

# ON LEXICOGRAPHIC PRODUCTS OF TWO INTUITIONISTIC FUZZY GRAPHS 

P. SYAMALA ${ }^{1}$, K.R. BALASUBRAMANIAN ${ }^{2, *}$<br>${ }^{1}$ Department of Mathematics, A.V.V.M. Sri Pushpam College, Poondi, Thanjavur, Tamil Nadu, India<br>${ }^{2}$ Department of Mathematics, H. H. The Rajah's College, Pudukkottai, Tamil Nadu, India<br>Copyright © 2020 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


#### Abstract

In this paper, lexicographic products of two intuitionistic fuzzy graphs, namely, lexicographic min product and lexicographic max product which are analogous to the concept lexicographic product in crisp graph theory are defined. It is illustrated that the operations lexicographic products are not commutative. The connected effective and complete properties of the operations lexicographic products are studied. The degree of a vertex in the lexicographic products of two intuitionistic fuzzy graph is obtained. A relationship between the lexicographic min product and lexicographic max-product is also obtained.


Key words: connected intuitionistic fuzzy graph; effective and regular intuitionistic fuzzy graph; lexicographic minproduct and lexicographic max - product.

2010 AMS Subject Classification: 05C72.

## 1. INTRODUCTION

Fuzzy graph theory was introduced by Azriel Rosenfeld in 1975. Later on Bhattacharya [1] gave some remarks on fuzzy graphs Operations on fuzzy graphs were introduced by Mordeson and Peng [3]. We defined the direct sum of two fuzzy graphs and studied its properties [8].

## *Corresponding author

E-mail address: n.ap.tamilpiththan@gmail.com
Received September 22, 2019

ON LEXICOGRAPHIC PRODUCTS OF TWO INTUITIONISTIC FUZZY GRAPHS

In this paper we introduce the concept of lexicographic products of two intuitionistic fuzzy graphs namely, lexicographic min product and lexicographic max product which are analogous to the concept lexicographic product in crisp graph theory. We have illustrated that these operations are not commutative and studied the connected effective and complete properties of these operations. We have obtained the degree of a vertex in the lexicographic products of two intuitionistic fuzzy graphs and obtained a relationship between the lexicographic min-product and lexicographic max-product. First let us recall some preliminary definitions that can be found in [1]-[9].

## 2. Preliminaries

## Definition 2.1

An intuitionistic fuzzy graph (IFG) is of the form $G=(V, E)$ where,
i) $\quad V=\left\{v_{1}, v_{2} \ldots \ldots . v_{n}\right\}$ such that $\mu_{1}: V \rightarrow[0,1]$ and $\gamma_{1}: V \rightarrow[0,1]$ denote the degree of membership and non-membership of the element $v_{i} \in V$ respectively and $0 \leq$ $\mu_{1}\left(v_{1}\right)+\gamma_{1}\left(v_{1}\right) \leq 1 \forall v_{i} \in V(i,=1,2 \ldots . n) \rightarrow(1)$
ii) $\quad E \subseteq V \times V$ where $\mu_{2}: V \times V \rightarrow[0,1]$ and $\gamma_{2}: V \times V \rightarrow[0,1]$ are such that

$$
\begin{aligned}
& \mu_{2}\left(v_{1}, v_{2}\right) \leq \min \left[\mu_{1}\left(v_{1}\right), \mu_{1}\left(v_{2}\right)\right] \rightarrow(2) \\
& \gamma_{2}\left(v_{1}, v_{2}\right) \leq \max \left[\gamma_{1}\left(v_{1}\right), \gamma_{1}\left(v_{2}\right)\right] \rightarrow(3)
\end{aligned}
$$

and $0 \leq \mu_{2}\left(v_{1}, v_{2}\right)+\gamma_{2}\left(v_{1}, v_{2}\right) \leq 1 \forall\left(v_{1}, v_{2}\right) \in E(1,2 \ldots \ldots n) \rightarrow(4)$.

## Definition 2.2

Let $G=<V, E>$ be an intuitionistic fuzzy graph. The degree of a vertex $u$ is defined by $d(u)=\left(d_{\mu}(u), d_{\gamma}(u)\right)$ where $d_{\mu}(u)=\sum_{u \neq v} \mu_{2}(u, v)$ and $d_{\gamma}(u)=\sum_{u \neq v} \gamma_{2}(u, v)$.

## Definition 2.3

An edge $e=(u, v)$ of an intuitionistic fuzzy graph $G=(V, E)$ is called an effective edge if $\mu_{2}(u, v)=\min \left(\mu_{1}(u), \mu_{1}(v)\right)$ and $\gamma_{2}(u, v)=\max \left(\gamma_{1}(u), \gamma_{1}(v)\right)$.

## Definition 2.4

An intuitionistic fuzzy graph is complete if $\mu_{2}(u, v)=\min \left\{\left(\mu_{1}(u), \mu_{1}(v)\right\}\right.$ and $\gamma_{2}(u, v)=\max \left\{\gamma_{1}(u), \gamma_{1}(v)\right\}$.

## Definition 2.5

An intuitionistic fuzzy graph $G=(V, E)$ is said to be regular, if every vertex is adjacent to a vertex with same degree.

## Definition 2.6

The lexicographic product of $G_{1}:\left(V_{1}, E_{1}\right)$ with $G_{2}:\left(V_{2}, E_{2}\right)$ is defined as $G_{1}\left[G_{2}\right]:(V, E)$ where $V=V_{1} \times V_{2}$ and $E=\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) / u_{1} u_{2} \in E_{1}\right.$ or $u_{1}=u_{2}$ and $\left.v_{1} v_{2} \in E_{2}\right\}$

