

Available online at http://scik.org
J. Math. Comput. Sci. 2 (2012), No. 6, 1759-1765

ISSN: 1927-5307

CYCLIC GROUP ACTIONS ON ELLIPTIC SURFACES $E(2 n)$

HONGXIA LI*
College of Arts and Sciences, Shanghai Maritime University, Shanghai 201306, China

Abstract

In this paper, we study the action of cyclic group \mathbf{Z}_{3} on elliptic surfaces $E(2 n),(n \geq 1)$. For convenience, we suppose the fixed point set of \mathbf{Z}_{3} is composed of 2-spheres. We give a classification of this action. At the same time, we obtain the representation induced by \mathbf{Z}_{3} on the second cohomology of $E(2 n)$.

Keywords: cyclic group actions; fixed points; the second cohomology.
2000 AMS Subject Classification: 57R55; 57S17

1. Introduction

As to the classification of group actions on 4-manifolds, there are many results for pseudofree actions such as [9] and [10] and so on. A recent research is [3]. In that paper, they gave a complete description of the fixed-point set structure of a symplectic cyclic action of prime order on a minimal symplectic 4 -manifold with $c_{1}^{2}=0$. In the case of topological manifolds, [4] showed that every closed, simply connected topological 4-manifold admits an action of cyclic group \mathbf{Z}_{p} of any odd prime order. The action will be homologically trivial and pseudofree except in certain cases when $p=3$.

[^0]In this paper, we assume the fixed point set of \mathbf{Z}_{p} is composed of 2-spheres S^{2}. By [4], this case occurs only when $p=3$. Thus we only study the action of \mathbf{Z}_{3} on elliptic surfaces. Meanwhile, we get the representation induced by \mathbf{Z}_{3} on the second cohomology $H^{2}(E(2 n))$.

We organize this paper as follows. In section 2, we give some preliminaries about the elliptic surfaces $E(2 n)$ and group actions of \mathbf{Z}_{p}. In section 3, we prove the main results.

2. Preliminaries

In this paper, we always suppose $E(2 n)(n \geq 1)$ be a minimal elliptic surface. $E(2 n)$ is a simply connected 4-manifold which is defined as the $2 n$-fold fiber sum of copies of $E(1)$, where $E(1)=\mathbf{C} P^{2} \sharp \overline{\mathbf{C P}}{ }^{2}$ being equipped with an elliptic fibration.

Note that $\operatorname{sign}(E(2 n))=-16 n$ and $\chi(E(2 n))=24 n$. Thus $E(2)=E(1) \sharp_{\mathbb{T}^{2}} E(1)$ is the $K 3$-surface. To see this just note that the Euler characteristic are additive under taking fiber connected sums over a torus. Hence $\operatorname{sign}(E(2))=-16$ and $\chi(E(2))=24$ which characterizes $K 3$ surface [6].

Let \mathbf{Z}_{p} be a cyclic group action on 4-manifold X with odd prime order $p . g: X \rightarrow X$ is a generator of \mathbf{Z}_{p}. Let $F=\operatorname{Fix}(g)$ denote the fixed point set of \mathbf{Z}_{p}. By Local Smith theory, F consists of isolated points and surfaces. Besides Edmonds (Proposition 2.4 in [5]) proved that all fixed surfaces are 2-spheres if and only if the representation g_{*} on $H^{2}(X)$ is a permutation representation. In general, we have the well known Lefschetz fixed point formula

$$
\chi(F)=\Lambda(g)=2+\operatorname{Trace}\left[g_{*}: H^{2}(X) \rightarrow H^{2}(X)\right] .
$$

For g and \hat{g} defined as above, we have

$$
\operatorname{Spin}(\hat{g}, X)=\operatorname{ind}_{\hat{g}} D=\operatorname{tr}\left(\left.\hat{g}\right|_{\text {ker } D}\right)-\operatorname{tr}\left(\left.\hat{g}\right|_{\text {coker } D}\right),
$$

where $\operatorname{Spin}(\hat{g}, X)$ denote the spin number of X under the action of g, D denotes the Dirac operator. Especially, when $X=E(2 n)$ is an elliptic surface, we have the following Lefschetz formula about the spin number.

