NEIGHBORHOOD PSEUDO CHROMATIC POLYNOMIAL OF A PATH

R. DIVYA, M. JAYALAKSHMI*
Department of Mathematics, Dr. Ambedkar Institute of Technology, Bengaluru, Karnataka, 560056, INDIA

Copyright (c) 2020 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let $N(v)=\{x: v x \in E(G)\}$ be the open neighborhood and $N[v]=N(v) \cup\{v\}$ be the closed neighborhood of a vertex $v \in V$. A neighborhood pseudo coloring of a connected graph $G(V, E)$ is a function $c: V \rightarrow\{1,2, \cdots, k\}$ such that for each vertex $v \in V$, there exists at least two vertices $u, w \in N[v]$ with $c(u)=c(w)$. A neighborhood pseudo coloring $c: V \rightarrow\{1,2, \cdots, k\}$ which is surjective, is called neighborhood pseudo k-coloring and the maximum k for which G admits a neighborhood pseudo k-coloring is called the neighborhood pseudo chromatic number of G, denoted by $\psi_{n h d}(G)$. Chromatic polynomials are defined and studied for various types of proper coloring. In this paper, we initiate the study of neighborhood pseudo chromatic polynomial of a graph G as a polynomial in λ to count the number of distinct ways to neighborhood pseudo color G with atmost λ colors. Neighborhood pseudo chromatic polynomial of a path P_{n} is determined with a recurrence relation for its coefficients. Further an efficient algorithm is developed for its evaluation.

Keywords: coloring; neighborhood; neighborhood pseudo coloring; chromatic polynomial; neighborhood pseudo chromatic polynomial.

2010 AMS Subject Classification: 05C15, 05C31.

[^0]
1. InTRODUCTION

Let $G(V, E)$ be a graph of order n. For a given positive integer $k \leq n$, a vertex k-coloring of G is a surjection $c: V \rightarrow\{1,2,3, \cdots, k\}$. A vertex k-coloring of G is said to be a proper vertex k-coloring of G if $c(u) \neq c(v)$, whenever u and v are adjacent in G. The smallest integer such that the graph G admits a proper vertex k-coloring is called a chromatic number of G and is denoted by $\chi(G)$.

The chromatic polynomial of a graph is a polynomial in λ which counts the number of distinct ways G admits proper coloring with atmost λ colors. George David Birkhoff introduced the chromatic polynomial in 1912 as an attempt to prove four color theorem [4]. Some properties of chromatic polynomials are derived, coefficients and bounds of the chromatic polynomial are studied in [1, 6, 7]. Some of the results on chromatic polynomial are found in [3]. standard terminology terms not defined here may be found in [2,5]. The graph coloring and chromatic polynomial problem has huge number of applications like resource allocation, image segmentation, networking etc.

A pseudo k-coloring of graph G is a k-coloring of G in which adjacent vertices can receive the same color. In 2014, B. Sooryanarayana et. al [8] introduced a neighborhood pseudo k coloring of a graph G. Let $G(V, E)$ be a simple, non trivial, connected and undirected graph. A neighborhood pseudo coloring is a function $c: V \rightarrow\{1,2, \cdots, k\}$ such that for each vertex $v \in V$, there exists atleast two vertices $u, w \in N[v]$ with $c(u)=c(w)$. A neighborhood pseudo coloring $c: V \rightarrow\{1,2, \cdots, k\}$ which is surjective, is called neighborhood pseudo k-coloring and the maximum k for which G admits a neighborhood pseudo k-coloring is called the neighborhood pseudo chromatic number of G, denoted by $\psi_{n h d}(G)$. Also from [8], $\psi_{n h d}\left(P_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$ for $n \geq 2$ and $1 \leq \psi_{n h d}(G) \leq n-1$, we consider this result for the immediate reference.

The purpose of this paper is to introduce the new notion of pseudo chromatic polynomial for the case of pseudo coloring similar to one which is well established as chromatic polynomial for the purpose of proper coloring. Further, we obtained the neighborhood pseudo chromatic polynomial of a path P_{n}.