## 3. Lexicographic Min Product

## Definition: 3.1

Let $G_{1}:\left(\mu_{1}, \mu_{2}\right),\left(\gamma_{1}, \gamma_{2}\right)$ and $G_{2}:\left(\mu_{1}{ }^{\prime}, \mu_{2}{ }^{\prime}\right),\left(\gamma_{1}{ }^{\prime}, \gamma_{2}{ }^{\prime}\right)$ denote two intuitionistic fuzzy graphs. Define $G:\left(\mu_{1}, \mu_{2}\right)$, and $\left(\gamma_{1}, \gamma_{2}\right)$ with underlying crisp graph $G^{*}:(V, E)$ Where $V=$ $V_{1} \mathrm{xV}_{2}, \mathrm{E}=\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) / u_{1} u_{2} \in E\right.$, or

$$
\left.u_{1}=u_{2} \text { and } v_{1} v_{2} \in E_{2}\right\} \text { by } \mu_{1}\left(u_{1}, v_{1}\right)=\mu_{1}\left(u_{1}\right) \vee \mu_{1}^{\prime}\left(v_{1}\right)
$$

$$
\gamma_{1}\left(u_{1} v_{1}\right),=\gamma_{1}\left(u_{1}\right) \vee \gamma_{1}^{\prime}\left(v_{1}\right) \forall\left(u_{1} v_{1}\right) \in V_{1} \times V_{2} \text { and }
$$

$$
\mu_{2}^{*}\left(\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)\right)= \begin{cases}\mu_{2}\left(u_{1} u_{2}\right) & \text { if } u_{1} u_{2} \in E_{1} \\ \mu_{1}\left(u_{1}\right) \wedge \mu_{2}^{\prime}\left(v_{1} v_{2}\right) & \text { if } u_{1}=u_{2}, V_{1} V_{2} \in E_{2}\end{cases}
$$

$$
\gamma_{2}^{*}\left(\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)\right)=\left\{\begin{array}{cl}
\gamma_{2}\left(u_{1} u_{2}\right) & \text { if } u_{1} u_{2} \in E_{1} \\
\gamma_{1}\left(u_{1}\right) \wedge \gamma_{2}^{\prime}\left(v_{1} v_{2}\right) & \text { if } u_{1}=u_{2}, V_{1} V_{2} \in E_{2}
\end{array}\right.
$$

if $u_{1}, u_{2} \in E_{1}, \mu_{2}\left(u_{1} u_{2}\right)=\mu_{1}\left(u_{1}\right) \wedge \mu_{1}\left(u_{2}\right)$

$$
\leq\left[\mu_{1}\left(u_{1}\right) \vee \mu_{1}^{\prime}\left(v_{1}\right)\right] \wedge\left[\mu_{1}\left(u_{2}\right) \vee \mu_{1}^{\prime}\left(v_{2}\right)\right]
$$

$$
=\mu_{1}{ }^{*}\left(u_{1}, v_{1}\right) \wedge \mu_{1}^{*}\left(u_{2}, v_{2}\right)
$$

if $u_{1}, u_{2} \in E_{1}, \gamma_{2}\left(u_{1} u_{2}\right)=\gamma_{1}\left(u_{1}\right) \wedge \gamma_{1}\left(u_{2}\right)$

$$
\leq\left[\gamma_{1}\left(u_{1}\right) \vee \gamma_{1}^{\prime}\left(v_{1}\right)\right] \wedge\left[\gamma_{1}\left(u_{2}\right) \vee \gamma_{1}^{\prime}\left(v_{2}\right)\right]
$$

$$
=\gamma_{1}^{*}\left(u_{1} v_{1}\right) \wedge \gamma_{1}^{*}\left(u_{2} v_{2}\right)
$$

$$
\text { if } u_{1}=u_{2}, v_{1} v_{2} \in E_{2} \mu_{1}^{\prime}\left(u_{1}\right) \wedge \mu_{2}^{\prime}\left(v_{1} v_{2}\right) \leq \mu_{1}\left(u_{1}\right) \wedge\left[\mu_{1}^{\prime}\left(v_{1}\right) \wedge \mu_{1}^{\prime}\left(v_{2}\right)\right]
$$

$$
=\left[\mu_{1}\left(u_{1}\right) \wedge \mu_{1}^{\prime}\left(v_{1}\right)\right] \wedge\left[\mu_{1}\left(u_{2}\right) \wedge \mu_{1}^{\prime}\left(v_{2}\right)\right]
$$

$$
\leq\left[\mu_{1}\left(u_{1}\right) \vee \mu_{1}{ }^{\prime}\left(v_{1}\right)\right] \wedge\left[\mu_{1}\left(u_{2}\right) \vee \mu_{1}{ }^{\prime}\left(v_{2}\right)\right]
$$

$$
=\left[\mu_{1}^{*}\left(u_{1}, v_{1}\right) \wedge \mu_{1}^{*}\left(u_{2}, v_{2}\right)\right]
$$

$$
\text { if } u_{1}=u_{2}, v_{1} v_{2} \in E_{2} \gamma_{1}^{\prime}\left(u_{1}\right) \wedge \gamma_{2}^{\prime}\left(v_{1} v_{2}\right) \leq \gamma_{1}\left(u_{1}\right) \wedge\left[\gamma_{1}^{\prime}\left(v_{1}\right) \wedge \gamma_{1}^{\prime}\left(v_{2}\right)\right]
$$

$$
=\left[\gamma_{1}\left(u_{1}\right) \wedge \gamma_{1}^{\prime}(v)\right] \wedge\left[\gamma_{1}\left(u_{2}\right) \wedge \gamma_{1}^{\prime}\left(v_{2}\right)\right]
$$

$$
\leq\left[\gamma_{1}\left(u_{1}\right) \vee \gamma_{1}^{\prime}\left(v_{1}\right)\right] \wedge\left[\gamma_{1}\left(u_{2}\right) \vee \gamma_{1}^{\prime}\left(v_{2}\right)\right]
$$

$$
=\left[\gamma_{1}{ }^{*}\left(u_{1}, v_{1}\right) \wedge \gamma_{1}{ }^{*}\left(u_{2}, v_{2}\right)\right]
$$

Hence $\mu_{2}{ }^{*}\left(\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)\right) \leq \mu_{1}{ }^{*}\left(u_{1}, v_{1}\right) \wedge \mu_{1}{ }^{*}\left(u_{2}, v_{2}\right)$ and

$$
\gamma_{2}{ }^{*}\left(\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)\right) \leq \gamma_{1}{ }^{*}\left(u_{1}, v_{1}\right) \wedge \gamma_{1}{ }^{*}\left(u_{2}, v_{2}\right)
$$