Lemma 2.1 Let $X=E(2 n)(n \geq 1)$ be a minimal elliptic surface. $g: X \rightarrow X$ is a cyclic group action on X with order p (where p is odd prime). \hat{g} is the lift of g which preserves trivial Spin ${ }^{c}$ structure. Assume the fixed point set X^{g} is composed of isolated points P_{j} and connected 2-manifolds F_{k}, then we have the following formula for Spin number

$$
\begin{align*}
& \operatorname{Spin}(\hat{g}, X)=-\frac{1}{4} \sum_{P_{j}} \epsilon\left(P_{j}, \hat{g}\right) \csc \left(\alpha_{j} / 2\right) \csc \left(\beta_{j} / 2\right) \tag{1}\\
& +\frac{1}{4} \sum_{F_{k}} \epsilon\left(F_{k}, \hat{g}\right) \cos \left(\theta_{k} / 2\right) \csc ^{2}\left(\theta_{k} / 2\right)\left[F_{k}\right] \cdot\left[F_{k}\right]
\end{align*}
$$

where $\alpha_{j}\left(\right.$ resp $\left.\beta_{j}\right)$ denotes $2 \pi l_{\alpha_{j}} / p\left(\operatorname{resp} 2 \pi l_{\beta_{j}} / p\right)\left(0<\alpha_{j}, \beta_{j}<\pi\right), \theta_{k}=2 \pi l_{\theta_{j}} / p(0<$ $\left.\theta_{k}<\pi\right), \epsilon\left(P_{j}, \hat{g}\right)$ and $\epsilon\left(F_{k}, \hat{g}\right)$ are ± 1, the sign depends on the action of g on the Spin bundle.

As to the proof of this lemma we can refer to $[1,2,7,8]$.
For closed, simply connected, topological 4-manifold X, [5] give a direct sum decomposition of $H^{2}(X)=T \oplus C \oplus R$, where T is t summands of trivial type, C is c summands of cyclotomic type and R is r summands of regular type. And the following relation exists.

$$
\begin{array}{r}
t+c(p-1)+r p=\beta_{2}(X), \\
\beta_{1}(F)=c, \\
\beta_{0}(F)+\beta_{2}(F)=t+2,
\end{array}
$$

where β_{i} is the i-th Betti number.

3. Main results

At first, we study the action of $G=\mathbf{Z}_{3}$ on $X=K 3$ surface.
Suppose the fixed point set is composed of disjoint union of m copies of 2 -sphere S^{2}. Then by [5], the representation of G on $H^{2}\left(K_{3}\right)$ is permutation. For convenience, we denote by $F=\operatorname{Fix}(\mathrm{g})$ the disjoint union of m copies of 2 -sphere S^{2}, and denote by $N=\left[S^{2}\right] \cdot\left[S^{2}\right]$ the selfintersection number of S^{2}. Then from fomula (1), we have

$$
\operatorname{Spin}(\hat{g}, X)=\operatorname{Spin}\left(\hat{g^{2}}, X\right)=-\frac{1}{6} N .
$$

Theorem 3.1 Suppose there exists a smooth cyclic group action G of order 3 on K3 surface and the fixed point set of G is $m S^{2}$. Then the only possible case is $m=12$ and the representation of G on $H^{2}\left(K_{3}\right)=22 \mathbf{Z}$.

Proof. On the one hand, the ordinary Lefschetz formula should hold: $L(g, X)=\chi(F)=$ $2+\operatorname{tr}\left(\left.g\right|_{H^{2}(X)}\right)=2 m$. Since $\operatorname{tr}\left(\left.g\right|_{H^{2}(X)}\right) \leq b_{2}=22$, we have $m \leq 12$.