2. NEIGHBORHOOD PSEUDO CHROMATIC POLYNOMIAL

For given λ colors, a neighborhood pseudo chromatic polynomial of a graph G denoted by $P_{n h d}(G, \lambda)$ is a polynomial in λ which counts the number of distinct ways to neighborhood pseudo color the vertices of G with atmost λ colors and is given by $P_{n h d}(G, \lambda)=\sum_{k=1}^{\lambda}$ $\left({ }^{\lambda} C_{k}\right) c_{n h d}(G, k)$ where, $c_{n h d}(G, k)$ represents possible number of distinct neighborhood pseudo coloring of $V(G)$ with exactly k colors and is called the $k^{t h}$ coefficient of neighborhood pseudo chromatic polynomial $P_{n h d}(G, \lambda)$.

Observation 2.1. It is obvious that graph G can be neighborhood pseudo colored with one color in exactly one way and hence $c_{n h d}(G, 1)=1$.

Observation 2.2. By the definition of neighborhood pseudo coloring, atmost $\psi_{\text {nhd }}(G)$ colors can be used for any neighborhood pseudo coloring of G, which implies $c_{n h d}(G, k)=0$ when $k>\psi_{n h d}(G)$.

3. NEIGHBORHOOD PSEUDO CHROMATIC POLYNOMIAL OF A PATH

Let P_{n} be a path with the vertex set $\left\{v_{1}, v_{2}, v_{3}, \cdots, v_{n}\right\}$ and the edge set $\left\{v_{1} v_{2}, v_{2} v_{3}\right.$, $\left., \cdots, v_{n-1} v_{n}\right\}$.

Observation 3.1. Consecutive three vertices of P_{n} does not receive three different colors for any neighborhood pseudo coloring, for otherwise the closed neighborhood of the middle vertex contain three different colors.

Observation 3.2. $\psi_{n h d}\left(P_{2}\right)=1$ and $\psi_{n h d}\left(P_{3}\right)=1$ which implies that $c_{n h d}\left(P_{2}, 1\right)=c_{\text {nhd }}\left(P_{3}, 1\right)=$ 1 and $c_{n h d}\left(P_{2}, k\right)=c_{n h d}\left(P_{3}, k\right)=0$ for every $k>1$. Hence $P_{\text {nhd }}\left(P_{2}, \lambda\right)=\lambda$ and $P_{n h d}\left(P_{3}, \lambda\right)=\lambda$.

Example 3.3. $P_{n h d}\left(P_{2}, 2\right)={ }^{2} C_{1} \times c_{n h d}\left(P_{2}, 1\right)+{ }^{2} C_{2} \times c_{n h d}\left(P_{2}, 2\right)=2 \times 1+1 \times 0=2$.

Distinct possible ways of neighborhood pseudo coloring of P_{2} with $\lambda=2$, is as shown in FIGURE 1.

Example 3.4. $P_{n h d}\left(P_{3}, 2\right)={ }^{2} C_{1} \times c_{n h d}\left(P_{3}, 1\right)+{ }^{2} C_{2} \times c_{n h d}\left(P_{3}, 2\right)=2 \times 1+1 \times 0=2$.

Figure 1. All possible ways of neighborhood pseudo coloring of P_{2} with atmost two colors.

Figure 2. All possible ways of neighborhood pseudo coloring of P_{3} with atmost two colors.

Distinct possible ways of neighborhood pseudo coloring of P_{3} with $\lambda=2$, is as shown in FIGURE 2.

Theorem 3.5. For the path P_{n} with $n \geq 4, P_{n h d}\left(P_{n}, \lambda\right)=2^{n-2}$ for $\lambda=2$.
Proof. Let $P_{n}, n \geq 4$ be a path, and let the given two colors are represented by 1,2 . Then for any neighborhood pseudo coloring $c: V\left(P_{n}\right) \rightarrow\{1,2\}, c\left(v_{1}\right)=c\left(v_{2}\right), c\left(v_{n-1}\right)=c\left(v_{n}\right)$ and each vertex $v_{i}, 2 \leq i \leq n-1$ can be assigned with either 1 or 2 , which implies $P_{n h d}\left(P_{n}, 2\right)=2^{n-2}$.

Since $P_{n h d}\left(P_{n}, 2\right)$ includes the possibilities of neighborhood pseudo coloring the vertices of P_{n} using single color, we conclude the following lemma.

Lemma 3.6. For the path $P_{n}, n \geq 4, c_{n h d}\left(P_{n}, 2\right)=2^{n-2}-2$.

