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Abstract. Most of the models of the dynamics of evaporating raindrop have been created using Ordinary 

Differential Equations. Some models assumed that evaporation is affected by air resistance that is negligible and 

proportional to the velocity of transition others assumed that the air resistance is significant and proportional to the 

square of the velocity. Because of the significant differences in the basic assumption used by various modelers, the 

solution of the resulting equations produced differed values There are yet no work to confirm these dependencies. In 

this work we obtain a class of hybrid finite difference schemes that can be used to obtain a reliable approximate 

solution to some of these differential equation models. The schemes were found to possess the same monotonic 

properties as the analytic solution. 

Keywords: monotonically stable discrete model; differential equations emanating from the evaporating raindrop; 

hybrid finite difference schemes. 
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1.0   INTRODUCTION 

An equation of state is a representation of a dynamic system as a function of state variables such 

as pressure, temperature, volume and number of particles which are used to measure the status of 

such system under a given set of physical conditions that may have effect on the measured 

values. 
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Evaporation is a type of vaporization of a liquid that occurs from the surface of a liquid into a 

gaseous phase that is not saturated with the evaporating substance. Evaporation happens when 

atoms or molecules escape from the liquid and turn into a vapor.  Factors that may affect the way 

and the rate at which evaporation occurs include:  Saturation of the air, humidity, air pressure 

and temperature of the liquid. The shape of a raindrop depends upon its size and the amount of 

air resistance present during it drops. Some are round, others appear flattened at the bottom, and 

then there are those that resemble jellybeans. For the purpose of this study, all the raindrops will 

be considered as spheres. (see [3, 7]). 

Most existing mathematical models of this dynamical system were developed based on the 

principle of Newton’s law of motion. Each of these models considered two major variations.  

Either that the raindrops are small particle bodies that is affected by air resistance significantly or 

that the raindrops are big particles that floats through the air vacuums with insignificant air 

resistance (see [6, 8]). Generally when a body in motion is treated as a particle rotational effects 

are unimportant (or negligible), and also when the size of the object is negligible relative to the 

scale of the system,   only translational motion is relevant.  

 

2.0   MATERIALS AND METHODS 

The following ordinary differential equations have been considered while deriving a hybrid finite 

difference scheme that can simulation the dynamics of the motion of an evaporating raindrop. 

2.1 Model I [6] 

These authors came-up with the Ordinary Differential Equation given below 

𝑑𝑣

𝑑𝑡
+

3(
𝑘

𝜌
)

𝑡(
𝑘

𝜌
)+𝑟0 

𝑣 = 𝑔              (1) 

ρ is the density of rainwater 

𝑟0 is the initial radius of the raindrop 

𝑟 =
𝑘

𝜌
𝑡 + 𝑟0  is the radius of the raindrop at time t, k is a constant 

𝑔 is acceleration due to gravity 

2.2 Model II [6] 

If we consider the small object theory we can arrive at the following model for the evaporating 

raindrop: 

https://en.wikipedia.org/wiki/Vaporization
https://en.wikipedia.org/wiki/Liquid
https://en.wikipedia.org/wiki/Interface_(chemistry)
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𝐹 =  𝑚
𝑑𝑣

𝑑𝑡
= 𝑚𝑔 − 𝑘𝑣             (5) 

Which gives a solution of the form 

𝑣 =
𝑚𝑔

𝑘
(1 − 𝑒−

𝑘

𝑚
𝑡 )              (6) 

We will use a combination of interpolation and Nonstandard methods 

 

3.0 DERIVATION OF THE SIMULATION MODEL 

To obtain a simulation model which can accommodate the assumption on air resistance and the 

decay thru evaporation. We assume raindrop water has a density of 0.99823 grams/cubic 

centimeter and a temperature of 4oC degrees Celsius. The water is evaporating with a speed 

proportional to the surface area. We are suggesting a new simulation model with the following 

components.  