$\therefore G:\left(\mu_{1}, \gamma_{2}\right)$ is an intuitionistic fuzzy graph. This is called the Lexicographic min product of $G_{1}$ with $G_{2}$ and is denoted by $G_{1}\left[G_{2}\right]_{\text {min }}:\left(\mu_{1}, \mu_{2}\right)\left(\gamma_{1}, \gamma_{2}\right)$

## Remark 3.2

The operation Lexicographic min product of two intuitionistic fuzzy graphs is not commutative. That is $G_{1}\left[G_{2}\right]_{\text {min }}:\left(\mu_{1}, \mu_{2}\right),\left(\gamma_{1}, \gamma_{2}\right)$ is different from $G_{2}\left[G_{1}\right]_{\text {min }}$ : $\left(\mu_{1}{ }^{\prime}, \mu_{2}{ }^{\prime}\right),\left(\gamma_{1}{ }^{\prime}, \gamma_{2}{ }^{\prime}\right)$. This is illustrated through the following figure.


$$
\mathrm{G}_{2}\left[\mathrm{G}_{1}\right]_{\text {min }}
$$

## Remark 3.3

The lexicographic min - product of two effective intuitionistic fuzzy graphs need not be effective. Also the lexicographic min - product of two complete intuitionistic fuzzy graphs need not be complete.


## Theorem 3.4

If $G_{1}$ and $G_{2}$ are two effective intuitionistic fuzzy graphs with underlying crisp graph $G_{1}{ }^{*}$ and $G_{2}{ }^{*}$ respectively such that $\mu_{1} \geq \mu_{1}{ }^{*}, \gamma_{1} \geq \gamma_{1}{ }^{*}$ and $\left(\mu_{2}, \mu_{2}{ }^{*}\right)\left(\gamma_{2}, \gamma_{2}{ }^{*}\right)$ are constant functions of same value, Then the lexicographic min product of $G_{1}$ with $G_{2}$ is an effective intuitionistic fuzzy graph.

## Proof:

If $u_{1} u_{2} \in E_{1}, \mu^{*}\left(\left(u_{1} v_{1}\right)\left(u_{2} v_{2}\right)\right)=\mu_{2}\left(u_{1} u_{2}\right)=\mu_{1}\left(u_{1}\right) \wedge \mu_{1}\left(u_{2}\right)=\mu_{1}{ }^{*}\left(u_{1} v_{1}\right) \wedge \mu_{1}{ }^{*}\left(u_{2} v_{2}\right)$ $\gamma^{*}\left(\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)\right)=\gamma_{2}\left(u_{1}, u_{2}\right)=\gamma_{1}\left(u_{1}\right) \wedge \gamma_{1}\left(u_{2}\right)=\gamma_{1}{ }^{*}\left(u_{1}, v_{1}\right) \wedge \gamma_{1}{ }^{*}\left(u_{2}, v_{2}\right)$ If $u_{1}=u_{2}$ and $v_{1} v_{2} \in E_{2} \mu^{*}\left(\left(u_{1} v_{1}\right)\left(u_{2} v_{2}\right)\right)=\mu_{2}{ }^{*}\left(v_{1} v_{2}\right)=\mu_{2}\left(u_{1}, u_{2}\right)=\mu_{1}\left(u_{1}\right) \wedge \mu_{1}\left(u_{2}\right)$

$$
=\mu_{1}^{*}\left(u_{1}, v_{1}\right) \wedge \mu_{1}^{*}\left(u_{2}, v_{2}\right)
$$

$\gamma^{*}\left(\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)\right)=\gamma_{2}{ }^{*}\left(v_{1}, v_{2}\right)=\gamma_{2}\left(u_{1}, u_{2}\right)=\gamma_{1}\left(u_{1}\right) \wedge \gamma_{1}\left(u_{2}\right)=\gamma_{1}{ }^{*}\left(u_{1}, v_{1}\right) \wedge \gamma_{1}\left(u_{2}, v_{2}\right)$
Thus $\mu^{*}\left(\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)\right)=\mu_{1}{ }^{*}\left(u_{1}, v_{1}\right) \wedge \mu_{1}{ }^{*}\left(u_{2}, v_{2}\right)$ and
$\gamma^{*}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)=\gamma_{1}{ }^{*}\left(u_{1}, v_{1}\right) \wedge \gamma_{1}{ }^{*}\left(u_{2}, v_{2}\right)\left(\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)\right) \in E$
Hence
$G_{1}\left[G_{2}\right]_{\min }$ is an effective intuitionistic fuzzy graph.

## Theorem 3.5

The lexicographic min product $G_{1}\left[G_{2}\right]_{\min }$ of two connected intuitionistic fuzzy graphs $G_{1}$ and $G_{2}$ is connected intuitionistic fuzzy graph iff $G$ is connected.

ON LEXICOGRAPHIC PRODUCTS OF TWO INTUITIONISTIC FUZZY GRAPHS

## Proof:

From the definition $G_{1}\left[G_{2}\right]_{\text {min }}$ has $\left|V_{2}\right|$ copies of $G_{1}$ That is for each vertex in $G_{2}$ there is a copy of $G_{1}$ in $G_{1}\left[G_{2}\right]_{\min }$. Also $G_{1}$ is connected. Hence $G_{1}\left[G_{2}\right]_{\min }$ is connected.

Conversely, assume that $G_{1}$ and $G_{2}$ be two intuitionistic fuzzy graphs such that $G_{1}\left[G_{2}\right]_{\text {min }}$ is connected.

To prove: $G_{1}$ is connected. Suppose that $G_{1}$ is not connected. Then $\exists$ at least two different vertices $u_{1}, u_{2}$ in $V_{1}$ such that there is no path between them. But since $G_{1}\left[G_{2}\right]_{\min }$ is connected, for any two vertices of the form $\left(u_{1}, v_{i}\right)$ and $\left(u_{2}, v_{j}\right) \in V_{1} \times V_{2}$ There is at least one path between them. This implies that there must be at least one path between the vertices $\left(u_{1}, u_{2}\right)$. This is a contradiction. Hence $G_{1}$ is connected.

