

Available online at http://scik.org J. Math. Comput. Sci. 10 (2020), No. 1, 150-156 https://doi.org/10.28919/jmcs/4301 ISSN: 1927-5307

SOME FAMILIES OF 4-TOTAL DIFFERENCE CORDIAL GRAPHS

R. PONRAJ^{1,*}, S. YESU DOSS PHILIP², R. KALA²

¹Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, Tamilnadu, India

²Department of Mathematics, Manonmaniam Sundarnar University, Abishekapatti, Tirunelveli-627012,

Tamilnadu, India

Copyright © 2020 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. Let *G* be a graph. Let $f: V(G) \to \{0, 1, 2, ..., k-1\}$ be a map where $k \in \mathbb{N}$ and k > 1. For each edge *uv*, assign the label |f(u) - f(v)|. *f* is called *k*-total difference cordial labeling of *G* if $|t_{df}(i) - t_{df}(j)| \leq 1$, $i, j \in \{1, 2, ..., k\}$ where $t_{df}(x)$ denotes the total number of vertices and the edges labeled with *x*. A graph with admits a *k*-total difference cordial labeling is called *k*-total difference cordial graphs. In this paper we investigate the 4-total difference cordial labeling behaviour of some graphs like $J_{n,n} \cup K_{1,n}, J_{n,n} \cup B_{n,n}, J_{n,n} \cup P_n$ etc.

Keywords: path; bistar; jelly fish; union of graphs; corona of graphs.

2010 AMS Subject Classification: 05C78.

1. INTRODUCTION

In this paper we consider here finite, simple and undirected graphs only. The notion of *k*-total difference cordial graph was introduced in [4]. In [4, 5], 3-total difference cordial labeling behaviour of path, complete graph, comb, armed crown, crown, wheel, star etc have been investigated and also in [6], 4-total difference cordial labeling of path, star, bistar, comb, crown etc., have been invetigated. In [7], 4-total difference cordial labeling of $P_n \cup K_{1,n}$, $S(P_n \cup K_{1,n})$,

^{*}Corresponding author

E-mail address: ponrajmaths@gmail.com

Received September 14, 2019

 $P_n \cup B_{n,n}$ etc., have been invetigated. In this paper we investigate 4-total difference of cordial labeling of union some graphs like $J_{n,n} \cup K_{1,n}, J_{n,n} \cup B_{n,n}, J_{n,n} \cup P_n$.

2. PRELIMINARIES

Definition 2.1. Let *G* be a graph. Let $f : V(G) \to \{0, 1, 2, ..., k-1\}$ be a function where $k \in \mathbb{N}$ and k > 1. For each edge uv, assign the label |f(u) - f(v)|. *f* is called *k*-total difference cordial labeling of *G* if $|t_{df}(i) - t_{df}(j)| \le 1$, $i, j \in \{1, 2, ..., k\}$ where $t_{df}(x)$ denotes the total number of vertices and the edges labelled with *x*. A graph with a *k*-total difference cordial labeling is called *k*-total difference cordial graph.

Definition 2.2. The *corona* of G_1 with $G_2, G_1 \odot G_2$ is the graph obtained by taking one copy of G_2 and p_1 copies of G_2 and joining the i^{th} vertex of G_1 with an edge to every vertex in the i^{th} copy of G_2 .

Definition 2.3. The *Bistar* $B_{m,n}$ is the graph obtained by joining the two central vertices of $K_{1,m}$ and $K_{1,n}$.

Definition 2.4. The *union* of two graphs G_1 and G_2 is the graph $G_1 \cup G_2$ with $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$.

Definition 2.5. The jelly fish is the graph $J_{n,n}$ with vertex set t $V(J_{n,n}) = \{u_i, v_i, u, v, x, y\}$ $1 \le i \le n$ and edge set $E(J_{n,n}) = \{uu_i, vv_i, ux, uy, vx, vy : 1 \le i \le n\}.$

3. MAIN RESULTS

Theorem 3.1. $J_{n,n} \cup K_{1,n}$ is 4-total difference cordial for all *n*.

Proof. Take the vertex set and edge set of $J_{n,n}$ as in definition 3.4. Let $K_{1,n}$ be the star. Let *w* be the central vertex of $K_{1,n}$ and w_1, w_2, \ldots, w_n be the pendent vertices adjacent to *w*. Clearly, $|V(J_{n,n} \cup K_{1,n})| + |E(J_{n,n} \cup K_{1,n})| = 6n + 10$.

Case 1.
$$n \ge 4$$
.