Note that

$$
\begin{aligned}
\chi(X / G) & =\frac{1}{3}(24+2 \chi(F))=8+\frac{4}{3} m \\
\operatorname{sign}(X / G) & =\frac{1}{3}(-16+2 \operatorname{sign}(F))=\frac{1}{3}(-16+2 \operatorname{sign}(F))
\end{aligned}
$$

From formula (1), we have

$$
-\frac{1}{8} \operatorname{sign}(F)=-\frac{m N}{6}
$$

Thus

$$
\operatorname{sign}(X / G)=\frac{8}{9}(-6+m N)
$$

Since $\operatorname{sign}(X / G) \in \mathbf{Z}$, we have $m N \equiv 6 \bmod 9$. Suppose $m N=9 k+6, k \in \mathbf{Z}$, then

$$
b_{+}^{G}=\frac{1}{2}(\chi(X / G)+\operatorname{sign}(X / G)-2)=3+4 k+\frac{2 m}{3} .
$$

Hence $m \equiv 0 \bmod 3$, that is $m=3,6,9,12$. Since $b_{+}^{G} \leq b_{+}=3$, we have the following results,

Case 1. When $b_{+}^{G}=1$, we have $m=3, k=-1, N=-1$.
Case 2. When $b_{+}^{G}=3$, we have $m=12, k=-2, N=-1$.
On the other hand, by the G-index theorem,

$$
\begin{aligned}
\operatorname{ind}_{\hat{g}} D_{X} & =k_{0}+\zeta k_{1}+\zeta^{2} k_{2}=-\frac{m N}{6} \\
\operatorname{ind}_{\hat{g}^{2}} D_{X} & =k_{0}+\zeta^{2} k_{1}+\zeta k_{2}=-\frac{m N}{6} \\
\operatorname{ind}_{1} D_{X} & =k_{0}+k_{1}+k_{2}=2
\end{aligned}
$$

The solution of these equations can be the following two cases,
Case 1. $k_{0}=1, k_{1}=k_{2}=\frac{1}{2}$.
Case 2. $k_{0}=2, k_{1}=k_{2}=0$.
Since $k_{i} \in \mathbf{Z}$, case 1 can not exist.
From [5], $H^{2}\left(K_{3}\right)=T \oplus C \oplus R$. Meanwhile, we have the following relations.

$$
\begin{array}{r}
t+c(p-1)+r p=\beta_{2}(K 3), \\
\beta_{1}(F)=c, \\
\beta_{0}(F)+\beta_{2}(F)=t+2 .
\end{array}
$$

Since $\beta_{2}(K 3)=22, \beta_{0}(F)=\beta_{2}(F)=m, \beta_{1}(F)=0$, we have $r=c=0$ and $t=22$ for case 2. Thus the representation of G on $H^{2}\left(K_{3}\right)=22 \mathbf{Z}$ and theorem 3.1 is proved.

Next, we study the $G=\mathbf{Z}_{3}$ action on elliptic surface $X=E(4)$. We obtain the following result.

Theorem 3.2 Suppose there exists a smooth cyclic group action G of order 3 on the elliptic surface $E(4)$ and the fixed point set of G is the disjoint union of $m S^{2}$. Then the action belongs to one of the three types in Table 1, where $R(G)$ in table 1 denotes the representation induced by G on $H^{2}(E(4))$.

Table 1. The classification of actions

Type	m	b_{+}^{G}	b_{-}^{G}	b_{2}^{G}	$\operatorname{Sign}(X / G)$	N	$R(G)$
A_{1}	3	1	17	18	-16	-2	$4 \mathbf{Z} \oplus 14 \mathbf{Z}(G)$
A_{2}	6	3	19	22	-16	-1	$10 \mathbf{Z} \oplus 12 \mathbf{Z}(G)$
A_{3}	24	7	39	46	-32	-1	$46 \mathbf{Z}$

Proof. On the one hand, we have $m \leq 24$ by the Lefschetz formula.
Note that $\operatorname{sign}(F)=\frac{4 m N}{3}$, thus

$$
\operatorname{sign}(X / G)=\frac{1}{3}(-32+2 \operatorname{sign}(F))=\frac{8}{9}(-12+m N)
$$

Since $\operatorname{sign}(X / G) \in \mathbf{Z}$, we have $m N \equiv 12 \bmod 9$. Thus $m N=9 k+12, k \in \mathbf{Z}$. Meanwhile,

$$
\chi(X / G)=\frac{1}{3}(24+2 \chi(F))=8+\frac{4}{3} m
$$

Then we have

$$
b_{+}^{G}=\frac{1}{2}(\chi(X / G)+\operatorname{sign}(X / G)-2)=7+4 k+\frac{2 m}{3} .
$$