## Example 3.6

Consider two intuitionistic fuzzy graphs $G_{1}$ and $G_{2}$ where $G_{1}$ is not a connected intuitionistic fuzzy graph and $G_{2}$ is a connected intuitionistic fuzzy graph. The lexicographic min product of $G_{1}$ with $G_{2}$ is not connected intuitionistic fuzzy graph.


## Theorem 3.7

The number of connected components in the lexicographic min- product $G_{1}\left[G_{2}\right]_{\min }$ of the intuitionistic fuzzy graph $G_{1}$ with $G_{2}$ is equal to that of the intuitionistic fuzzy graph $G_{1}$.

## Proof:

Let $G_{1}$ be a connected intuitionistic fuzzy graph and $G_{2}$ be an intuitionistic fuzzy graph. Then the lexicographic min product $G_{1}\left[G_{2}\right]_{\text {min }}$ is connected. This implies that both $G_{1}$ and $G_{1}\left[G_{2}\right]_{\text {min }}$ are connected and hence the theorem. Suppose that the intuitionistic fuzzy graph $G_{1}$ is not connected and has ' $m$ ' disjoint connected components (say). Then we can rename the vertices of $G_{1}$ in such a way that.
$\left\{u_{1}, u_{2} \ldots \ldots u_{k_{1}}\right\},\left\{u_{k+1}, u_{k+2} \ldots . u_{k_{2}}\right\}, \ldots \ldots .,\left\{u_{k_{m+1}}, u_{k_{m+2}} \ldots . u_{k_{m+n}}\right\}$ are the vertex sets of the m disjoint connected components of $G_{1}$. If $\left\{v_{1}, v_{2} \ldots \ldots . v_{n}\right\}$ is the vertex set of $G_{2}$ then for each vertex $v_{i}$ in $G_{2}$, there is a copy of each connected component of $G_{1}$ in the lexicographic min product $G_{1}\left[G_{2}\right]_{\min }$. There is no edge between these components. For if there is an edge between $u, v_{i}, u_{k_{1+1}} v_{i}$ Then there must be an edge between $u_{1}, u_{k+1}$ in $G_{1}$ which is a contradiction. Thus each connected component in the Lexicographic min product $G_{1}\left[G_{2}\right]_{\text {min }}$ is disjoint from every other component and hence the theorem.

## 4. Degree of a vertex in the Lexicographic min product:

## Definition 4.1

The degree of any vertex in the Lexicographic min- product $G_{1}\left[G_{2}\right]_{\min }$ of the intuitionistic fuzzy graph $G_{1}$ with $G_{2}$ is given by
$d_{G_{1}\left[G_{2}\right]_{\text {min }}}\left(u_{i}, v_{j}\right)=\sum_{u_{i} u_{k} \in E, v_{l} \in V_{2}} \mu_{2}\left(u_{i} u_{k}\right)+\sum_{u_{i}=u_{k}, v_{j} v_{l} \in E_{2}} \mu_{1}\left(u_{i}\right) \wedge \mu_{2}{ }^{\prime}\left(v_{j} v_{l}\right)$ and
$d_{G_{1}\left[G_{2}\right]_{\text {min }}}\left(u_{i}, v_{j}\right)=\sum_{u_{i} u_{k} \in E, v_{l} \in V_{2}}^{\sum} \gamma_{2}\left(u_{i} u_{k}\right)+\sum_{u_{i}=u_{k}, v_{j} v_{l} \in E_{2}}^{\sum} \gamma_{1}\left(u_{i}\right) \wedge \gamma_{2}{ }^{\prime}\left(v_{j} v_{l}\right)$

## Theorem 4.2

If $G_{1}$ and $G_{2}$ are two intuitionistic fuzzy graphs such that $\left(\mu_{1} \geq \mu_{2}{ }^{\prime}\right),\left(\gamma_{1} \geq \gamma_{2}{ }^{\prime}\right)$ Then the degree of a vertex in the Lexicographic min product $G_{1}\left[G_{2}\right]_{\min }$ of the intuitionistic fuzzy graph $G_{1}$ with $G_{2}$ is given by,
$d_{G_{1}\left[G_{2}\right]_{\text {min }}}\left(u_{i}, v_{j}\right)=\left|V_{2}\right| d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)$

## Proof:

Let $G_{1}$ and $G_{2}$ be two intuitionistic fuzzy graphs such that

$$
\mu_{1} \geq
$$ $\mu_{2}{ }^{\prime}$ and $\gamma_{2} \geq \gamma_{2}{ }^{\prime}$. This implies that $\mu_{1} \wedge \mu_{2}{ }^{\prime}=\mu_{2}{ }^{\prime}$ and $\gamma_{1} \wedge \gamma_{1}{ }^{\prime}=\gamma_{1}{ }^{\prime}$. Then the degree of any vertex $\left(u_{i}, v_{j}\right) \in V_{1} \mathrm{x} V_{2}$

is given by

ON LEXICOGRAPHIC PRODUCTS OF TWO INTUITIONISTIC FUZZY GRAPHS

$$
\begin{aligned}
& d_{G_{1}\left[G_{2}\right]_{\text {min }}}\left(u_{i}, v_{j}\right)=\sum_{u_{i} u_{k} \in E_{1}, v_{l} \in V_{2}} \mu_{2}\left(u_{i} u_{k}\right)+\sum_{u_{i}=u_{k}, v_{j} v_{l} \in E_{2}} \mu_{1}\left(u_{i}\right) \wedge \mu_{2}{ }^{\prime}\left(v_{j} v_{l}\right) \\
& =\left|V_{2}\right| \begin{array}{c}
\sum \\
u_{i} u_{k} \in E_{1}
\end{array} \mu_{2}\left(u_{i} u_{k}\right)+\begin{array}{l}
u_{i}=u_{k}, v_{j} v_{l} \in E_{2}
\end{array} \mu_{2}{ }^{\prime}\left(v_{j} v_{k}\right) \\
& =\left|V_{2}\right| d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right) \\
& d_{G_{1}\left[G_{2}\right]_{\text {min }}}\left(u_{i}, v_{j}\right)=\sum_{u_{i} u_{k} \in E_{1}, v_{l} \in V_{2}} \gamma_{2}\left(u_{i} u_{k}\right)+\sum_{u_{i}=u_{k}, v_{j} v_{l} \in E_{2}} \gamma_{1}\left(u_{i}\right) \wedge \gamma_{2}{ }^{\prime}\left(v_{j} v_{l}\right) \\
& =\left|V_{2}\right| \sum_{u_{i} u_{k} \in E_{1}}^{\sum} \gamma_{2}\left(u_{i} u_{k}\right)+\sum_{u_{i}=u_{k}, u_{j} v_{l} \in E_{2}} \gamma_{2}{ }^{\prime}\left(v_{j} v_{l}\right) \\
& =\left|V_{2}\right| d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)
\end{aligned}
$$