y =  a0 +  a1x −  
a0𝛽𝑔

(𝛼𝑥+𝛽)3  +  𝑒−αx              (7) 

 a0 is a known and measurable constant,  𝛼  and 𝛽 are simulation parameters. This interpolation 

function will be used to derive a finite difference scheme for solution of first order Ordinary 

Differential Equation. To get the hybrid scheme, we will apply nonstandard method to the step 

size by replacing it with a normalized function (Obayomi&Oke2003). For the scheme: 

Differentiating (7) 

y′= a1 + 3a0𝛼𝛽𝑔(𝛼𝑥 + 𝛽)−4 +(− α)𝑒−αx              (8)   

y′= a0(1 + 3(𝛼𝑥 + 𝛽)−4𝛼 +(− α)𝑒−αx                    (9) 

y′′ = −12a0 α2𝛽𝑔(𝛼𝑥 + 𝛽)−5 + α2𝑒−αx              (10) 

y′′′ =  60a0α3(𝛼𝑥 + 𝛽)−6 − α3𝑒−αx              (11) 

 a0 = 
y′′− α2𝑒−αx

(−12 α2𝛽𝑔(𝛼𝑥+𝛽)−5)
                                        (12) 

or 

 a0 = 
y′′′+α3𝑒−αx

(60α3(𝛼𝑥+𝛽)−6)
                                     (13) 

a1 = y′ + α𝑒−αx   -   
 (𝛼𝑥+𝛽)α2𝑒−αx

4α
 +

(𝛼𝑥+𝛽)y′′

4α
                                 (14) 

 

3.1 Generation of the Finite Difference Model 

y =  a0 +  a1x −  
𝑎0𝛽𝑔

(𝛼𝑥+𝛽)3  +  a0𝑒−αx         
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y𝑛 = a0 +  a1𝑥𝑛  −  
𝑎0𝛽𝑔

(𝛼𝑥𝑛+𝛽)3  +  a0𝑒−α𝑥𝑛             (15) 

y𝑛+1 = a0 +  a1𝑥𝑛+1  −  
𝑎0𝛽𝑔

(𝛼𝑥𝑛+1+𝛽)3
 +  a0𝑒−α𝑥𝑛+1            (16) 

y𝑛+1 − y𝑛 = 

=   a1 [(𝑥𝑛+1 − 𝑥𝑛) + 𝑎0𝛽𝑔{(𝛼𝑥𝑛+1 + 𝛽)−3 − (𝛼𝑥𝑛+1 + 𝛽)
−3

} + a0(𝑒−𝛼𝑥𝑛+1 − 𝑒−𝛼𝑥𝑛)]       (17)    

Let  𝑥𝑛 = a +  nh        𝑥𝑛+1 = a + (n + 1)h 

         𝑥𝑛+1 − 𝑥𝑛 = h               (18) 

Putting (17) in (18), we have 

y𝑛+1  − y𝑛 = a1h + 𝑎0𝛽𝑔{(𝛼[𝑎 + (𝑛 + 1)ℎ] + 𝛽)−3 − (𝛼[𝑎 + 𝑛ℎ] + 𝛽)−3} +

(𝑒−𝛼(𝑎+𝑛ℎ){𝑒−𝛼ℎ − 1})                (19) 

M =  {(𝛼[𝑎 + (𝑛 + 1)ℎ] + 𝛽)−3 − (𝛼[𝑎 + 𝑛ℎ] + 𝛽)−3} 

N =  (𝑒−𝛼(𝑎+𝑛ℎ){𝑒−𝛼ℎ − 1}) 

y𝑛+1 = y𝑛 + a1h + 𝑎0𝛽𝑔M +  N              (20) 

a0 = 
y′′− α2𝑒−αx

(−12 α2𝛽𝑔(𝛼𝑥+𝛽)−5)
                                      

a1 = y′ + α𝑒−αx   -   
 (𝛼𝑥+𝛽)α2𝑒−αx

4α
 +

(𝛼𝑥+𝛽)y′′

4α
                             

y𝑛+1 = y𝑛 + hy′ + ℎα𝑒−αx (1  - 
 𝛼(𝛼𝑥+𝛽) 