Fix the labels 1, 1 and 1 to the vertices u_1, u_2 and u_3 and also fix the labels 1, 1 and 1 to the vertices v_1, v_2 and v_3 . Assign the labels 3, 3, 3 and 3 to the vertices u, x, y and v. Next assign the labels 3 and 1 to the vertices u_4 and u_5 . Next consider the two vertices u_6 and u_7 . Assign the

label 3 and 1 respectively to the vertices u_6 and u_7 . Continue in this pattern until we reach the vertex u_n . Note that the vertex u_n receive the label 3 or 1 if *n* is even or odd. Assign the label 3 and 1 to the vertices v_4 and v_5 . Next consider the two vertices v_6 and v_7 . Assign the label 3 and 1 respectively to the vertices v_6 and v_7 . Proceeding in this pattern until we reach the vertex v_n . Clearly the vertex v_n receive the label 3 or 1 if *n* is even or odd. We now consider the vertices of the star $K_{1,n}$. Fix the label 3 to the central vertex w. Next assign the labels 3 and 1 to the vertices w_1 and w_2 . Next consider the two vertices w_3 and w_4 . Assign the label 3 and 1 respectively to the vertex w_6 . Proceeding like this untill we reach the vertex w_n . Note that the vertex w_n receive the label 3 or 1 if *n* is even or odd.

Case 2. *n* = 2 and 3.

n	<i>u</i> ₁	<i>u</i> ₂	<i>u</i> ₃	и	v	x	y	v_1	<i>v</i> ₂	<i>v</i> ₃	w	<i>w</i> ₁	<i>w</i> ₂	<i>w</i> 3
2	1	1		3	3	3	3	1	1		3	3	1	
3	1	1	1	3	3	3	3	1	1	1	3	3	1	3
	TABLE 1													

The table 2 shows that this vertex labeling is a 4-total difference codial labeling.

 $t_{df}(0)$

 $\frac{3n+5}{2}$

Table 1 gives a 4-total difference cordial labeling for this case.

<u>3n+6</u> <u>3n+4</u>

 $t_{df}(1)$

 $\frac{3n+5}{2}$

 $t_{df}(2)$

 $\frac{3n+5}{2}$

3n+4

 $t_{df}(3)$

3n+6

TABLE	2

Theorem 3.2. $J_{n,n} \cup B_{n,n}$ is 4-total difference cordial for all *n*.

Values of *n*

n is odd

n is even

Proof. Take the vertex set and edge set of $J_{n,n}$ as in definition 3.4. Let $B_{n,n}$ be the bistar. Let w, z $(1 \le i \le n)$ be the central vertices of $B_{n,n}$ and w_i, z_i $(1 \le i \le n)$ be the pendent vertices adjacent to w and z respectively. Clearly, $|V(J_{n,n} \cup B_{n,n})| + |E(J_{n,n} \cup B_{n,n})| = 8n + 12$. Fix the labels 1,1,1 and 1 to the vertices u_1, u_2, v_1 and v_2 . Next assign the label 3 to vertices u_3, u_4, \ldots, u_n and v_3, v_4, \ldots, v_n . We now consider the vertices of the bistar $B_{n,n}$. Fix the labels 3,3 and 3 to the vertices w, z and w_1 . Next assign the label 1 to the vertices w_2, w_3, \ldots, w_n and z_1, z_2, \ldots, z_n . Clearly $t_{df}(0) = t_{df}(1) = 3n = t_{df}(2) = t_{df}(3) = 2n + 3$.

Theorem 3.3. $C_n \cup K_{1,n}$ is 4-total difference cordial for all *n*.

Proof. Let C_n be the cycle $u_1u_2...u_nu_1$. Let $K_{1,n}$ be the star. Let v be the central vertex of $K_{1,n}$ and $v_1, v_2, ..., v_n$ be the pendent vertices adjacent to v. First we consider the cycle C_n . Assign the label 3 to the all cycle vertices $u_1, u_2, ..., u_n$. We now consider the star $K_{1,n}$. Assign the label 3 to the central vertex v. Next assign the label 1 to all the pendent vertices $v_1, v_2, ..., v_n$. Clearly $t_{df}(0) = t_{df}(1) = 3n = t_{df}(2) = t_{df}(3) = n$.

Theorem 3.4. $J_{n,n} \cup (P_n \odot K_1)$ is 4-total difference cordial for all values of *n*.