Lemma 3.7. For the path $P_{n}, n \geq 2$,

$$
c_{n h d}\left(P_{n}, 3\right)= \begin{cases}0 & \text { if } \quad 2 \leq n \leq 5 \\ a_{n-1}-3 \times 2^{n-2}+3 & \text { if } n \geq 6\end{cases}
$$

where $a_{n-1}=2 a_{n-2}+a_{n-3}, a_{3}=9, a_{4}=21$.

Proof. $\psi_{n h d}\left(P_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$ for $n \geq 2$ which imply the minimum value of n required for neighborhood pseudo coloring with exactly three colors is six and hence $c_{n h d}\left(P_{n}, 3\right)=0$ for every n with $2 \leq n \leq 5$. Let $n \geq 6$ and $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ represents the total number of possibilities of neighborhood pseudo color the vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ respectively, using three colors say 1,2 and 3 , assuming $v_{1}, v_{2}, v_{3}, \ldots, v_{i-1}$ are already colored while finding the possibilities to color the vertex v_{i}. Since for neighborhood pseudo coloring, v_{1} and v_{2} should receive the same color, the vertex
v_{1}, can color using either color 1 or 2 or 3 and so is the vertex v_{2}, which imply $a_{1}=a_{2}=3$ and for each choice of color of v_{2}, v_{3} can color independently using three colors and hence $a_{3}=3 \times a_{2}=3^{2}$. Consider the vertex v_{4} with $n \neq 4$. Let us denote color of v_{i} as $c\left(v_{i}\right)$. Consider the case when $c\left(v_{2}\right)=1$, then $c\left(v_{3}\right)=1$ or 2 or 3 and from Observation 3.1 if $c\left(v_{3}\right)=1$, then v_{4} can color using either 1 or 2 or 3 , if $c\left(v_{3}\right)=2$ then v_{4} can color using either 1 or 2 and if $c\left(v_{3}\right)=3$, then v_{4} can color using either 1 or 3 . Hence v_{4} has $3 \times(3 \times 1+2 \times 2)=3 \times 7$ possibilities of coloring, that is $a_{4}=21$.

To find a_{5} consider the following cases with $c\left(v_{1}\right)=c\left(v_{2}\right)=1$ and $n \neq 5$.
Case 1: $c\left(v_{3}\right)=1$.
i. If $c\left(v_{4}\right)=1$ then $c\left(v_{5}\right)=1$ or 2 or 3 - Three possibilities.
ii. If $c\left(v_{4}\right)=2$ then $c\left(v_{5}\right)=1$ or 2 - Two possibilities.
iii. If $c\left(v_{4}\right)=3$ then $c\left(v_{5}\right)=1$ or 2 - Two possibilities.

Case 2: $c\left(v_{3}\right)=2$.
i. If $c\left(v_{4}\right)=1$ then $c\left(v_{5}\right)=1$ or 2 - Two possibilities.
ii. If $c\left(v_{4}\right)=2$ then $c\left(v_{5}\right)=1$ or 2 or 3 - Three possibilities.

Case 3: $c\left(v_{3}\right)=3$.
i. If $c\left(v_{4}\right)=1$ then $c\left(v_{5}\right)=1$ or 3 - Two possibilities.
ii. If $c\left(v_{4}\right)=3$ then $c\left(v_{5}\right)=1$ or 2 or 3 - Three possibilities.

Hence v_{5} has $3 \times(3 \times 3+2 \times 4)=3 \times 17$ possibilities of coloring, that is $a_{5}=51=3 \times(3 \times$ $3+2 \times 4)=3 \times 3^{2}+2(12)=3 \times 3^{2}+2(21-9)=3 \times a_{3}+2\left(a_{4}-a_{3}\right)=a_{3}+2 a_{4}$.

Further listing the possibilities, to find a_{6}, consider the following cases with $c\left(v_{1}\right)=c\left(v_{2}\right)=1$ and $n \neq 6$.

Case 1: $c\left(v_{3}\right)=1$.
Subcase 1: $c\left(v_{4}\right)=1$.
i. If $c\left(v_{5}\right)=1$ then $c\left(v_{6}\right)=1$ or 2 or 3 - Three possibilities.
ii. If $c\left(v_{5}\right)=2$ then $c\left(v_{6}\right)=1$ or 2 - Two possibilities.
iii. If $c\left(v_{5}\right)=3$ then $c\left(v_{6}\right)=1$ or 3 - Two possibilities.

