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Abstract: In this study, a deterministic epidemic model with vaccination and non-monotonic incidence rate is 

considered. This model also included the effect of temporary immunity. The model shows a disease free and an 

endemic equilibrium. Threshold 
0

R (also known as basic reproduction number) is obtained, which gives the 

complete dynamics of the disease. If this threshold is less than unity, the disease-free equilibrium exists and 

infection disappears. If it is greater than unity, the endemic equilibrium exists and infection persists. The local and 

global stability of disease-free and endemic equilibrium are established. Global stability of positive equilibrium is 

proved by using a geometric approach given by Li and Muldowney. Numerical simulations are also given to support 

theoretical findings. 
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1. INTRODUCTION 

Epidemic models are significant tools in analyzing the spread and control of infectious 

diseases. Quarantine, treatment and vaccination are most commonly used methods to control 

spread of infectious diseases. Of these, vaccination is a proven prophylactic approach and is used 

in healthy individuals to prevent occurrence of infectious diseases [1, 2]. Many infectious 

diseases like measles, mumps, rubella, hepatitis B, influenza are reduced to a great extent by the 

use of vaccination. Several clinical results [3] have shown that the vaccination does not give 

permanent resistance to the disease. Once effect of a vaccine wanes from the body, susceptibility 

towards the disease increases again. Therefore, in order to prevent the infection and eradication 

of the disease, the vaccination in population must reach its optimal level. A mathematical study 

[4] on a model for childhood diseases with non-permanent immunity has shown that the disease 

will persist in the population if the vaccination coverage level is below a definite value. An SEIV 

epidemic model [5] with a nonlinear incidence and a waning preventive vaccination has 

formulated and prove that there is always a backward bifurcation for increasing the rate at which 

infected individuals are treated. An epidemic model [6] has included partial temporary immunity 

and saturated incidence to obtain the critical vaccination coverage necessary for eradication of 

the disease. 

In epidemic models, incidence is the rate at which susceptible persons become infectious. 

Various incidence rates have been investigated by researchers. Bilinear, nonlinear, standard, 

saturated, specific nonlinear, general incidence rates are used in epidemic models and provided a 

detailed analysis of the proposed models [7-12]. 

Motivated from the work of [6], we are proposing an epidemic model with vaccination and 

non-monotonic incidence rate 2(1 )SI aI + [12]. This incidence rate increases with small I and 

decreases with large I . It also measures the psychological effect from the behavioral change of 

susceptible community when infective population becomes larger. This is important because the 

number of adequate contacts between infective and susceptible population decreases at high 

stage of infection due to the quarantine or isolation of infectives or the protective actions taken 

by the susceptibles [12]. 
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2. MATHEMATICAL MODEL 

The model is formulated as under: 

     

2

2

(1 ) (1 )
1

1

dS SI
p A S V q I

dt aI

dE SI
E E

dt aI

dI
E I I

dt

dV
pA V V q I

dt


  


 

  

  


= − − − + + − +


= − −
+

= − −


= − − +


                                    (1) 

where S , E , I and V denotes susceptible, exposed,  infectious and vaccinated persons 

respectively and initial conditions are (0)S , (0)E , (0)I , (0)V  0 . The total population at time t  

is given by N = S + E + I + V . 

All the parameters used in model (1) are positive. The constant A is the recruitment rate of 

susceptible individuals,   is the natural death rate in the population,   is the average number 

of contacts of a person per unit time,   is the rate at which vaccine wanes (that is, it becomes 

gradually weaker),   is the rate at which infected individuals are recovered,   is the rate at 

which exposed population becomes infectious, p is the fraction of A who are vaccinated 

( 0 1p  ), q is the fraction of recovered people who get disease acquired immunity ( 0 1q  ) 

and a  is the parameter which measures the psychological effect of disease on the population 

when the infective population becomes larger. 

3. EQUILIBRIUM POINTS AND BASIC REPRODUCTION NUMBER 

In this section, we determine all equilibrium states of model and basic reproduction number. 

Since N = S + E + I + V , we have '( )N t A N= − . As t → , N approaches to the carrying 

capacity A  . It follows that the solutions of the system (1) remains bounded in the biologically 

meaningful and positively invariant region, defined by 

      4( , , , ) : , , , 0,S E I V R S E I V S E I V A +=   + + +  . 
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The disease-free equilibrium of the system (1) is 
0 0 0( ,0,0, )P S V= and is given by        

     
0 0

(1 )
,

A p Ap
S V

 

    

 − +
= = 

+ + 
                                            (2) 

The basic reproduction number (
0R ) is defined as the average number of secondary 

infections when one infective individual is entered into fully susceptible population [13]. It is 

very useful parameter which determines whether an infection will spread through the 

population or not. We obtained
0R  by next generation matrix method described in [13]. 

