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Abstract. In this paper, we give a factorization of certain p–groups using non–trivial perfect codes (Hamming

and Golay codes). The factorization consists of two sets, one corresponding to the perfect code and the other

corresponding to the codewords in the Hamming sphere with center at the zero codeword and radius one (Ham-

ming code) and three (Golay code). Non–perfect codes are also considered in such construction and we give the

necessary condition for the factorization in terms of the parity check matrix of the code.
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1. INTRODUCTION

A linear t–error correcting code (n,k,d) is a linear subspace C of Fn
q of dimension k and it is

able to correct up to t errors in any received codeword. The Hamming distance between any two

codewords in Fn
q is the number of positions in which the corresponding symbols are different.

The minimum distance d of a linear code C is the minimum Hamming distance between the

codewords in the code. For more details, the reader may refer to the book of MacWilliams and

Sloane [4]. Error correcting codes have many applications in communications, networking, and
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in compact disc systems [3]. In this paper, we will use the properties of certain error correcting

codes to solve some problems in group theory, in particular in group factorization.

Factorization of abelian groups into subsets was born in 1938, when G. Hajòs reformulated

and eventually settled a long-standing conjecture by H. Minkowski about lattice tiling of Rn

into a group-theoretical question about decomposition of a finite abelian group into subsets.

The group-theoretical equivalence of Minkowski’s conjecture is usually stated as follows:

Let G be a finite abelian group. If G = A1A2 . . .An is a direct product of subsets of G, where

each Ai is of the form {e,g,g2, . . . ,gk}, where g ∈ G, and k is an integer less than order of g,

then at least one of these subsets must be a subgroup of G.

This Hajòs reformulation turned out to provide not only a strong tool in the area of tiling but

also in other areas of mathematics such as number theory, graph theory, geometry, functional

analysis, and coding theory (more information on this can be found in [7]). In [1], the inter-

connection between factorization of abelian groups and Hamming codes was studied. In fact,

factorization of abelian groups was used to construct the binary Hamming (7,4,3) code. In this

paper, we continue in this direction by showing that the reverse process is also possible and we

generalize the result to all perfect codes.

This paper is organized as follows. In Section 2 we recall the basic definitions and properties

of Hamming codes and abelian group factorizations. In Section 3 we use the Hamming code to

obtain an abelian group factorization of certain p–group. In Section 4, we use the binary Golay

code to obtain abelian group factorization of a 2–group of order 223 and the ternary Golay

code to obtain abelian group factorization of a 3–group of order 311. In Section 5 we give the

necessary condition for the factorization to work for any linear code in terms of a condition in

the parity check matrix of the code.

2. PRELIMINARIES

Hamming codes are linear error correcting codes that were first introduced by R. Ham-

ming [2]. They are widely used in telecommunication, data compression, and in computer

memory [5].

The Hamming code HAM(r,q) is defined as a linear (n := qr−1
q−1 ,n−r,3) error correcting code

over Fq, where q is a prime power. The parity check matrix has the property that the columns



757

of the matrix are made up from the distinct nonzero vectors in Fr
q whose first entry is one. In

the binary case, the columns are precisely the nonzero binary words of length r.

Note that any linear code with parameters (n := qr−1
q−1 ,n− r,3) is a Hamming code, i.e., the

Hamming code is characterized by its length, dimension, and minimum distance. Since the

minimum distance of the Hamming code is 3, any two Hamming codewords differ in at least

three positions. This will be crucial for us in Section 3.

Let G be a finite abelian group written multiplicatively and with identity e, and A1,A2, . . . ,An

subsets of G. We say that G = A1A2 . . .An is a factorization of G if each element g of G can

be written uniquely as g = a1a2 . . .an, where ai ∈ Ai. If in addition, each of the subsets Ai

contains e, we call G = A1A2 . . .An a normalized factorization. Since G = (a−1
1 a−1

2 . . .a−1
n )G =

a−1
1 A1 . . .a−1

n An is also a factorization of G, we may and shall only consider normalized factor-

ization.

If G = AB is a factorization of G, then we call A( or B) a periodic set, if there exists g ∈ G

different than the identity, such that gA = A(gB = B). A group G is called a Hajòs group if from

each factorization G = AB of G, it follows that either A or B is periodic. Hajòs gave a method

for constructing all factorizations of such groups, a result which was later generalized by Sands

[6] to the case n ≥ 2. In this paper, we use perfect codes to construct normalized factorization

of certain p–groups.

In this paper, we will concentrate only on perfect codes, i.e., the spheres of radius t := (d−

1)/2 centered at the codewords cover the whole space without an overlap, i.e., the parameters

of the code satisfy the sphere packing condition

qk
t

∑
i=0

(q−1)i
(

n
i

)
= qn

By Tietäväinen–Van Lint theorem [8, 9], the only nontrivial perfect codes are those with

parameters of the Hamming and Golay codes and we will just focus on these two classes of

codes in this paper.