Proof. Take the vertex set and edge set as in definition 3.4. Let P_n be the path $w_1w_2...w_n$ and $z_1, z_2, ..., z_n$ be the pendent vertices adjacent to $w_1, w_2, ..., w_n$ respectively. First consider the jelly fish $J_{n,n}$. Fix the label 3 to the vertices u, v, x and y. Assign the label 1 to vertices $u_1, u_2, ..., u_n$ and $v_1, v_2, ..., v_n$. We now consider the comb $P_n \odot K_1$. Assign the label 3 to all the path vertices $w_1, w_3, ..., w_n$. Next we move to pendent vertices $z_1, z_2, ..., z_n$. Fix the label 1 to the vertices z_1 and z_2 . Next assign the label 3 to the remaining pendent vertices $z_3, z_4, ..., z_5$. Clearly $t_{df}(0) = t_{df}(1) = 3n = t_{df}(2) = t_{df}(3) = 2n + 2$.

Example 3.5. A 4-total difference cordial labeling of $J_{6,6} \cup (P_6 \odot K_1)$ is shown in Figure 1

FIGURE 1

Theorem 3.6. $J_{n,n} \cup P_n$ is 4-total difference cordial for all *n*.

Proof. Take the vertex set and edge set as in definition 3.4. Let P_n be the path $w_1w_2...w_n$ be the path vertices. Fix the label 3 to the vertices u, v, x and y and the labels 1, 1 and 1 to the vertices u_1, u_2 and u_3 . Fix the label 1, 1 and 1 to the vertices v_1, v_2 and v_3 . Assign the labels 3 and 1 to the vertices u_4 and u_5 . Next consider the two consecutive vertices u_6 and u_7 . Assign the labels 3 and 1 to the vertex u_n receive the label 3 or 1 if n is odd or even. Assign the labels 3 and 1 to the vertices v_4 and v_5 . Next consider the two consecutive vertices v_6 and 1 to the vertices v_4 and v_5 . Next consider the two consecutive vertices v_6 and 1 to the vertices v_4 and v_5 . Next consider the two consecutive vertices v_6 and v_7 . Assign the labels 3 and 1 to the vertices v_4 and v_5 . Next consider the two consecutive vertices v_6 and v_7 . Assign the labels 3 and 1 to the vertices v_6 and v_7 . Proceeding like this until we reach the vertex v_n receive the label 3 or 1 if n is odd or even. We now consider the path P_n .

Case 1. *n* is even.

Assign the labels 1,3,3 and 1 to the path vertices w_1, w_2, w_3 and w_4 . Next consider the four vertices w_5, w_6, w_7 and w_8 . Assign the labels 1,3,3 and 1 respectively to the vertices w_5, w_6, w_7 and w_8 . We now assign the labels 1,3,3 and 1 to the next four consecutive vertices $w_9, w_{10}, w_{11}, w_{12}$. Next assign the labels 1,3,3 and 1 respectively to the next four consecutive vertices w_{13}, w_{14}, w_{15} and w_{16} . Countinue in this pattern until we reach the vertex u_n . It is easy to verify that the vertex u_n receive the label 1 or 3 according as $n \equiv 0 \pmod{4}$ and 3 or $n \equiv 2 \pmod{4}$.

Case 2. *n* is odd.

Assign the labels 1,3,3 to the path vertices w_1, w_2 and w_3 . Next consider the four vertices w_4, w_5, w_6 and w_7 . Assign the labels 3, 1, 1 and 3 respectively to the vertices w_4, w_5, w_6 and w_7 . We assign the labels 3, 1, 1 and 3 to the next four consecutive vertices w_8, w_9, w_{10}, w_{11} . Next assign the labels 3, 1, 1 and 3 respectively to the next four consecutive vertices w_{12}, w_{13}, w_{14} and w_{15} . Countinue in this pattern until reach the vertex u_n . It is easy to check that the vertex u_n receive the label 1 when $n \equiv 1 \pmod{4}$ and 3 if $n \equiv 3 \pmod{4}$ or n = 3. The Table 3 given below shows that this labeling method is a 4-total difference cordial labeling.

Values of n	$t_{df}(0)$	$t_{df}(1)$	$t_{df}(2)$	$t_{df}(3)$			
<i>n</i> is even	$\frac{3n+4}{2}$	$\frac{3n+4}{2}$	$\frac{3n+4}{2}$	$\frac{3n+4}{2}$			
n is odd	$\frac{3n+3}{2}$	$\frac{3n+3}{2}$	$\frac{3n+5}{2}$	$\frac{3n+5}{2}$			
TABLE 3							

Theorem 3.7. $C_n \cup (P_n \odot K_1)$ is 4-total difference cordial for all values of *n*.