     

0
0

[(1 ) ]

( )( ) ( )( )( )

S A p
R

   

          

− +
= =

+ + + + +
                                    (3) 

Next, solving (1) for positive equilibrium, we get 20

0

(1 )
S

S aI
R

= + ,
pA q I

V


 

+
=

+
, E I

 



+ 
=  
 

and

I  is given by    

     
2

1 2 3 0a I a I a+ + =                                                         (4) 

where, 
1 ( )( )( )a a      = + + +  

     2 [( )( )( ) {(1 ) }]a q         = + + + − − +  

     3 0( )( )( )(1 )a R      = + + + −  

Here
1 2, 0a a  . Thus from equation (4), it is clear that 

(i)  If 
0R is less than or equal to one, then there is no positive equilibrium. 

(ii) If 
0R is greater than one, then there exist a unique positive (endemic) equilibrium 

* * * * *( , , , )P S E I V=  and is given by 

     

20
* *

0

(1 )
S

S aI
R

= + , *
*

pA q I
V



 

+
=

+
, * *E I

 



+ 
=  
 

                                 (5) 

and 
*

[( )( )( ) {(1 ) }]

2 ( )( )( )

q D
I

a

         

      

− + + + − − + +
=

+ + +
                              (6) 
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where, 2 2 2

0[( )( )( ) {(1 ) }] 4 { ( )( )( )} (1 )D q a R                = + + + − − + − + + + −   

4. LOCAL STABILITY ANALYSIS 

In this section, the local stability analysis of disease-free and endemic equilibrium is 

discussed. By using S E I V A + + + = , the original system (1) can be reduced to the following 

system: 

     

2

2

{(1 ) } ( ) {(1 ) }
1

( )
1

( )

dS A SI
p S E q I

dt aI

dE SI
E

dt aI

dI
E I

dt


      




 

  


= − + − − + − + − − +




= − + 
+ 


= − + 



                     (7) 

where, initial conditions are (0), (0), (0) 0S E I  .  

Theorem 4.1. The disease-free equilibrium
0P  is locally asymptotically stable when the basic 

reproduction number is less than one and is unstable when it is greater than one.                                                                                                

Proof. The Jacobian matrix of the system (7) is  

     

2

2 2 2

2

2 2 2

(1 )

1 (1 )
( ) (1 )

(1 )
( )

1 (1 )

0 ( )

I S aI

aI aI
q

I S aI
J

aI aI

 
    

 
 

  

−

+ +

 
− − + − − + − − 
 
 −

= − + 
+ + 

 − +
 
 
 

                       (8) 

At
0P , we have 

     

0

0 0

( ) (1 )

0 ( )

0 ( )

S q

J S

     

  

  

− + − − + − − 
 

= − + − 
 − + 

    

The characteristic equation of this matrix is 

    
2

0{ ( )}[ (2 ) ( )( )(1 )] 0R           + + + + + + + + − =                         (9) 

It is obvious from (9) that, all the eigen values of 
0J are negative, if

0R  is less than one. Hence 
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in this case 
0P  is locally asymptotically stable. Also, two eigen values of 

0J  are negative and 

one eigen value is positive, if
0R  is greater than one. Hence

0P  is unstable in this case.    

Theorem 4.2.  If the basic reproduction number is greater than one, then the endemic 

equilibrium point 
*P  is locally asymptotically stable. 

Proof. At
*P , the Jacobian matrix of system (7) is     

    

2

2 2 2

* * *

* *

2

* * *
* 2 2 2

* *

(1 )

1 (1 )
( ) (1 )

(1 )
( )

1 (1 )

0 ( )

I S aI

aI aI
q

I S aI
J

aI aI

 
    

 
 

  

−

+ +

 
− − + − − + − − 
 
 −

=  − + 
+ + 

 − +
 
 
 

 

The characteristic equation of this matrix is 3 2

1 2 3 0A A A  + + + = , where 

*
1 2

*

3
(1 )

I
A

aI


   = + + + +

+
 

2

* * *
2 2 2 2

* * *

2 ( )( ) (2 )
(1 ) (1 ) (1 )

I I I
A a

aI aI aI

 
        

 
= + + + + + + + + 

+ + + 
 

  *
3 * 2

*

2 ( )( )( ) ( ) ( ) ( )
(1 )

I
A a I q

aI
                =  + + + + + + + + + +   +  

Also, 

( )1 2 3 3 (2 )( )A A A         − = + + + + + +  

         
2

*
* *2 2

*

2 ( )( ) (2 ) [2 ( )( )(2 )
(1 )

I
a I a I

aI


               + + + + + + + + + + + +

+
 

        2 2 2 2 *

2

*

{7 (5 2 )( ) 6 (2 )}]
(1 )

I
q

aI
          + + + + + + + + + −

+
, 

It is easy to see that 
1 2 3, , 0A A A  and

1 2 3 0A A A−  . Hence
*P  is locally asymptotically stable (by 

Routh-Hurwitz Theorem). 