4α
) +

ℎ(𝛼𝑥+𝛽)y′′

4α
+

 (α2𝑒−αx−y′′)𝛽𝑔

(12 α2𝛽𝑔(𝛼𝑥+𝛽)−5)
M +  N        (21) 

y𝑛+1 = 

y𝑛 +  hy′ +  
3h𝛼𝛽𝑔(𝛼𝑥+𝛽)−4−M𝛽𝑔) 

(12 α2𝛽𝑔(𝛼𝑥+𝛽)−5)
 y′′ + ℎα𝑒−αx (1  - 

 𝛼(𝛼𝑥+𝛽) 

4α
) +

 (α2𝑒−αx)𝑀𝛽𝑔

(12 α2𝛽𝑔(𝛼𝑥+𝛽)−5)
+ N  

y𝑛+1 = y𝑛 +  hy′ +  𝑇 y′′ + 𝑈 + 𝑉 + N            (22) 

𝑇 =
3h𝛼𝛽𝑔(𝛼𝑥+𝛽)−4−M𝛽𝑔) 

(12 α2𝛽𝑔(𝛼𝑥+𝛽)−5)
 , 𝑈 = ℎα𝑒−αx (1  - 

 𝛼(𝛼𝑥+𝛽) 

4α
),  𝑉 =

 (α2𝑒−αx)𝑀𝛽𝑔

(12 α2𝛽𝑔(𝛼𝑥+𝛽)−5)
. 

 

4.0 QUALITATIVE PROPERTIES OF THE NEW SCHEME 

Definition [1] 

Any algorithm for solving a differential equation in which the approximation 𝑦𝑛+1  to the 

solution at 𝑥𝑛+1  can be calculated iff  𝑥𝑛, 𝑦𝑛𝑎𝑛𝑑 ℎ  are known is called a one step method. It is a 
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common practice to write the functional dependence 𝑦𝑛+1  on the quantities  𝑥𝑛 , 𝑦𝑛𝑎𝑛𝑑 ℎ  in the 

form   𝑦𝑛+1= 𝑦𝑛+𝜙(𝑥𝑛, 𝑦𝑛, ℎ), where  𝜙(𝑥𝑛, 𝑦𝑛, ℎ) 𝑖𝑠 𝑡ℎ𝑒 incremental function. 

Definition [2] 

A numerical scheme with an incremental  𝜙(𝑥𝑛, 𝑦𝑛, ℎ)   is said to be consistent with the initial 

value problem 𝑦′ = 𝑓(𝑥, 𝑦) , 𝑦(𝑥0) = 𝑦0 if the incremental function is identically zero at t0 

when ℎ = 0. 

Theorem [1] 

Let the incremental function of the scheme defined in the one step scheme above be continuous 

and jointly as a function of its arguments in the region defined by  

𝑥 ∈ [𝑎, 𝑏]𝑎𝑛𝑑 𝑦 ∈ (−∞ , ∞), 0 ≤ ℎ ≤ ℎ0  where  h0 > 0 and let there exists a constant L such 

that  𝜙(𝑥𝑛, 𝑦𝑛, ℎ) − 𝜙(𝑥𝑛, 𝑦𝑛
∗, ℎ) ≤ 𝐿|𝑦𝑛 − 𝑦𝑛

∗| for all (𝑥𝑛, 𝑦𝑛, ℎ)   and    (𝑥𝑛, 𝑦𝑛
∗, ℎ)   

in the region just defined then the relation (𝑥𝑛, 𝑦𝑛, 0) =  (𝑥𝑛, 𝑦𝑛
∗) is a necessary condition for the 

convergence of the new scheme. 

Theorem [2] 

Let  𝑦𝑛 =  𝑦(𝑥𝑛)  and  𝑝𝑛 =  𝑝(𝑥𝑛)  denote two different numerical solution of the differential 

equation with the initial condition specified a 

𝑦0= 𝑦(𝑥0) = 𝜉 and  𝑝0= 𝑝(𝑥0) = ξ∗ respectively such that |𝜉−ξ∗|<ε   ε>0. 