Proof. Let C_n be the cycle $u_1u_2...u_nu_1$. Let P_n be the path $v_1v_2...v_n$ and $w_1, w_2, ..., w_n$ be the pendent vertices adjacent to $v_1, v_2, ..., v_n$ respectively. First we consider the cycle C_n . Assign the label 3 to the all cycle vertices $u_1u_2...u_n$. We now consider the comb $P_n \odot K_1$. Fix the label 1,2,2 to the path vertices v_1, v_2 and v_3 . Next we move to pendent vertices w_1, w_2 and w_3 . Fix the labels 3,2 and 1 to the vertices w_1, w_2 and w_3 . Next assign the labels 1 and 2 to the vertices v_4 and v_5 . Next consider the two vertices v_6 and v_7 . Assign the label 1 and 2 respectively to the vertices v_6 and v_7 . Continue in this pattern untill we reach the vertex v_n . Note that the vertices w_4 and w_5 . Next consider the two vertices w_6 and w_7 . Assign the label 3 and 2 to the vertices w_4 and w_5 . Next consider the two vertices w_6 and w_7 . Assign the label 3 and 2 to the vertices w_4 and w_5 . Next consider the two vertices w_6 and w_7 . Assign the label 3 and 2 to the vertices w_4 and w_5 . Next consider the two vertices w_6 and w_7 . Assign the label 3 and 2 to the vertices w_4 and w_5 . Next consider the two vertices w_6 and w_7 . Assign the label 3 and 2 to the vertices w_4 and w_5 . Next consider the two vertices w_6 and w_7 . Assign the label 3 and 2 to the vertices w_4 and w_5 . Next consider the two vertices w_6 and w_7 . Assign the label 3 and 2 to the vertices w_6 and w_7 . Continue in this pattern untill we reach the vertex w_n . Note that the vertex w_n receive the label 3 or 2 whwn n is even $n \ge 4$ or odd $n \ge 5$.

The following table 4 establish that this labeling technique is a 4-total difference cordial labeling.

Values of n	$t_{df}(0)$	$t_{df}(1)$	$t_{df}(2)$	$t_{df}(3)$			
n is odd	$\frac{3n+1}{2}$	$\frac{3n-1}{2}$	$\frac{3n-1}{2}$	$\frac{3n-1}{2}$			
<i>n</i> is even	$\frac{3n}{2}$	$\frac{3n-2}{2}$	$\frac{3n}{2}$	$\frac{3n}{2}$			
TABLE 4							

Theorem 3.8. $C_n \cup B_{n,n}$ is 4-total difference cordial for all values of *n*.

Proof. Let C_n be the cycle $u_1u_2...u_nu_1$. Let $B_{n,n}$ be the bistar. Let v, w be the central vertex of $B_{n,n}$ and $v_i, w_i (1 \le i \le n)$ be the pendent vertices adjacent to v and w. Clearly, $|V(C_n \cup B_{n,n})| + |E(C_n \cup B_{n,n})| = 6n + 3$. Assign the label 3 to all the cycle vertices $u_1u_2...u_n$. Fix the labels 1, 1 to the vertices v_1, v_2 and w_1, w_2 . Next assign the labels 3 and 1 to the vertices v_3 and v_4 . Next consider the two vertices v_5 and v_6 . Assign the label 3 and 1 respectively to the vertices v_5 and v_6 . Continue in this pattern untill we reach the vertex v_n . Note that the vertex v_n receive the label 3 or 1 when n is odd or even.

R. PONRAJ, S. YESU DOSS PHILIP, R. KALA

The following table 5 establish that this labeling pattern is a 4-total difference cordial labeling.

Values of n	$t_{df}(0)$	$t_{df}(1)$	$t_{df}(2)$	$t_{df}(3)$			
n is odd	$\frac{3n+1}{2}$	$\frac{3n+1}{2}$	$\frac{3n+1}{2}$	$\frac{3n+3}{2}$			
<i>n</i> is even	$\frac{3n}{2}$	$\frac{3n+2}{2}$	$\frac{3n+2}{2}$	$\frac{3n+2}{2}$			
TABLE 5							

Conflict of Interests

The author(s) declare that there is no conflict of interests.

References

- [1] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Comb., 23(1987), 201-207.
- [2] J.A. Gallian, A Dynamic survey of graph labeling, The Electron. J. Comb., 19 (2017), #Ds6.
- [3] F.Harary, Graph theory, Addision Wesley, New Delhi (1969).
- [4] R. Ponraj, S. Yesu Doss Philip and R.Kala, *k*-total difference cordial graphs, J. Algorithms Comput., 51(2019), 121-128.
- [5] R. Ponraj, S. Yesu Doss Philip and R.Kala, 3-total difference cordial graphs, Glob. Eng.Sci. Res., 6(2019), 46-51.
- [6] R. Ponraj, S. Yesu Doss Philip and R.Kala, Some results on 4-total difference cordial graphs (communicated).
- [7] R. Ponraj, S. Yesu Doss Philip and R.Kala, 4-total difference cordial labeling of union of some graphs (communicated).