Subcase 2: $c\left(v_{4}\right)=2$.
i. If $c\left(v_{5}\right)=1$ then $c\left(v_{6}\right)=1$ or 2 - Two possibilities.
ii. If $c\left(v_{5}\right)=2$ then $c\left(v_{6}\right)=1$ or 2 or 3 - Three possibilities.

Subcase 3: $c\left(v_{4}\right)=3$.
i. If $c\left(v_{5}\right)=1$ then $c\left(v_{6}\right)=1$ or 3 - Two possibilities.
ii. If $c\left(v_{5}\right)=3$ then $c\left(v_{6}\right)=1$ or 2 or 3 - Three possibilities.

Case 2: $c\left(v_{3}\right)=2$.
Subcase 1: $c\left(v_{4}\right)=1$.
i. If $c\left(v_{5}\right)=1$ then $c\left(v_{6}\right)=1$ or 2 or 3 - Three possibilities.
ii. If $c\left(v_{5}\right)=2$ then $c\left(v_{6}\right)=1$ or 2 - Two possibilities.

Subcase 2: $c\left(v_{4}\right)=2$.
i. If $c\left(v_{5}\right)=1$ then $c\left(v_{6}\right)=1$ or 2 - Two possibilities.
ii. If $c\left(v_{5}\right)=2$ then $c\left(v_{6}\right)=1$ or 2 or 3 - Three possibilities.
iii. If $c\left(v_{5}\right)=3$ then $c\left(v_{6}\right)=2$ or 3 - Two possibilities.

Case 3: $c\left(v_{3}\right)=3$.
Subcase 1: $c\left(v_{4}\right)=1$.
i. If $c\left(v_{5}\right)=1$ then $c\left(v_{6}\right)=1$ or 2 or 3 - Three possibilities.
ii. If $c\left(v_{5}\right)=3$ then $c\left(v_{6}\right)=1$ or 3 - Two possibilities.

Subcase 2: $c\left(v_{4}\right)=3$.
i. If $c\left(v_{5}\right)=1$ then $c\left(v_{6}\right)=1$ or 3 - Two possibilities.
ii. If $c\left(v_{5}\right)=2$ then $c\left(v_{6}\right)=2$ or 3 - Two possibilities.
iii. If $c\left(v_{5}\right)=3$ then $c\left(v_{6}\right)=1$ or 2 or 3 - Three possibilities.

Hence v_{6} has $3 \times(3 \times 7+2 \times 10)=3 \times 41=123$ possibilities of coloring, that is $a_{6}=$ $3 \times(3 \times 7+2 \times 10)=3 \times 21+2(30)=3 \times 21+2(51-21)=3 \times a_{4}+2\left(a_{5}-a_{4}\right)=a_{4}+2 a_{5}$. In general, neighborhood pseudo coloring of any vertex v_{i} is effected only by $c\left(v_{i-1}\right)$ and $c\left(v_{i-2}\right)$, the similar pattern of coloring follows at each level and hence a_{i} is recursively expressed in terms of a_{i-1} and a_{i-2}. Therefore, $a_{i}=2 a_{i-1}+a_{i-2}$ for any i with $4 \leq i \leq n-1$. Also for path P_{n} the end vertex v_{n} should receive the same color as that of v_{n-1} for neighborhood pseudo coloring and hence $a_{n-1}=a_{n}=2 a_{n-2}+a_{n-3}$. Particularly, $a_{5}=51, a_{6}=123$ $\Rightarrow a_{7}=2 a_{6}+a_{5}=2(123)+51=297, a_{8}=2 a_{7}+a_{6}=2(297)+123=717$ so on. But this a_{n} also include the counts of possibilities of neighborhood pseudo coloring with exactly
one and exactly two colors and number of possibilities with exactly one color is in 3 ways; with exactly two colors is in ${ }^{3} C_{2} \times\left(2^{n-2}-2\right)$ ways from Lemma 3.6. Therefore for $n \geq 6$, $c_{n h d}\left(P_{n}, 3\right)=2 a_{n-2}+a_{n-3}-{ }^{3} C_{2}\left(2^{n-2}-2\right)-3=2 a_{n-2}+a_{n-3}-3 \times 2^{n-2}+3$ with $a_{3}=9$, $a_{4}=21$ and $a_{5}=51$.