If the two numerical estimates are generated by the integration scheme, we have  

𝑦𝑛+1= 𝑦𝑛+ℎ𝜙(𝑥𝑛, 𝑦𝑛, ℎ) 

𝑝𝑛+1= 𝑝𝑛+ℎ𝜙(𝑥𝑛, 𝑝𝑛, ℎ) 

The condition that |𝑦𝑛+1 − 𝑝𝑛+1|≤ K  |𝜉−ξ∗|  is the necessary and sufficient condition for the 

stability and convergence of the schemes. 

4.1 Proof of Convergence 

y𝑛+1 = y𝑛 +  hy′ +  𝑇 y′′ + 𝑈 + 𝑉 + N   

𝑦𝑛+1 = 𝑦𝑛 +  h𝑓𝑛 + 𝑇𝑓𝑛
′  +   𝑈 + 𝑉 + N                (23) 

The incremental function can be written as 

𝜙(𝑥𝑛, 𝑦𝑛, ℎ)=  h𝑓𝑛 + 𝑇𝑓𝑛
′  +   𝑈 + 𝑉 + N          

𝜙(𝑥𝑛, 𝑦𝑛, ℎ) − 𝜙(𝑥𝑛, 𝑦𝑛
∗, ℎ) = h[𝑓(𝑥𝑛, 𝑦𝑛, ℎ) − 𝑓(𝑥𝑛, 𝑦𝑛

∗, ℎ)] + 𝑇[𝑓′(𝑥𝑛, 𝑦𝑛, ℎ) − 𝑓′(𝑥𝑛, 𝑦𝑛
∗, ℎ)] 

 = h[𝑓(𝑥𝑛, 𝑦𝑛) − 𝑓(𝑥𝑛, 𝑦𝑛
∗)] + 𝑇[𝑓′(𝑥𝑛, 𝑦𝑛) − 𝑓′(𝑥𝑛, 𝑦𝑛

∗)]            (24) 

= h[
𝜕𝑓(𝑥𝑛,ӯ)

𝜕𝑦𝑛
(𝑦𝑛 − 𝑦𝑛

∗)] +𝑇[
𝜕𝑓′(𝑥𝑛,ӯ)

𝜕𝑦𝑛
(𝑦𝑛 − 𝑦𝑛

∗)]            (25) 
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L1 = SUP(𝑥𝑛,𝑦𝑛)∈𝐷  
𝜕𝑓(𝑥𝑛,ӯ)

𝜕𝑦𝑛
  and 

L2 = SUP(𝑥𝑛,𝑦𝑛)∈𝐷   
𝜕𝑓′(𝑥𝑛,ӯ)

𝜕𝑦𝑛
 

then  𝜙(𝑥𝑛, 𝑦𝑛, ℎ) − 𝜙(𝑥𝑛, 𝑦𝑛
∗, ℎ) = h[𝐿1(𝑦𝑛 − 𝑦𝑛

∗)] + 𝑇[𝐿2(𝑦𝑛 − 𝑦𝑛
∗)]          (26) 

Let  L = |h.L1+T.L2| 

𝜙(𝑥𝑛, 𝑦𝑛, ℎ) − 𝜙(𝑥𝑛, 𝑦𝑛
∗, ℎ) ≤ 𝐿|𝑦𝑛 − 𝑦𝑛

∗|, which is the condition for convergence. 

4.2 Consistency of the Schemes 

𝑦𝑛+1 = 𝑦𝑛 +  M𝑓𝑛 + 𝑁𝑓𝑛
′  + Q𝑓𝑛

′′              (27) 

Then   

𝑦𝑛+1= 𝑦𝑛+ℎ 𝜙(𝑥𝑛, 𝑦𝑛, ℎ) 

When ℎ = 0  , M= 0, 𝑁 = 0, 𝑄 = 0 

⇒ 𝑦𝑛+1= 𝑦𝑛 and the incremental function is identically zero when ℎ = 0 

⇒ 𝜙(𝑥𝑛, 𝑦𝑛, 0) ≡ 0, which proves consistency. 