57 

STABILITY ANALYSIS OF A DETERMINISTIC VACCINATION MODEL…. 

5. GLOBAL STABILITY ANALYSIS 

In this section, we observe the global stability of the two equilibria
0P  and

*P . To study the 

global stability of
0P , we use the method given in [14]. Rewrite the system (7) as 

     

1

2 2

( , ),

( , ), ( ,0) 0

dX
F X Z

dt

dZ
F X Z F X

dt


= 


= =


 

where, ( )X S R=  stands for the number of uninfected individuals and 2( , )Z E I R=  represents 

the infected population (exposed and infectious both). We denote the disease-free equilibrium 

by
0 0( ,0)T X= . The following conditions ( 1)M and ( 2)M are essential for global stability: 

( 1)M 0X  is globally asymptotically stable for 1( ,0)
dX

F X
dt

=  

( 2)M 2 2( , ) ( , )F X Z BZ F X Z= − , where 2 ( , ) 0F X Z  , for ( , )X Z  , 

where, 
2 0( ,0)zB D F X= represents an M-matrix (the off-diagonal elements of B are 

non-negative). Then the following result holds: 

Lemma 5.1. If the basic reproduction number is less than one and the assumptions ( 1)M - ( 2)M

are satisfied, then the fixed point 
0 0( ,0)T X=  is globally asymptotically stable. 

Now, we prove the following theorem: 

Theorem 5.2. The disease-free equilibrium 
0P  is globally asymptotically stable provided that 

the basic reproduction number is less than one. 

Proof.  Let ( )X S= , ( , )Z E I=  and
0 0( ,0)T X= , where 0

{(1 ) }

( )

A p
X

 

  

− +
=

+
. Then 

     
1 2

{(1 ) }
( , ) ( ) {(1 ) }

1

dX A p SI
F X Z S E q I

dt aI

  
    



− +
= = − − + − + − −

+
 

At
0S S= , we have

1( ,0) 0F X =  and 1( ,0) {(1 ) } ( )
dX A

F X p X
dt

   


= = − + − + .  

As 
0,t X X→ → . Thus, 

0 0( )X X S= =  is globally asymptotically stable. Now 
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0 0 2
2 2

( )
( , ) ( , )1

( )
0

SI
S E S I

F X Z BZ F X ZaI
I


   

  

 
− + −     = − = −+     − +   

 

 

where, 0( )

( )

S
B

  

  

− + 
=  

− + 
, 

E
Z

I

 
=  
 

  and 0 2
2 ( , ) 1

0

SI
S I

F X Z aI



 

− = +
 
 

.   

In the system (7), total population is bounded by 1 0

{(1 ) }
( )

( )

A p
N

 

  

− +
→

+
, that is,

1 0, , ( )S E I N . Since
0 1 0( )S N , we have 2

0 1 0( ) (1 )S N S S aI   + and hence 2 ( , ) 0F X Z  . 

Obviously, B  represents an M-matrix, so conditions ( 1)M and ( 2)M hold good and by Lemma 

5.1 
0P  is globally asymptotically stable provided

0 1R  .    

Next, we investigate the global stability of
*P  by application of a geometrical approach 

developed in [15] (briefly explained in Appendix A).  

Theorem 5.3. If basic reproduction number is greater than one, then the endemic equilibrium 

*P  of the system (7) is globally stable in region provided  and (1 )q  −  . 