Observation 3.8. It follows from the proof of Lemma 3.7, for $n \geq 6$, the value of neighborhood pseudo chromatic polynomial of path P_{n} with atmost three colors is $P_{n h d}\left(P_{n}, 3\right)=a_{n-1}=$ $2 a_{n-2}+a_{n-3}$ with $a_{3}=9, a_{4}=21$ and $a_{5}=51$.

Example 3.9. For the path $P_{6}, c_{n h d}\left(P_{6}, 3\right)=2 a_{6-2}+a_{6-3}-3 \times 2^{6-2}+3=2 a_{4}+a_{3}-3 \times 2^{4}+$ $3=2(21)+9-48+3=6$.

For the path $P_{7}, c_{n h d}\left(P_{7}, 3\right)=2 a_{7-2}+a_{7-3}-3 \times 2^{7-2}+3=2 a_{5}+a_{4}-3 \times 2^{5}+3=2(51)+$ $21-96+3=30$.

Possible ways of neighborhood pseudo coloring of P_{7} with exactly three colors and the program output for number of possibilities of neighborhood pseudo coloring of P_{7} with exactly three colors, are shown in FIGURE 3 and FIGURE 4 respectively.

Figure 3. Possible ways of neighborhood pseudo coloring of P_{7} with exactly three colors when $c\left(v_{1}\right)=1$.

Lemma 3.10. For the path $P_{n}, n \geq 2$,

$$
c_{n h d}\left(P_{n}, 4\right)=\left\{\begin{array}{lll}
0 & \text { if } \quad 2 \leq n \leq 7 \\
a_{n-1}-{ }^{4} C_{3} \times c_{n h d}\left(P_{n}, 3\right)-{ }^{4} C_{2} \times c_{n h d}\left(P_{n}, 2\right)-4, & \text { if } \quad n \geq 8
\end{array}\right.
$$

```
Markers PProperties 眏 Servers Data Source Explorer Snippets E Console &
<terminated> NumberOfPossibilities [Java Application] C:IProgram Files\aval\jre\\bin\javaw.exe (Jul 28, 2019, 5:50:19 PM)
Enter the number of vertices, n = 7
Enter the number of colors = 3
|-------------------------------------------------------------------------------
Total number of possibilities c(7, 3) is 30
```

Figure 4. Program output for the value of $c_{n h d}\left(P_{7}, 3\right)$.
where $a_{n}=2 a_{n-2}+2 a_{n-3}, a_{2}=4, a_{3}=16$.

Proof. We have $\psi_{n h d}\left(P_{8}\right)=4$, which imply $c_{n h d}\left(P_{n}, 4\right)=0$ for every n with $2 \leq n \leq 7$. Let $n \geq 8$ and $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ represents the total number of possibilities of neighborhood pseudo color the vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ respectively, using four colors say $1,2,3$ and 4 , assuming $v_{1}, v_{2}, v_{3}, \ldots, v_{i-1}$ are already colored while finding a_{i}. We have, $a_{1}=a_{2}=4$ and v_{3} can color independently using four colors and hence $a_{3}=4 \times a_{2}=4^{2}=16$. Consider the case when $c\left(v_{1}\right)=c\left(v_{2}\right)=1$ and using Observation 3.1, v_{4} can be colored in the following ways:
i. If $c\left(v_{3}\right)=1$ then $c\left(v_{4}\right)=1$ or 2 or 3 or 4 - four possibilities.
ii. If $c\left(v_{3}\right)=2$ then $c\left(v_{4}\right)=1$ or 2 - two possibilities.
iii. If $c\left(v_{3}\right)=3$ then $c\left(v_{4}\right)=1$ or 3 - two possibilities.
iv. If $c\left(v_{3}\right)=4$ then $c\left(v_{4}\right)=1$ or 4 - two possibilities.

Hence v_{4} has $4 \times(4 \times 1+2 \times 3)=40$ possibilities of coloring.
Therefore, $a_{4}=40=4 \times(4 \times 1+2 \times 3)=(4 \times 4+2 \times 12)=4 \times a_{2}+2 \times\left(a_{3}-a_{2}\right)$.
Similarly possibilities of neighborhood pseudo coloring of the vertex v_{5} are;
Case 1: $c\left(v_{3}\right)=1$.
i. If $c\left(v_{4}\right)=1$ then $c\left(v_{5}\right)=1$ or 2 or 3 or 4 - Four possibilities.
ii. If $c\left(v_{4}\right)=2$ then $c\left(v_{5}\right)=1$ or 2 - Two possibilities.
iii. If $c\left(v_{4}\right)=3$ then $c\left(v_{5}\right)=1$ or 3 - Two possibilities.
iv. If $c\left(v_{4}\right)=4$ then $c\left(v_{5}\right)=1$ or 4 - Two possibilities.