4.3  Stability of the Schemes 

Consider the equation 

𝑦𝑛+1= 𝑦𝑛+{ℎ}𝑓𝑛(𝑥𝑛, 𝑦𝑛) + {𝑇}𝑓𝑛
′(𝑥𝑛, 𝑦𝑛)          (28) 

Let 𝑝𝑛+1= 𝑝𝑛+{ℎ}𝑓𝑛(𝑥𝑛, 𝑃𝑛) + {𝑇}𝑓𝑛
′(𝑥𝑛, 𝑃𝑛) 

𝑦𝑛+1 − 𝑝𝑛+1= 𝑦𝑛 − 𝑝𝑛+ ℎ[𝑓𝑛(𝑥𝑛, 𝑦𝑛) − 𝑓𝑛(𝑥𝑛, 𝑃𝑛)] + {𝑇}[𝑓𝑛
′(𝑥𝑛, 𝑦𝑛) − 𝑓𝑛

′(𝑥𝑛, 𝑃𝑛)]   

= 𝑦𝑛 − 𝑝𝑛+ h[
𝜕𝑓(𝑥𝑛 ,𝑝𝑛)

𝜕𝑝𝑛
(𝑦𝑛 − 𝑝𝑛)] + 𝑇[

𝜕𝑓′(𝑥𝑛,   𝑝𝑛)

𝜕𝑝𝑛
(𝑦𝑛 − 𝑝𝑛)]   

L1 = SUP(𝑥𝑛,𝑦𝑛)∈𝐷  
𝜕𝑓(𝑥𝑛,𝑝𝑛)

𝜕𝑝𝑛
  and 

L2 = SUP(𝑥𝑛,𝑦𝑛)∈𝐷   
𝜕𝑓′(𝑥𝑛,𝑝𝑛)

𝜕𝑝𝑛
 

𝑦𝑛+1 − 𝑝𝑛+1= 𝑦𝑛 − 𝑝𝑛+ h. 𝐿1(𝑦𝑛 −  𝑝𝑛) +  𝑇. 𝐿2(𝑦𝑛 − 𝑝𝑛)     

|𝑦𝑛+1 − 𝑝𝑛+1|= |𝑦𝑛 − 𝑝𝑛|+ [ℎ. 𝐿1 + 𝑇. 𝐿2] |(𝑦𝑛 − 𝑝𝑛)| 

Let L = |1+ [ℎ. 𝐿1 + 𝑇. 𝐿2]| 

|𝑦𝑛+1 − 𝑝𝑛+1|≤L |𝑦𝑛 − 𝑝𝑛|              (29) 

Let 𝑦0= 𝑦(𝑥0) = 𝜉 and  𝑝0= 𝑝(𝑥0) = ξ∗ then 

|𝑦𝑛+1 − 𝑝𝑛+1|≤ K  |𝜉−ξ∗|              (30) 

⇒ 𝑦𝑛+1= 𝑦𝑛 and the incremental function is identically zero when ℎ = 0 

⇒ 𝜙(𝑥𝑛, 𝑦𝑛, 0) ≡ 0 
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5.0 APPLICATION AND NUMERICAL EXPERIMENT 

5.1 Application of the finite difference schemes to Model I. 

We now derive a scheme for the first model  

𝑑𝑣

𝑑𝑡
+

3(
𝑘

𝜌
)

𝑡(
𝑘

𝜌
)+𝑟0 

𝑣 = 𝑔               (31) 

𝑣(𝑡) =
𝑔

4
𝑡 +

𝜌𝑔𝑟0 

4𝑘
−

𝜌𝑔𝑟0 

4𝑘
{

𝜌𝑔𝑟0 

𝑘𝑡 + 𝜌𝑟0 
}

3

 