## Corollary 4.3

If $G_{1}$ and $G_{2}$ are two intuitionistic fuzzy graphs such that $\mu_{1} \geq \mu_{2}{ }^{\prime}$ and $\gamma_{1} \geq \gamma_{2}{ }^{\prime}$ and $\mu_{2}{ }^{\prime}, \gamma_{2}{ }^{\prime}$ is a constant function of value ' $c$ ' then the degree of vertex in the lexicographic min product $G_{1}\left[G_{2}\right]_{\text {min }}$ of the intuitionistic fuzzy graph $G_{1}$ with $G_{2}$ is given by
$d_{G_{1}\left[G_{2}\right]_{\text {min }}}\left(u_{i}, v_{j}\right)=\left|V_{2}\right| d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right) C$

## Theorem 4.4

If $G_{1}$ and $G_{2}$ are two intuitionistic fuzzy graphs such that $\mu_{1} \leq \mu_{2}{ }^{\prime}$ and $\gamma_{1} \leq \gamma_{2}{ }^{\prime}$ Then the degree of a vertex in the lexicographic min product $G_{1}\left[G_{2}\right]_{\min }$ of the intuitionistic fuzzy graph $G_{1}$ with $G_{2}$ is given by
$d_{G_{1}\left[G_{2}\right]_{\text {min }}}\left(u_{i}, v_{j}\right)=\left|V_{2}\right| d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right) \mu_{1}\left(u_{1}\right)$ and
$d_{G_{1}\left[G_{2}\right]_{\text {min }}}\left(u_{i}, v_{j}\right)=\left|V_{2}\right| d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right) \gamma_{1}\left(u_{i}\right)$
Proof:
Let $G_{1}$ and $G_{2}$ be two intuitionitic fuzzy graphs such that $\mu_{1} \leq \mu_{2}{ }^{\prime}$ and $\gamma_{1} \leq \gamma_{2}{ }^{\prime}$. This implies that $\mu_{1} \wedge \mu_{2}{ }^{\prime}=\mu_{1}$ and $\gamma_{1} \wedge \gamma_{2}{ }^{\prime}=\gamma_{1}$. Then the degree of any vertex $\left(u_{i}, v_{j}\right) \in V_{1} \times V_{2}$ is given by

$$
\begin{aligned}
d_{G_{1}\left[G_{2}\right]_{\text {min }}}\left(u_{i}, v_{j}\right) & =\left|V_{2}\right| d_{G_{1}}\left(u_{i}\right)+\frac{\sum}{u_{i}=u_{k}, v_{j} v_{l} \in E_{2}} \mu_{1}\left(u_{i}\right) \wedge \mu_{2}^{\prime}\left(v_{j} v_{l}\right) \\
& =\left|V_{2}\right| d_{G_{1}}\left(u_{i}\right)+\sum_{u_{i}=u_{k}, v_{j} v_{l} \in E_{2}}^{\sum} \mu_{1}\left(u_{i}\right) \\
& =\left|V_{2}\right| d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right) \mu_{1}\left(u_{i}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
d_{G_{1}\left[G_{2}\right]_{\min }}\left(u_{i}, v_{j}\right) & =\left|V_{2}\right| d_{G_{1}}\left(u_{i}\right)+\sum_{u_{i}=u_{k}, v_{j} v_{l} \in E_{2}} \gamma_{1}\left(u_{i}\right) \wedge \gamma_{2}^{\prime}\left(v_{j} v_{l}\right) \\
& =\left|V_{2}\right| d_{G_{1}}\left(u_{i}\right)+\sum \sum u_{u_{i}}=u_{k}, v_{j} v_{l} \in E_{2} \quad \gamma_{1}\left(u_{i}\right) \\
& =\left|V_{2}\right| d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right) \gamma_{1}\left(u_{i}\right)
\end{aligned}
$$

## 5. LEXICOGRAPHIC MAX - Product

## Definition: 5.1

Define $G$ with underlying crisp graph $G^{*}$ Where $V=V_{1} \times V_{2}, E=\left\{\left(u_{1} v_{1}\right)\left(u_{2} v_{2}\right) /\right.$ $u_{1} u_{2} \in E_{1}$ or $u_{1}=u_{2}$ and $\left.v_{1} v_{2} \in E_{2}\right\}$ by $\mu_{1}\left(u_{1} v_{1}\right),=\mu_{1}\left(u_{1}\right) \vee \mu_{1}{ }^{\prime}\left(u_{1}\right), \gamma_{1}\left(u_{1} v_{1}\right)=\gamma_{1}\left(u_{1}\right) \vee$ $\gamma_{1}{ }^{\prime}\left(u_{1}\right)$ for all $\left(u_{1} v_{1}\right) \in V_{1} \times V_{2}$ and