Case 2: $c\left(v_{3}\right)=2$.
i. If $c\left(v_{4}\right)=1$ then $c\left(v_{5}\right)=1$ or 2 - Two possibilities.
ii. If $c\left(v_{4}\right)=2$ then $c\left(v_{5}\right)=1$ or 2 or 3 or 4 - Four possibilities.

Case 3: $c\left(v_{3}\right)=3$
i. If $c\left(v_{4}\right)=1$ then $c\left(v_{5}\right)=1$ or 3 - Two possibilities.
ii. If $c\left(v_{4}\right)=3$ then $c\left(v_{5}\right)=1$ or 2 or 3 or 4 - Four possibilities.

Case 4: $c\left(v_{3}\right)=4$
i. If $c\left(v_{4}\right)=1$ then $c\left(v_{5}\right)=1$ or 4 - Two possibilities.
ii. If $c\left(v_{4}\right)=4$ then $c\left(v_{5}\right)=1$ or 2 or 3 or 4 - Four possibilities.

Hence v_{5} has $4 \times(4 \times 4+2 \times 6)=112$ possibilities of coloring.
Therefore $a_{5}=112=4 \times(4 \times 4+2 \times 6)=\left(4 \times 4^{2}+2 \times 24\right)=4 \times a_{3}+2 \times\left(a_{4}-a_{3}\right)$.
Similarly possibilities of neighborhood pseudo coloring of the vertex v_{6} are;
Case 1: $c\left(v_{3}\right)=1$
Subcase 1: $c\left(v_{4}\right)=1$.
i. If $c\left(v_{5}\right)=1$ then $c\left(v_{6}\right)=1$ or 2 or 3 or 4 - Four possibilities.
ii. If $c\left(v_{5}\right)=2$ then $c\left(v_{6}\right)=1$ or 2 - Two possibilities.
iii. If $c\left(v_{5}\right)=3$ then $c\left(v_{6}\right)=1$ or 3 - Two possibilities.
iv. If $c\left(v_{5}\right)=4$ then $c\left(v_{6}\right)=1$ or 4 - Two possibilities.

Subcase 2: $c\left(v_{4}\right)=2$.
i. If $c\left(v_{5}\right)=1$ then $c\left(v_{6}\right)=1$ or 2 - Two possibilities.
ii. If $c\left(v_{5}\right)=2$ then $c\left(v_{6}\right)=1$ or 2 or 3 or $4-$ Four possibilities.

Subcase 3: $c\left(v_{4}\right)=3$.
i. If $c\left(v_{5}\right)=1$ then $c\left(v_{6}\right)=1$ or 3 - Two possibilities.
ii. If $c\left(v_{5}\right)=3$ then $c\left(v_{6}\right)=1$ or 2 or 3 or 4 - Four possibilities.

Subcase 4: $c\left(v_{4}\right)=4$.
i. If $c\left(v_{5}\right)=1$ then $c\left(v_{6}\right)=1$ or 4 - Two possibilities.
ii. If $c\left(v_{5}\right)=4$ then $c\left(v_{6}\right)=1$ or 2 or 3 or 4 - Four possibilities.

Case 2: $c\left(v_{3}\right)=2$.
Subcase 1: $c\left(v_{4}\right)=1$.
i. If $c\left(v_{5}\right)=1$ then $c\left(v_{6}\right)=1$ or 2 or 3 or 4 - Four possibilities.
ii. If $c\left(v_{5}\right)=2$ then $c\left(v_{6}\right)=1$ or 2 - Two possibilities.

Subcase 2: $c\left(v_{4}\right)=2$.
i. If $c\left(v_{5}\right)=1$ then $c\left(v_{6}\right)=1$ or 2 - Two possibilities.
ii. If $c\left(v_{5}\right)=2$ then $c\left(v_{6}\right)=1$ or 2 or 3 or 4 - Four possibilities.
iii. If $c\left(v_{5}\right)=3$ then $c\left(v_{6}\right)=23$ - Two possibilities.
iv. If $c\left(v_{5}\right)=4$ then $c\left(v_{6}\right)=2$ or 4 - Two possibilities.