Let G be a finite abelian p–group, i.e., G is a product of cyclic groups:

G = 〈x1〉×〈x2〉× · · ·×〈xn〉
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where each xi has order p. Let g = xc1
1 xc2

2 . . .xcn
n ∈ G, then we get a correspondence between g

and a codeword in Fn
p by setting c := (c1,c2, . . . ,cn) ∈ Fn

p. This also works in reverse direction,

i.e., each codeword in Fn
p gives a group element in G.

3. GROUP FACTORIZATION FROM HAMMING CODES

In this section, we will use a binary Hamming code (n := 2r−1,n−r,3) to find a factorization

for the 2–group

G = 〈x1〉×〈x2〉× · · ·×〈xn〉

Starting with a subset A of G consisting of monomials of length one or less in x1, . . . ,xn, i.e.

A corresponds to the codewords in Fn
2 in the Hamming sphere of radius one centered at the zero

codeword. Explicitly, A is given by

A = {e,x1,x2, . . . ,xn}.

Next we use the Hamming code to construct another subset B of G of size 2n−r consisting of

elements in G that correspond to the codewords of the Hamming code.

Proposition 1. The sets A and B provide a factorization of G.

Proof. We need to prove that each element g ∈ G can be written uniquely as a product of two

elements, one in A and the other one in B.

Recall that the Hamming codes are perfect codes with t = 1 and every element g ∈ G corre-

sponds to a codeword in Fn
2. This codeword is either a Hamming codeword or a codeword that

is differs only in one position from a Hamming codeword, in the later case, we can recover the

error position and this gives us directly the existence of the factorization.

For uniqueness, assume w.l.o.g. that

g = x1b1 = x2b2

where b1,b2 ∈ B are two group elements corresponding to two Hamming codewords that are

different in at least 3 positions. Note that x1b1 means that only the first position in the codeword

corresponding to b1 is changed and similarly x2b2 means that only the second position in the
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codeword corresponding to b2 is changed, but since x1b1 = x2b2 this means that the codewords

corresponding to b1 and b2 differ in at most 2 positions which is a contradiction to the fact that

the minimum distance of the Hamming code is 3.

�

Now we generalize the argument above to the non–binary Hamming codes. We start with

a Hamming code HAM(r, p) with parameters (n := pr−1
p−1 ,n− r,3) over Fp, where p is a prime

integer. Consider the p–group

G = 〈x1〉×〈x2〉× · · ·×〈xn〉

The next proposition gives a factorization for the group G.

Proposition 2. The group G can be factored into G=AB, where A= {e}∪{x j
i |, j = 0,1, . . . , p−

1, i = 1,2, . . . ,n} and B is the subgroup generated by the codewords of the Hamming code

HAM(r, p).

Proof. We need to prove that each element g ∈ G can be written uniquely as products of two

element, one in A and the other one in B.

For the existence part, we note that the Hamming code HAM(r, p) is a perfect non–binary

code with t = 1. This means that every element g ∈ G is corresponding to a codeword in Fn
p

which turns out to be either a Hamming codeword or a codeword that is differ in one position

from a Hamming codeword. Assume the latter case and that position is i, we have then that g is

corresponding to a codeword of the form x j
i b, where b is a group element that is corresponding

to a Hamming codeword and j = 0,1, . . . , p−1. This gives us the existence of the factorization.

For uniqueness, assume w.l.o.g. that

g = x j
1b1 = xk

2b2

where b1,b2 ∈ B are two group elements corresponding to two Hamming codewords that are

different in at least 3 positions. Note that x j
1b1 means that only the first position in the codeword

corresponding to b1 is changed and similarly xk
2b2 means that only the second position in the

codeword corresponding to b2 is changed, but since x j
1b1 = xk

2b2 this means that the codewords
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corresponding to b1 and b2 differ in at most 2 positions which is a contradiction to the fact that

the minimum distance of the Hamming code is 3.

�

Example 1. Let p = 3, r = 2, the Hamming code HAM(2,3) is a perfect (4,2,3)–linear code

with two basis codewords {1012,0111}. The 3-group G = 〈x1〉 × 〈x2〉 × 〈x3〉 × 〈x4〉 can be

factored into

A = {e,x1,x2
1,x2,x2

2,x3,x2
3,x4,x2

4}

and

B = 〈x1x3x2
4,x2x3x4〉

Next we prove the necessary part in Proposition 1 that if we have the factorization as con-

structed above, then we actually have the binary Hamming code. The argument below works

also for the non–binary case.