$$
\begin{aligned}
& \mu_{2}^{*}\left(\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)\right)=\left\{\begin{array}{cl}
\mu_{2}\left(u_{1}, u_{2}\right) & \text { if } u_{1} u_{2} \in E_{1} \\
\mu_{1}\left(u_{1}\right) \vee\left(\mu_{2}{ }^{\prime}\left(v_{1}, v_{2}\right)\right. & \text { if } u_{1}=u_{2}, v_{1} v_{2} \in E_{2}
\end{array}\right. \\
& \gamma_{2}{ }^{*}\left(\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)\right)=\left\{\begin{array}{cl}
\gamma_{2}\left(u_{1}, u_{2}\right) & \text { if } u_{1} u_{2} \in E_{1} \\
\gamma_{1}\left(u_{1}\right) \vee\left(\gamma_{2}{ }^{\prime}\left(v_{1}, v_{2}\right)\right. & \text { if } u_{1}=u_{2}, v_{1} v_{2} \in E_{2}
\end{array}\right. \\
& \text { if } u_{1} u_{2} \in E_{1}, \mu_{2}\left(u_{1}, u_{2}\right)=\mu_{1}\left(u_{1}\right) \wedge \mu_{1}\left(u_{2}\right) \quad \leq\left[\mu_{1}\left(u_{1}\right) \wedge \mu_{1}{ }^{\prime}\left(v_{1}\right)\right] \vee\left[\mu_{1}\left(u_{2}\right) \wedge \mu_{1}{ }^{\prime}\left(v_{2}\right)\right] \\
& =\mu_{1}{ }^{*}\left(u_{1} v_{1}\right) \wedge \mu_{1}{ }^{*}\left(u_{2} v_{2}\right) \\
& \text { if } u_{1} u_{2} \in E_{1}, \gamma_{2}\left(u_{1}, u_{2}\right)=\gamma_{1}\left(u_{1}\right) \wedge \gamma_{1}{ }^{\prime}\left(u_{2}\right) \leq\left[\gamma_{1}\left(u_{1}\right) \wedge \gamma_{1}{ }^{\prime}\left(v_{1}\right)\right] \vee\left[\gamma_{1}\left(u_{2}\right) \wedge \gamma_{1}{ }^{\prime}\left(v_{2}\right)\right] \\
& =\gamma_{1}{ }^{*}\left(u_{1} v_{1}\right) \wedge \gamma_{1}{ }^{*}\left(u_{2} v_{2}\right) \\
& \text { if } u_{1}=u_{2}, v_{1} v_{2} \in E_{2} \mu_{1}{ }^{\prime}(u) \vee \mu_{2}{ }^{\prime}\left(v_{1} v_{2}\right) \leq \mu_{1}\left(u_{1}\right) \vee\left[\mu_{1}{ }^{\prime}\left(v_{1}\right) \wedge \mu_{1}{ }^{\prime}\left(v_{2}\right)\right] \\
& =\left[\mu_{1}\left(u_{1}\right) \vee \mu_{1}{ }^{\prime}\left(v_{1}\right)\right] \wedge\left[\mu_{1}\left(u_{2}\right) \vee \mu_{1}{ }^{\prime}\left(v_{2}\right)\right] \\
& \leq\left[\mu_{1}\left(u_{1}\right) \vee \mu_{1}{ }^{\prime}\left(v_{1}\right)\right] \wedge\left[\mu_{1}\left(u_{2}\right) \vee \mu_{1}{ }^{\prime}\left(v_{2}\right)\right] \\
& \left.=\mu_{1}{ }^{*}\left(u_{1} v_{1}\right) \wedge \mu_{1}{ }^{*}\left(u_{2} v_{2}\right)\right] \\
& \text { if } u_{1}=u_{2}, v_{1} v_{2} \in E_{2} \gamma_{1}{ }^{\prime}(u) \wedge \gamma_{2}{ }^{\prime}\left(v_{1} v_{2}\right) \leq \gamma_{1}\left(u_{1}\right) \wedge\left[\gamma_{1}{ }^{\prime}\left(v_{1}\right) \wedge \gamma_{1}{ }^{\prime}\left(v_{2}\right)\right] \\
& =\left[\gamma_{1}\left(u_{1}\right) \vee \gamma_{1}{ }^{\prime}\left(v_{1}\right)\right] \wedge\left[\gamma_{1}\left(u_{2}\right) \wedge \gamma_{1}{ }^{\prime}\left(v_{2}\right)\right] \\
& \leq\left[\gamma_{1}\left(u_{1}\right) \wedge \gamma_{1}{ }^{\prime}\left(v_{1}\right)\right] \wedge\left[\gamma_{1}\left(u_{2}\right) \wedge \gamma_{1}{ }^{\prime}\left(v_{2}\right)\right] \\
& \left.=\gamma_{1}{ }^{*}\left(u_{1} v_{1}\right) \wedge \gamma_{1}{ }^{*}\left(u_{2} v_{2}\right)\right]
\end{aligned}
$$

Hence $\left(u_{1} v_{1}\right)\left(u_{2} v_{2}\right) \leq \mu_{1}{ }^{*}\left(u_{1} v_{1}\right) \wedge \mu_{1}{ }^{*}\left(u_{2} v_{2}\right)$ and $\gamma_{2}{ }^{*}\left(u_{1} v_{1}\right)\left(u_{2} v_{2}\right) \leq \gamma_{1}{ }^{*}\left(u_{1} v_{1}\right) \wedge \gamma_{1}{ }^{*}\left(u_{2} v_{2}\right)$

ON LEXICOGRAPHIC PRODUCTS OF TWO INTUITIONISTIC FUZZY GRAPHS
$\therefore G$ is a intuitionistic fuzzy graph. This is called the Lexicographic max product of $G_{1}$ with $G_{2}$ and is denoted by $G_{1}\left[G_{2}\right]_{\max }$
Remark 5.2
The operation Lexicographic max - product of two intuitionistic fuzzy graphs is not commutative. That is, $G_{1}\left[G_{2}\right]_{\max } \neq G_{2}\left[G_{1}\right]_{\max }$. Also the Lexicographic max product of two effective intuitionistic fuzzy graphs need not be effective and the lexicographic max- product of two complete intuitionistic fuzzy graph not be a complete


## Theorem 5.3

The Lexicographic max-product $G_{1}\left[G_{2}\right]_{\text {max }}$ of two connected intuitionistic fuzzy graphs $G_{1}$ and $G_{2}$ is a connected intuitionistic fuzzy graph if and only if $G_{1}$ is connected.
(Proof of this theorem is similar to the proof of the theorem 5.2)