𝑣0 = 0 , 𝑘 = −0.01, ρ = 0.99823  𝛽 ,  ∝  are simulation parameters 

y′ =
𝑑𝑣

𝑑𝑡
= 𝑔 −  

3∝y

∝𝑥+𝛽
                   (32) 

 y′′ + 3 ∝ y′ (𝛼𝑥 +  𝛽)−1 − 3 ∝2 y(𝛼𝑥 +  𝛽)−2 = 0 

y′′  = 
3∝2y

(𝛼𝑥+ 𝛽)2 −
3∝y′ 

(𝛼𝑥+ 𝛽)
               (33) 

 y′′′ + 3 ∝ y′′ (𝛼𝑥 +  𝛽)−1 − 6 ∝2 y′ (𝛼𝑥 +  𝛽)−2 + 6 ∝3 y(𝛼𝑥 +  𝛽)−3 = 0 

y′′′ =
𝑑3𝑣

𝑑𝑡3= 
6∝2y′ 

(𝛼𝑥+ 𝛽)2 −
6∝3y

(𝛼𝑥+ 𝛽)3 −
3∝y′′ 

(𝛼𝑥+ 𝛽)
            (34)  

The new scheme Newh will be obtained by substituting the derivatives above and applying it to 

y𝑛+1 = y𝑛 +  hy′ + 
ℎ 3𝛼𝛽𝑔(𝛼𝑥+𝛽)−4−M𝛽𝑔) 

(12 α2𝛽𝑔(𝛼𝑥+𝛽)−5)
 y′′ + ℎα𝑒−αx (1  - 

 𝛼(𝛼𝑥+𝛽) 

4α
) +

 (α2𝑒−αx)𝑀𝛽𝑔

(12 α2𝛽𝑔(𝛼𝑥+𝛽)−5)
+ N  

y𝑛+1 = y𝑛 +  hy′ +  𝑇 y′′ + 𝑈 + 𝑉 + N          (35)  

𝑇 =
3h𝛼𝛽𝑔(𝛼𝑥+𝛽)−4−M𝛽𝑔) 

(12 α2𝛽𝑔(𝛼𝑥+𝛽)−5)
 , 𝑈 = ℎα𝑒−αx (1  - 

 𝛼(𝛼𝑥+𝛽) 

4α
),  𝑉 =

 (α2𝑒−αx)𝑀𝛽𝑔

(12 α2𝛽𝑔(𝛼𝑥+𝛽)−5)
 

M = {(𝛼[𝑎 + (𝑛 + 1)ℎ] + 𝛽)−3 − (𝛼[𝑎 + 𝑛ℎ] + 𝛽)−3} 

N =  (𝑒−𝛼(𝑎+𝑛ℎ){𝑒−𝛼ℎ − 1}) 

The hybrid scheme NEWSINr is obtained by replacing h with  𝜓  =sin (𝑟ℎ)  and the hybrid 

scheme NEWEXP by replacing h with 𝜓 = 
(𝑒𝜆h−1)

𝜆
   , the choice of this denominator is informed 

by the works of  Anguluv, Lubuma [5] and Obayomi, Oke [9]. 

5.2 Application of the finite difference scheme to Model II 

𝐹 = 𝑚𝑔 − 𝑘𝑣                (36) 

𝑚
𝑑𝑣

𝑑𝑡
= 𝑚𝑔 − 𝑘𝑣  

𝑣(𝑡) =  
𝑚𝑔

𝑘
(1 − 𝑒−

𝑘

𝑚
𝑡 )              (37) 
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v′ =
𝑑𝑣

𝑑𝑡
= 𝑔 −  

𝑘

𝑚
𝑣      

y′ =  𝑔 −  
𝑘

𝑚
𝑦  

 y′′  = − 
𝑘

𝑚
{𝑔 −  

𝑘

𝑚
𝑦}              (38) 

 y′′′  =  (
𝑘

𝑚
)

2

y′  

y′′′ =  (
𝑘

𝑚
)

2

{𝑔 −  
𝑘

𝑚
𝑦 }              (39) 

The new scheme Newh will be obtained by substituting the derivatives above and applying it to 

y𝑛+1 = y𝑛 +  hy′ +  𝑇 y′′ + 𝑈 + 𝑉 + N            (40) 