Hence $m \equiv 0 \bmod 3$. That is $m=3,6,9,12,15,18,21,24$. Since b_{+}^{G} is 1 or 3 or 5 or 7 , we obtain the following results,

Case 1. When $b_{+}^{G}=1$, we have $m=3, k=-2, N=-2$.
Case 2. When $b_{+}^{G}=3$, we have $m=6, k=-2, N=-1$.
Case 3. When $b_{+}^{G}=5$, we have $m=3, k=-1, N=1$.
Case 4. When $b_{+}^{G}=5$, we have $m=15, k=-3, N=-1$.
Case 5. When $b_{+}^{G}=7$, we have $m=24, k=-4, N=-1$.
On the other hand, by the G-index theorem, we have

$$
\begin{aligned}
\operatorname{ind}_{\hat{g}} D_{X} & =k_{0}+\zeta k_{1}+\zeta^{2} k_{2}=-\frac{m N}{6} \\
\operatorname{ind}_{\hat{g}^{2}} D_{X} & =k_{0}+\zeta^{2} k_{1}+\zeta k_{2}=-\frac{m N}{6} \\
\operatorname{ind}_{1} D_{X} & =k_{0}+k_{1}+k_{2}=4
\end{aligned}
$$

For case 3 and 4 , there are some k_{j} which do not belong to \mathbf{Z}. Thus case 3 and 4 can not exist.

Besides, from the direct sum decomposition $H^{2}(E(4))=T \oplus C \oplus R$, we have

$$
\begin{array}{r}
t+2 c+3 r=\beta_{2}(E(4)) \\
\beta_{1}(F)=c, \\
\beta_{0}(F)+\beta_{2}(F)=t+2,
\end{array}
$$

which together with the facts

$$
\beta_{2}(E(4))=46, \beta_{0}(F)=\beta_{2}(F)=m, \beta_{1}(F)=0
$$

gives the following results.
For case $1, r=14, t=4$. Thus the representation of G on $H^{2}(E(4))$ is $4 \mathbf{Z} \oplus 14 \mathbf{Z}(G)$.
For case $2, r=12, t=10$. Thus the representation of G on $H^{2}(E(4))$ is $10 \mathbf{Z} \oplus 12 \mathbf{Z}(G)$.
For case $5, r=0, t=46$. Thus the representation of G on $H^{2}(E(4))$ is $46 \mathbf{Z}$. This completes the proof of theorem 3.2.

As to the $G=\mathbf{Z}_{3}$ action on $E(2 n)(n>2)$, readers can study as above.

References

[1] M. Atiyah and R. Bott, A lefschetz fixed point formula for elliptic complexes II, Applications. Ann. of Math. 88 (1968) 451-491.
[2] M. Atiyah and F. Hirzebruch, Spin manifolds and group actions, Essays in Topology and Related Topics, Springer-Verlag (1970) 18-28.
[3] W. Chen and S. Kwasik, Symplectic symmetries of 4-manifolds, Topology. 46 (2)(2007) 103-128.
[4] A. Edmonds, Construction of group actions on four-manifolds, Trans. Amer. Math. Soc, 299 (1987) 155-170.
[5] A. Edmonds, Aspects of group actions on four-manifolds, Topology Appl. 31 (2)(1989) 109-124.
[6] R. E. Gompf, Nuclei of elliptic surfaces, Topology. 30 (1991) 479-511.
[7] F. Hirzebruch, The signature theorem: reminiscenses and recreation, Ann. Math. Stud 70, Princeton University Press, 1971.
[8] B. Lawson and M. Michelsohn, Spin geometry, Princeton University Press, 1989.
[9] H. Li and X. Liu, Pseudofree Z_{3}-actions on elliptic surfaces E(4), Studia Sci. Math. Hungarica. 45 (2)(2008) 273-284.
[10] X. Liu and N. Nakamura, Pseudofree Z_{3}-actions on $K 3$ surfaces, Proc. Amer. math. Soc. 135 (3) (2007) 903-910.

[^0]: *Corresponding author
 Supported by Science and Technology Program of Shanghai Maritime University 20110035.
 Received May 29, 2012