Proof. Theorem 4.1 shows the instability of
0P when

0 1R  . By means of the uniform persistence 

results proved in [16, 17], the instability of
0P  assures the uniform persistence of the system 

when
0 1R  . Therefore the reduced system (7) is uniformly persistent. Now, the second additive 

compound matrix [2]J of the Jacobian matrix (8) is given by 

     

2 2

2 2 2 2 2

[2]

2

2

(1 ) (1 )
2 (1 )

1 (1 ) (1 )

2
1

0 2
1

I S aI S aI
q

aI aI aI

I
J

aI

I

aI

  
    


    


  

 − −
− − − − − − + 

+ + + 
 

= − − − − − 
+ 

 
− − − + 

 

Choose the function ( , , ) diag 1, ,
E E

I I
P P S E I

 
= =  

 
. This shows that 1 diag 1, ,

I I

E E
P−  

=  
 

.                                                  
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Also we have
2 2

' ' ' '
diag 0, ,f

E I EI E I EI

I I
P

− − 
=  

 
. So that 1 ' ' ' '

0, ,f

E I E I

E I E I
P P diag−

− −
 

=  
 

. Then

     

[2]1 1

2 2

2 2 2 2 2

2

2

(1 ) (1 )
2 (1 )

1 (1 ) (1 )

' '
2

1

' '
0 (2 )

1

f
B P P PJ P

I S aI I S aI I
q

EaI aI E aI

E I E I

I E IaI

I E I

E IaI

  
    


    


  

− −= +

    − −  − + + + − − +     + + +     
  

= − + + + + − −   
 + 
 
 − + + + −
 + 
     

The matrix B  can be expressed in block form as 11 12

21 22

B B
B

B B

 
=  
 

, Where 

                                                           

2 2

11 122 2 2 2 2

(1 ) (1 )
2 , , (1 ) ,

1 (1 ) (1 )

I S aI I S aI I
B B q

EaI aI E aI

  
    

    − −  = − + + + = − − +      + + +     

                                                        

and
2

21 22

2

' '
2

1, 0 ,
' '

(2 )
1

T

I E I

E IE aIB B
I I E I

E IaI


   




  

  
− + + + + − −   

   + = =    
 − + + + −
 + 

 

Let 3( , , )u v w R be a vector, then we define a norm in 3R  as | ( , , ) | max{| |,| | | |}u v w u v w= +  and 

let  be the Lozinskii measure with respect to this norm. We have
1 2( ) { , }B Sup g g  , where

1 1 11 12( ) | |g B B= + ,
2 1 22 21( ) | |g B B= + and 

12 21| |,| |B B  are matrix norms with respect to the 1L  

vector norm and 
1  represent the Lozinskii measure with respect to 1L  norm [18]. Then, 

   1 1 11 12
( ) | |g B B= +  

     
2 2

2 2 2 2 2

(1 ) (1 )
2 max , {(1 ) }

1 (1 ) (1 )

I S aI I S aI I I
q

EaI aI E aI E

  
    

   − − 
= − + + + + − − −    

+ + +    

 

     
2

2 2 2

(1 )
2 [when (1 ) ]

1 (1 )

I S aI I
q

aI aI E

 
    

  −
= − + + + + −   

+ + 
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2 2

2
1 (1 )

I SI

aI aI E

 
  

 
 − + + + +  

+ + 
 

     
2

'
[from(7)]

1

E I

E aI


  − − −

+
 

     
'E

E
 −  

To find 
1 22( )B  we add the absolute value of the off-diagonal elements to the diagonal one in 

each column of
22B , and then take the maximum value of these two sums. Thus 

   2 1 22 21
( ) | |g B B= +  

     
' ' ' '

max 2 , 2
E I E I E

E I E I I
       

 
= − − − − − − − − + + 

 
 

     
' '

2 max( , )
E I E

E I I
     = − − − + − − +  

     
'

max( , ) [from(7)]
E

E
   = − + − −  

     
'

[whenσ > θ]
E

E
 −  

Therefore, 1 2

'
( ) { , }

E
B Sup g g

E
  = − . Integrating both sides at the same time, we get 

      
0

1 1 ( )
( ) log

(0)

t E t
B ds

t t E
  − ,  

this shows that 

       0

0
0

1
limsupsup ( ( ( , ))) 0

t

t x

q B x s x ds
t

 
→ 

=  −  .   

6. NUMERICAL SIMULATION AND CONCLUDING REMARKS 

In this paper, a vaccination model with non-monotonic incidence rate and partial temporary 

immunity is discussed. We have proved that if basic reproduction number
0R is less than one, 

0P  

is globally asymptotically stable and if it is greater than one, 
*P  is globally asymptotically 

stable under some conditions. If basic reproduction number is equal to one then from equation 
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(3) we obtain the threshold value of vaccination ( )[ ( )( )]p A A        = + − + + . If this 

threshold p  is less than p , 
0 1R   and if it is greater than p , 

0 1R  . Thus the disease can be 

eradicated if the vaccinated number ( p ) is greater than the threshold vaccination coverage ( p ); 

otherwise the disease will persist in the population. 

    Now, we provide some numerical simulations by using MATLAB in support of the 

analytical findings of previous sections.  