## Theorem 5.4

The number of connected components in the Lexicographic max-product $G_{1}\left[G_{2}\right]$ of the intuitionistic fuzzy graph $G_{1}$ with $G_{2}$ is equal to that of the intuitionistic fuzzy graph $G_{1}$
(Proof this theorem is similar to the proof of the theorem 5.3)

## 6. DEGREE OF A VERTEX In LEXICOGRAPHIC MAX-PRODUCT

## Definition 6.1

The degree of any vertex in the lexicographic max-product $G_{1}\left[G_{2}\right]$ of the intuitionistic fuzzy graph $G_{1}$ with $G_{2}$ is given by,

$$
\begin{aligned}
d_{G_{1}\left[G_{2}\right]_{\max }}\left(u_{i}, v_{j}\right) & =\sum_{u_{i} u_{k} \in E_{1}, v_{l} \in V_{2}} \mu_{2}\left(u_{i}, u_{k}\right)+\sum_{u_{i}=u_{k}, v_{j} v_{l} \in E_{2}}^{\sum} \mu_{1}\left(u_{i}\right) \vee \mu_{2}^{\prime}\left(v_{j} v_{l}\right) \text { and } \\
= & \sum_{u_{i} u_{k} \in E_{1}, v_{l} \in V_{2}} \gamma_{2}\left(u_{i}, u_{k}\right)+\sum_{u_{i}=u_{k}, v_{j} v_{l} \in E_{2}} \gamma_{1}\left(u_{i}\right) \wedge \gamma_{2}^{\prime}\left(v_{j} v_{l}\right)
\end{aligned}
$$

## Theorem 6.2

If $G_{1}$ and $G_{2}$ be two intuitionistic fuzzy graph such that $\mu_{1} \leq \mu_{2}{ }^{\prime}$. Then the degree of any vertex in $G_{1}\left[G_{2}\right]_{\max }$ is given by

$$
d_{G_{1}\left[G_{2}\right]_{\max }}\left(u_{i}, v_{j}\right)=\left|V_{2}\right| d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)
$$

## Proof:

Let $G_{1}$ and $G_{2}$ be two intuitionistic fuzzy graphs such that $\mu_{1} \leq \mu_{2}{ }^{\prime}$. This implies that $\mu_{1} \vee \mu_{2}{ }^{\prime}=\mu_{2}{ }^{\prime}, \gamma_{1} \vee \gamma_{2}{ }^{\prime}=\gamma_{2}{ }^{\prime}$,
Then the degree of any vertex $\left(u_{i}, v_{j}\right) \in V_{1} \mathrm{x} V_{2}$ is given by,

$$
\begin{gathered}
d_{G_{1}\left[G_{2}\right]_{\max }}\left(u_{i}, v_{j}\right)=\sum_{u_{i} u_{k} \in E_{1}, v_{l} \in V_{2}} \mu_{2}\left(u_{i} u_{k}\right)+\sum_{u_{i}=u_{k}, v_{j} v_{l} \in E_{2}} \mu_{1}\left(u_{i}\right) \vee \mu_{2}^{\prime}\left(v_{j} v_{l}\right) \\
=\left|V_{2}\right| \sum \sum \sum \sum_{u_{i} u_{k} \in E_{1}} \mu_{2}\left(u_{i} u_{k}\right)+\sum u_{u_{i}=u_{k}, v_{j} v_{l} \in E_{2}} \mu_{2}^{\prime}\left(v_{j} v_{l}\right) \\
=\left|V_{2}\right| d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
d_{G_{1}\left[G_{2}\right]_{\max }}\left(u_{i}, v_{j}\right)=\sum_{u_{i} u_{k} \in E_{1}, v_{l} \in V_{2}} \gamma_{2}\left(u_{i} u_{k}\right)+\sum \sum_{u_{i}=u_{k}, v_{j} v_{l} \in E_{2}} \gamma_{1}\left(u_{i}\right) \vee \gamma_{2}^{\prime}\left(v_{j} v_{l}\right) \\
=\left|V_{2}\right| \sum \sum \sum_{u_{i} u_{k} \in E_{1}}^{\sum} \gamma_{2}\left(u_{i} u_{k}\right)+\begin{array}{c}
u_{i}=u_{k}, v_{j} v_{l} \in E_{2}
\end{array} \gamma_{2}^{\prime}\left(v_{j} v_{l}\right) \\
=\left|V_{2}\right| d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)
\end{gathered}
$$

## Corollary 6.3

If $G_{1}$ and $G_{2}$ are two intuitionistic fuzzy graphs such that $\mu_{1} \leq \mu_{2}{ }^{\prime}$ and $\gamma_{2}{ }^{\prime}, \mu_{2}{ }^{\prime}, \gamma_{2}{ }^{\prime}$, is a constant function of value c , then for any vertex $\left(u_{i}, v_{j}\right)$ in $G_{1}\left[G_{2}\right]$ is given by $d_{G_{1}\left[G_{2}\right]_{\max }}\left(u_{i}, v_{j}\right)=\left|V_{2}\right| d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{i}\right) C$

## Theorem 6.4

If $G_{1}$ and $G_{2}$ are two intuitionistic fuzzy graphs such that $\mu_{1} \geq \mu_{2}{ }^{\prime}, \gamma_{1} \geq \gamma_{2}{ }^{\prime}$ then the degree of any vertex in $G_{1}\left[G_{2}\right]_{\text {max }}$ is given by

$$
\begin{aligned}
d_{G_{1}\left[G_{2}\right]_{\max }}\left(u_{i}, v_{j}\right) & =\left|V_{2}\right| d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right) \mu_{1}\left(u_{i}\right) \text { and } \\
& =\left|V_{2}\right| d_{G_{2}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right) \gamma_{1}\left(u_{i}\right)
\end{aligned}
$$

Proof:

