𝑏

> = −
16𝐾𝑎

𝜋3
∑

1

(2𝑛 + 1)3

+∞

𝑛=0

 

We can now form the ratio of these two quantities and using the theorem given in chapter 2.2, we 

obtain: 

(
𝜕𝑓

𝜕𝑦
)
𝑚𝑎𝑥

< (
𝜕𝑓

𝜕𝑦
)
𝑦=𝑏

>⁄ = 
4𝜋𝐺

7𝜁(3)
= 1.367936563…     (11) 

Where 𝐺 is well-known Catalan’s constant: 

𝐺 = 𝛽(2) = ∑
(−1)𝑛

(2𝑛 + 1)2
 

+∞

𝑛=0

= 0.915965594… 

We know from Apéry’s proof that 𝜁(3)  is an irrational number; but until now, we ignore if 

Catalan’s constant is irrational or not even if it is conjectured. But it is amazing that our elastic thin 

membrane gave us a quantity involving ratio 𝜋𝐺 𝜁(3)⁄ = 2.393888986… which is, considering 

8 first decimals, not very far from being a rational number. The thin membrane model gives a 

physical signification to this ratio as the ratio of gradient values along the small side of length 2𝑎. 

Let us now consider the case 𝑏 = 𝑎. 
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Due to the perfect symmetry of square geometry, we have: 

(
𝜕𝑓

𝜕𝑥
)
𝑥=𝑎

=
8𝐾𝑎

𝜋2
∑

(−1)2𝑛+1

(2𝑛 + 1)2

+∞

𝑛=0

 (1 −
𝑐ℎ (

(2𝑛 + 1)𝜋
2𝑎 𝑦)

𝑐ℎ (
(2𝑛 + 1)𝜋

2 )
) 

And, 

(
𝜕𝑓

𝜕𝑦
)
𝑦=𝑎

=
8𝐾𝑎

𝜋2
∑

(−1)𝑛+1

(2𝑛 + 1)2

+∞

𝑛=0

 𝑡ℎ (
(2𝑛 + 1)𝜋

2
)  𝑐𝑜𝑠 (

(2𝑛 + 1)𝜋

2𝑎
𝑥) 

For others components of the gradient, we have: 

(
𝜕𝑓

𝜕𝑥
)
𝑦=𝑎

= (
𝜕𝑓

𝜕𝑦
)
𝑥=𝑎

= 0 

We can then easily calculate the mean values of gradient components along each sides of the square 

giving: 

< (
𝜕𝑓

𝜕𝑥
)
𝑥=𝑎

> =
8𝐾𝑎

𝜋2
∑

(−1)2𝑛+1

(2𝑛 + 1)2

+∞

𝑛=0

− 
16𝐾𝑎

𝜋3
∑

(−1)2𝑛+1

(2𝑛 + 1)3
 𝑡ℎ (

(2𝑛 + 1)𝜋

2
)

+∞

𝑛=0

 

< (
𝜕𝑓

𝜕𝑦
)
𝑦=𝑎

> =  
16𝐾𝑎

𝜋3
∑

(−1)2𝑛+1

(2𝑛 + 1)3
 𝑡ℎ (

(2𝑛 + 1)𝜋

2
)

+∞

𝑛=0

 

These two values of the mean gradient along each side must be the same due to square geometry 

symmetry giving: 

4

𝜋
∑

1

(2𝑛 + 1)3

+∞

𝑛=0

 𝑡ℎ (
(2𝑛 + 1)𝜋

2
) = ∑

1

(2𝑛 + 1)2

+∞

𝑛=0

= 𝜆(2) 

Because we know from chapter 2.2 that the right-side series converges to 𝜋2 8⁄  (equation 3), we 

can write: 

∑
1

(2𝑛 + 1)3

+∞

𝑛=0

 𝑡ℎ (
(2𝑛 + 1)𝜋

2
) =

𝜋3

32
= ∑

(−1)𝑛

(2𝑛 + 1)3

+∞

𝑛=0

= 𝛽(3) 

Hyperbolic tangent function can be written in its exponential form giving: 

∑
1

(2𝑛 + 1)3

+∞

𝑛=0

− 2 ∑
1

(2𝑛 + 1)3(𝑒(2𝑛+1)𝜋 + 1)