(i) Considering the parameters in system (1) as 4A= , 0.1 = , 2a = , 0.2 = , 0.2 = , 0.1 = ,

0.01 = , 0.5q = and 0.2p = , we get basic reproduction number
0 0.622 1R =  . Thus the system 

(1) has a disease-free equilibrium 
0P = 0 0 0 0( , , , )S E I V = (37.2,0,0,2.67) and is globally 

asymptotically stable. In this case the disease disappears and dies out (figure. 1). 

(ii) Considering the parameters in system (1) as 4A= , 0.2 = , 2a = , 0.2 = , 0.1 = , 0.2 = ,

0.2 = , 0.5q = and 0.2p = , we get basic reproduction number
0 4.3333 1R =  . Thus the system (1) 

has an endemic equilibrium 
*P = * * * *( , , , )S E I V = (13.6688,2.1987,1.0994,,3.03312) and is globally 

asymptotically stable. Thus the disease becomes endemic and persists in the population (figure. 

2). 

Keeping all parameters fixed of endemic equilibrium and taking different initial conditions in 

system (7), the phase portrait in SEI-space is displayed. This phase diagram shows that 

lim( ( ), ( ), ( ))
t

S t E t I t
→

= * * *( , , )S E I for 
0 4.3333 1R =  (figure. 3). 

(iii) Taking all parameters of endemic equilibrium and varying the values of p , we see that 

increase in the values of p decreases the infected population. At ( 0p = , 0 = ), that is, without 

vaccination, the size of infected population is high. At ( 0.2p = , 0.1 = ) and ( 0.4p = , 0.1 = ), 

that is, increasing the vaccination coverage, the size of infected population get decreases. This 

shows the effect of vaccination on size of infected population (figure. 4). 
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(iv) Though the basic reproduction number 
0R does not depend on q  , numerical results show 

that when the disease is endemic, the steady-state value 
*S of the susceptible population 

decreases as q increases. This indicates that q affects the dynamics of the given system (figure. 

5). 

(v) On keeping all parameters fixed of endemic equilibrium and changing the values of a , we 

see that the steady-state values of 
*I of the infectives decreases as a increases. Thus, spread of 

disease decreases as the protective measures for the susceptibles increases (figure. 6). 

 

 

 

Figure. 1. Disease-free equilibrium 
0P  is globally asymptotically stable and disease dies out. 
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Figure. 2. Endemic equilibrium 
*P  is globally asymptotically stable and disease persists. 

 

 

Figure. 3. Phase portrait in SEI-space for endemic equilibrium. 
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Figure. 4. Effect of vaccination coverage on size of infected population. 
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Figure. 6. The steady-state values of 
*I  decreases as a increases. 
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APPENDIX A 

To prove the global stability of endemic equilibrium, we briefly explain the geometrical 

approach method given by Li and Muldowney [15]. Consider the system: 

     ( )x f x =                                                              (10)    

where, ( ) nx f x R is a 1C function about x in 1

nD R . Let 
0( , )x t x be the solution of (10) 

such that
0 0(0, )x x x=  and *x  be an equilibrium of (10), i.e. *( ) 0f x = . Assume that the 

following hypotheses hold: 

( 3)M  There is a compact absorbing set
1K D . 

( 4)M  Differential equation (10) has a unique equilibrium *x  in
1D . 

Let ( )x P x→  be a 
2 2

n n   
   

   
 matrix-valued function that is 1C for 1x D . Suppose 1( )P x− exists 

0 5 10 15 20 25 30 35 40 45 50
0.5

1

1.5

2

time

In
fe

c
ti

v
e
s

 

 

a=2

a=4

a=6

a=8



66 

HARISH JOSHI, R. K. SHARMA, GEND LAL PRAJAPATI 

and is continuous for x K , the compact absorbing set. We define a quantity q  as  

     
0

0

1
limsupsup ( ( ( , )))

t

t x K

q B x s x ds
t


→ 

=  ,                                                                                                

where 1 [2] 1

fB P P PJ P− −= + , the matrix fP  is obtained by substituting each element ijP  of P by 

its derivative in the direction of f and [2]J represents the second additive compound matrix of 

the Jacobian matrix J . The quantity ( )B is the Lozinskii measure of B  with respect to a 

vector norm |.| in NR ,
2

n
N

 
=  
 

, given by
0

1
( ) lim

h

I hB
B

h


+→

+ −
= . 

The following global stability analysis result is proved in Theorem 3.5 of [15].  

Theorem. Suppose that 
1D  is simply connected and that assumptions ( 3)M - ( 4)M hold, then the 

unique equilibrium *x of (10) is stable in
1D if 0q  . 
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