𝑇 =
3h𝛼𝛽𝑔(𝛼𝑥+𝛽)−4−M𝛽𝑔) 

(12 α2𝛽𝑔(𝛼𝑥+𝛽)−5)
 , 𝑈 = ℎα𝑒−αx (1  - 

 𝛼(𝛼𝑥+𝛽) 

4α
),  𝑉 =

 (α2𝑒−αx)𝑀𝛽𝑔

(12 α2𝛽𝑔(𝛼𝑥+𝛽)−5)
 

M = {(𝛼[𝑎 + (𝑛 + 1)ℎ] + 𝛽)−3 − (𝛼[𝑎 + 𝑛ℎ] + 𝛽)−3} 

N =  (𝑒−𝛼(𝑎+𝑛ℎ){𝑒−𝛼ℎ − 1}) 

The hybrid scheme NEWSINr is obtained by replacing h with  𝜓  =sin (𝑟ℎ)  and the hybrid 

scheme NEWEXP by replacing h with 𝜓 = 
(𝑒𝜆h−1)

𝜆
  𝑟, 𝜆 ∈ ℝ 

5.3 Experimentation and Result 

The following are the 3D graphs obtained from the schemes when applied to the two models. We 

have used same parameters, step size, denominator functions and simulation parameters ∝ and β 

to test the two models.   

5.3.1 Graph for the schemes of Model 𝚰 

Solution curves for  
𝑑𝑣

𝑑𝑡
+

3(
𝑘

𝜌
)

𝑡(
𝑘

𝜌
)+𝑟0 

𝑣 = 𝑔, 𝑦(0) =  0 are presented below 

 Graph of Schemes with parameters: h=0.01, ∝=0.05, β=600, r=0.995, λ =-0.995 

 

Fig 1:  solution curves for the schemes of Model Ι   
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Fig 2:  Graph of absolute error for the schemes in Fig1 

 

4.3.2 The Graph for the schemes of Model 𝚰𝚰 

Solution curves for  
𝑑𝑣

𝑑𝑡
= 𝑔 −  

𝑘

𝑚
𝑣, 𝑦(0) =  0 are presented below 

Graph of Schemes with parameters h=0.01, ∝=0.05, β=600, r=0.995, λ =-0.995 

 

Fig 3:  solution curves for the schemes of model ΙΙ     

 

 

Fig 4:  Graph of absolute Error for schemes in Fig. 3 
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Fig 5:  Graph of absolute Error for schemes in Fig. 3 

 

5.0 DISCUSSION AND CONCLUSION 

The derived simulation models have been tested with the control parameters ∝ and β. We also 

applied the Non-Standard method by modifying denominator function which also provide have 

parameters λ and r that can be chosen to obtain iteratively assigned step size as denominator. The 

discrete model worked for only those models that assumed negligible air resistance, but it failed 

for the other models of this dynamical phenomena. We therefore present the application of the 

schemes to two initial value problems which are two different models of the evaporating 

raindrop. The solution curves of the schemes follow the analytical solutions of the respective 

equations monotonically as shown in Figs.  1and 3.  The numerical properties of the schemes like 

linear stability, convergence and consistency has been proved analytically. During the course of 

simulating the equations we varied this control parameters to obtain family of curves that are 

very close to the analytic solution and also have the same dynamics as the original equation. The 

scheme NEWh is the Standard scheme because the denominator function remains the step size 

throughout the iteration processes, but this scheme possesses the highest absolute error of 

deviation from the analytic solution, this confirms the good qualities of Non-standard modeling. 

The choice of appropriate values for variables λ and r can be determined using the conditions set 

by Angueluv, Lubuma [5] and extended by Obayomi, Oke [9]. The graph of Absolute error (see 

Figs 2, 4, 5) has demonstrated this quality. The same values of these parameters were used to 

execute the iterations.   The schemes of Model II produced absolute errors of less than 0.03. The 

result of the schemes is consistent with literature. We can conclude that the discrete model can 

be used to simulate the dynamics of evaporating raindrop as proposed. 
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