ON LEXICOGRAPHIC PRODUCTS OF TWO INTUITIONISTIC FUZZY GRAPHS
Let $G_{1}$ and $G_{2}$ be two intuitionistic fuzzy graphs such that $\mu_{1} \geq \mu_{2}{ }^{\prime}$. and $\gamma_{1} \geq \gamma_{2}{ }^{\prime}$. This implies that $\mu_{1} \vee \mu_{2}{ }^{\prime}=\mu_{1}$ and $\gamma_{1} \vee \gamma_{2}{ }^{\prime}=\gamma_{1}$ then the degree of any vertex $\left(u_{i}, v_{j}\right) \in V_{1} \times V_{2}$ is given by,

$$
\begin{aligned}
& d_{G_{1}\left[G_{2}\right]_{\max }}\left(u_{i}, v_{j}\right)=\left|V_{2}\right| d_{G_{1}}\left(u_{i}\right)+\sum_{u_{i}=u_{k}, v_{j} v_{l} \in E_{2}} \mu_{1}\left(u_{i}\right) \vee \mu_{2}^{\prime}\left(v_{j} v_{l}\right) \\
&=\left|V_{2}\right| d_{G_{1}}\left(u_{i}\right)+\sum_{u_{i}=u_{k}, v_{j} v_{l} \in E_{2}} \mu_{1}\left(u_{i}\right)=\left|V_{2}\right| d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right) \mu_{1}\left(u_{i}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
d_{G_{1}\left[G_{2}\right]_{\max }}\left(u_{i}, v_{j}\right) & =\left|V_{2}\right| d_{G_{1}}\left(u_{i}\right)+\frac{\sum}{u_{i}=u_{k}, v_{j} v_{l} \in E_{2}} \gamma_{1}\left(u_{i}\right) \vee \gamma_{2}^{\prime}\left(v_{j} v_{l}\right) \\
& =\left|V_{2}\right| d_{G_{1}}\left(u_{i}\right)+\sum \sum \sum u_{i}=u_{k}, v_{j} v_{l} \in E_{2} \quad \gamma_{1}\left(u_{i}\right) \\
& =\left|V_{2}\right| d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right) \gamma_{1}\left(u_{i}\right)
\end{aligned}
$$

## 7. RELATIONSHIP BETWEEN THE LEXICOGRAPHIC PRODUCTS

## Theorem 7.1

The lexicographic min-product $G_{1}\left[G_{2}\right]_{\min }$ of the intuitionistic fuzzy graph $G_{1}$ with $G_{2}$ is a spanning intuitionistic fuzzy subgraph of the lexicographic max-product $G_{1}\left[G_{2}\right] \max$.

## Proof:

Consider the lexicographic products $G_{1}\left[G_{2}\right]_{\max }$ and $G_{1}\left[G_{2}\right]_{\min }$ of $G_{1}$ with $G_{2}$ defined on $G^{*}$ where $V=V_{1} \times V_{2} E=\left\{\left(u_{1} v_{1}\right)\left(u_{2} v_{2}\right) / u_{1} u_{2} \in E_{1}\right.$ or $\quad u_{1}=u_{2}$ and $\left.v_{1} v_{2} \in E_{2}\right\}$ from the definitions of the lexicographic max-product and the lexicographic min product it is clear that
$\mu_{1}^{*}\left(u_{1} v_{1}\right)=\mu_{1}\left(u_{1} v_{1}\right) \forall\left(u_{1} v_{1}\right) \in V$
$\gamma_{1}^{*}\left(u_{1} v_{1}\right)=\gamma_{1}\left(u_{1} v_{1}\right) \forall\left(u_{1} v_{1}\right) \in V$ and
$\mu_{2}{ }^{*}\left(\left(u_{1} v_{1}\right)\left(u_{2} v_{2}\right)\right) \geq \mu_{2}\left(\left(u_{1} v_{1}\right)\left(u_{2} v_{2}\right)\right) \forall\left(u_{1} v_{1}\right)\left(u_{2} v_{2}\right) \in E$
Thus $\mu_{1}^{*}=\mu_{2}$ and $\mu_{2} \subseteq \mu_{2}{ }^{*}$ Hence the lexicographic min-product is a spanning intuitionistic subgraph of the lexicographic max-product

## Example 7.2

Consider the following example. Here the lexicographic min-product $G_{1}\left[G_{2}\right]$ is a spanning intuitionistic fuzzy subgraph of the lexicographic max-product $G_{1}\left[G_{2}\right]$


## 8. CONCLUSION

In this paper, we have introduced the concept of lexicographic products of two intuitionistic fuzzy graphs namely, lexicographic min - product and lexicographic max - product which are analogous to the concept of lexicographic products in crisp graph theory. We have illustrated that the operations lexicographic products are not commutative and studied the connected, effective and complete properties of these operations. We have obtained the degree of a vertex in the lexicographic product of two intuitionistic fuzzy graph. Also we have obtained a relationship between the lexicographic min - product and lexicographic max - product. In addition to the existing operations there operations and properties will also be helpful to study large intuitionistic fuzzy graph as a combination of small intuitionistic fuzzy graph and to derive its properties from those of the small ones.

## CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

## REFERENCES

[1] P. Bhattacharya, Some remarks on fuzzy graphs, Pattern Recognit. Lett. 6 (1987), 297-302.
[2] J.N. Mordeson and P.S. Nair, Fuzzy Graphs and Fuzzy Hypergraphs, Physica-verlag Heidelberg, 2000.
[3] J.N. Mordeson and C.S. Peng, Operations on fuzzy graphs, Inf. Sci. 79 (1994) 159-170.
[4] A. Nagoorgani and K. Radha, Conjunction of two fuzzy graphs, Int. Rev. Fuzzy Math. 3 (2008), 95-105.
[5] A. Nagoorgani and K. Radha, Regular property of fuzzy graphs, Bull. Pure Appl. Sci. 27E (2) (2008), 411-419.
[6] K. Radha and S. Arumugam, On direct sum of two fuzzy graphs, Int. J. Sci. Res. Publ. 3(5) (2013) 430-439.
[7] K. Radha and S. Arumugam, Path matrices of fuzzy graphs, proceedings of the international conference on mathematical methods computation, Jamal Academic Research Journal, (special issue) (2014), 142-148.
[8] K. Radha and S. Arumugam, On strong product of two fuzzy graphs, Int. J. Sci. Res. Publ. 4 (10) (2014), 275280.
[9] K. Radha and N. Kumaravel, The degree of an edge in union and join of two fuzzy graphs, Int. J. Fuzzy Math. Arch. 4(1) (2014), 8-19.