Proposition 3. Let C be a binary (n,k,d = 3) code. Set A to be the set of all monomials of

length 1 with the identity in x1, . . . ,xn, i.e., A corresponds to the Hamming sphere centered at

0 of radius 1. Let B be the set that corresponds to the codewords of C. If the set AB is closed

under multiplication, then C is equivalent to a Hamming code.

Proof. Assume that the set AB is closed under multiplication, then any element g ∈ AB corre-

sponds to c+ e, where c ∈C is a codeword in the code C and e is an error vector of weight 0 or

1. For any g1,g2 ∈ AB, we have also g1g2 ∈ AB. This means (c1 + e1)+(c2 + e2) = c3 + e3. if

H is the parity check matrix of the code, we would have

(1) e1H + e2H = e3H

Since eH corresponds to the syndrome in the column of H with entries e. Equation (1) means

that columns of H must be closed under the column addition. Since the number of rows of H

is k and the minimum distance of the code is 3, this means that all binary representations of

length k of the numbers 1,2, . . . ,2k−1 appears as columns of H. This leads to n = 2k−1 and

so we have a code with parameters (2k−1,n− k,3) and by Tietäväinen–Van Lint theorem, it is

equivalent to a Hamming code.
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�

4. GROUP FACTORIZATION FROM THE GOLAY CODES

In this section we use the same idea as in Section 3 to construct a factorization for the 2–group

G23 := 〈x1〉×〈x2〉× · · ·×〈x23〉

using the binary Golay code (23,12,7). The set A is the set of all monomials of length less than

or equal 3 including the identity element of G23, i.e.,

A := {e,xix jxk | i, j,k ∈ {1, . . . ,23}}

The set B is generated by elements in G23 that correspond to codewords in the binary Golay

code. Then by a similar argument as in the proof of Proposition 1, we will have factorization

G = AB, where

B = 〈x1x14x15x16x17x18x19x20x21x22x23, x2x13x14x15x17x18x19x23,

x3x13x14x16x17x18x22, x4x13x15x16x17x21x23,

x5x13x14x15x16x20x22x23, x6x13x14x15x16x20x22x23,

x7x13x14x15x19x21x22, x9x15x17x18x20x21x22x23,

x8x13x17x19x20x22x23, x10x13x15x17x18x20x21x22,

x11x13x14x16x17x19x20x21, x12x14x15x17x18x19x20〉

We conclude this construction by using the last nontrivial perfect code, the ternary Golay

code (11,6,5) over F3 to obtain factorization to the 3–group

G11 := 〈x1〉×〈x2〉× · · ·×〈x11〉

into AB, where A is the set consisting of all monomials of length 2 or less including the identity

element of G11, i.e.,

A := {e,xi,xix j | i, j ∈ {1, . . . ,11}}
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and the set B is generated by elements in G11 that correspond to codewords in the ternary Golay

code, i.e.,

B = 〈x1x2x3x2
4x2

5x7, x1x2x2
3x4x2

6x8, x1x2
2x3x5x2

6x9, x1x2
2x4x2

5x6x10,

x1x2
3x2

4x5x6x11〉

5. GROUP FACTORIZATION FROM NON–PERFECT CODES

In this section, we generalize our construction above by giving a condition on the parity

check matrix H of the any linear (n,k,d = 2t + 1)–code C to provide a factorization of a 2–

group. The factorization into two sets will be as above, one set corresponds to the codewords in

the Hamming sphere of radius t centered at the zero codeword and the other set corresponds to

the code C.

Proposition 4. Let C be a binary (n,k,d = 2t +1) code. Set A to be the set of all monomials of

length less than or equal to t in x1, . . . ,xn, i.e., A corresponds to the Hamming sphere centered

at 0 of radius t. Let B be the set that corresponds to the codewords of C. If the set AB is closed

under multiplication, then the parity check matrix is closed under the addition of any t-columns

or less.

Proof. Assume that the set AB is closed under multiplication, then any element g ∈ AB corre-

sponds to c+ e, where c ∈C is a codeword in the code C and e is an error vector of weight t.

Since g1g2 ∈ AB, we have also g1g2 ∈ AB. This means (c1 + e1)+ (c2 + e2) = c3 + e3. if H is

the parity check matrix of the code, we would have

(2) e1H + e2H = e3H

Since eiH can be written as sum of t-columns or less. Equation (2) means that columns of H

must be closed under the addition of any t-columns or less.

�

6. CONCLUSION

In this paper, the link between linear codes over Fp and certain p–groups allows us to use

non trivial perfect linear error correcting codes (Hamming and Golay codes) to obtain abelian
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group factorization of certain groups. The corresponding subsets in the factorization is given

by the codewords in the code and the codewords in the Hamming sphere of radius t centered

at the zero codeword. We also showed that in the binary cases, the factorization works only if

the code is perfect and we find the necessary condition in terms of parity check matrix for our

construction to work.
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