+∞

𝑛=0

=
𝜋3

32
 

From chapter 2.2 (equation 5), we know that: 
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𝜆(3) = ∑
1

(2𝑛 + 1)3

+∞

𝑛=0

=
7

8
 . 𝜁(3) 

Giving, 

𝜁(3) =
𝜋3

28
+

16

7
 ∑

1

(2𝑛 + 1)3(𝑒(2𝑛+1)𝜋 + 1)

+∞

𝑛=0

     (12) 

By identifying this equation with its equivalent given in chapter 2.2 (equation 7), we obtain: 

∑
1

(4𝑛 − 1)3

+∞

𝑛=1

= ∑
1

(2𝑛 + 1)3(𝑒(2𝑛+1)𝜋 + 1)

+∞

𝑛=0

     (13) 

Convergence of the right-side series is extremely rapid and only five terms give 20 decimals in 

perfect agreement with left side series value. 

And, from equation (8) in chapter 2.2, we obtain: 

∑
1

(4𝑛 + 1)3

+∞

𝑛=0

=
𝜋3

32
+ ∑

1

(2𝑛 + 1)3(𝑒(2𝑛+1)𝜋 + 1)

+∞

𝑛=0

     (14) 

It is also interesting that the above series for 𝜁(3) (equation 12) has a very similar form to well-

known Ramanujan’s expression [8]: 

𝜁(3) =
7

180
𝜋3 − 2 ∑

1

𝑛3(𝑒2𝜋𝑛 − 1)

+∞

𝑛=1

     (15) 

Which gives the following inequality: 

𝜋3

28
+

16

7
 ∑

1

(2𝑛 + 1)3(𝑒(2𝑛+1)𝜋 + 1)

𝑁

𝑛=0

< 𝜁(3) <
7

180
𝜋3 − 2 ∑

1

𝑛3(𝑒2𝜋𝑛 − 1)

𝑁+1

𝑛=1

 

Because the series converges very rapidly, a value of 𝑁 = 2 already gives a great accuracy for 

𝜁(3). 

Using above results, we also obtained the following expression for 𝜁(3): 

𝜁(3) =
47𝜋3

1260
− ∑

1

𝑛3(𝑒2𝜋𝑛 − 1)

+∞

𝑛=1

+
8

7
∑

1

(2𝑛 + 1)3(𝑒(2𝑛+1)𝜋 + 1)

𝑁

𝑛=0

     (16) 

It is remarkable that others expressions found for 𝜁(5) and 𝜁(7) given by Plouffe [20], Borwein 

& al. [21], Grosswald [22] and reported in [11] also take a very similar form: 
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𝜁(5) =
𝜋5

294
−

72

35
∑

1

𝑛5(𝑒2𝜋𝑛 − 1)

+∞

𝑛=1

−
2

35
∑

1

𝑛5(𝑒2𝜋𝑛 + 1)

+∞

𝑛=1

 

𝜁(7) =
19𝜋7

56700
− 2 ∑

1

𝑛7(𝑒2𝜋𝑛 − 1)

+∞

𝑛=1

 

 

To conclude, in this paper, we used the elastic membrane model and the de Saint-Venant solution 

of the second order partial differential with rectangular boundary conditions. 

Calculations of gradient components values along the boundaries gave interesting results in 

numbers theory. First of all, for the limit case of the “thin membrane”, we showed that the ratio 

(4𝜋𝐺 7𝜁(3)⁄ ) where 𝐺 is the Catalan’s constant represents the ratio of maximum and average 

boundary gradient values. Ratio (𝜋𝐺 𝜁(3)⁄ ) = 2.393888986… being a quasi-rational number 

appeared particularly important and could be considered as a new mathematical constant. 

In the case of the square membrane, average wall gradient calculations gave for 𝜁(3) , a new 

rapidly convergent series, very close to famous Ramanujan’s expression. By identification, we 

deduced, new series for both: 

∑
1

(4𝑛 − 1)3

+∞

𝑛=1

 𝑎𝑛𝑑 ∑
1

(4𝑛 + 1)3

+∞

𝑛=0

 

The sum of these two series being the Dirichlet lambda function 𝜆(3) 

Finally, we gave an inequality which allows a very accurate determination of Apéry’s constant 

with few terms calculation. 
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