Case 3: $c\left(v_{3}\right)=3$.
Subcase 1: $c\left(v_{4}\right)=1$.
i. If $c\left(v_{5}\right)=1$ then $c\left(v_{6}\right)=1$ or 2 or 3 or 4 - Four possibilities.
ii. If $c\left(v_{5}\right)=3$ then $c\left(v_{6}\right)=1$ or 3 - Two possibilities.

Subcase 2: $c\left(v_{4}\right)=3$.
i. If $c\left(v_{5}\right)=1$ then $c\left(v_{6}\right)=1$ or 3 - Two possibilities.
ii. If $c\left(v_{5}\right)=2$ then $c\left(v_{6}\right)=2$ or 3 - Two possibilities.
iii. If $c\left(v_{5}\right)=3$ then $c\left(v_{6}\right)=1$ or 2 or 3 or 4 - Four possibilities.
iv. If $c\left(v_{5}\right)=4$ then $c\left(v_{6}\right)=4$ or 3 - Two possibilities.

Case 4: $c\left(v_{3}\right)=4$.
Subcase 1: $c\left(v_{4}\right)=1$.
i. If $c\left(v_{5}\right)=1$ then $c\left(v_{6}\right)=1$ or 2 or 3 or 4 - Four possibilities.
ii. If $c\left(v_{5}\right)=4$ then $c\left(v_{6}\right)=1$ or 4 - Two possibilities.

Subcase 2: $c\left(v_{4}\right)=4$.
i. If $c\left(v_{5}\right)=1$ then $c\left(v_{6}\right)=1$ or 4 - Two possibilities.
ii. If $c\left(v_{5}\right)=2$ then $c\left(v_{6}\right)=2$ or 4 - Two possibilities.
iii. If $c\left(v_{5}\right)=3$ then $c\left(v_{6}\right)=3$ or 4 - Two possibilities.
iv. If $c\left(v_{5}\right)=4$ then $c\left(v_{6}\right)=1$ or 2 or 3 or 4 - Four possibilities.

Hence v_{6} has $4 \times(4 \times 10+2 \times 18)=304$ possibilities of coloring. Therefore $a_{6}=304=$ $(4 \times 40+2 \times 72)=4 \times 40+2 \times(112-40)=4 \times a_{4}+2 \times\left(a_{5}-a_{4}\right)$ and the recurrence formula follows at each level, hence $a_{i}=4 \times a_{i-2}+2 \times\left(a_{i-1}-a_{i-2}\right)=2 a_{i-1}+2 a_{i-2}$ for any i with $4 \leq$ $i \leq n-1$. Also $a_{n}=a_{n-1}=4 \times a_{n-3}+2 \times\left(a_{n-2}-a_{n-3}\right)=2 a_{n-2}+2 a_{n-3}$. Particulary $a_{5}=112$, $a_{6}=304, a_{7}=2 a_{5}+2 a_{6}=2(112)+2(304)=832, a_{8}=2 a_{6}+2 a_{7}=2(304)+2(832)=2272$.

But this a_{n} represents the number of possibilities of neighborhood pseudo coloring of path P_{n} using 4 colors which includes the coloring with exactly one, two, three colors. Therefore, when
$n \geq 8, c_{n h d}\left(P_{n}, 4\right)=a_{n-1}-{ }^{4} C_{3}\left(c_{n h d}\left(P_{n}, 3\right)\right)-{ }^{4} C_{2}\left(c_{n h d}\left(P_{n}, 2\right)\right)-4$ where $a_{n-1}=2 a_{n-2}+2 a_{n-3}$ with $a_{2}=4, a_{3}=16$.

Observation 3.11. It follows from the proof of Lemma 3.10, For $n \geq 8$, the value of neighborhood pseudo chromatic polynomial of path P_{n} with atmost four colors is $P_{n h d}\left(P_{n}, 4\right)=a_{n-1}=$ $2 a_{n-2}+2 a_{n-3}$ where $a_{2}=4$ and $a_{3}=16$.

Example 3.12. For the path $P_{8}, c_{n h d}\left(P_{8}, 4\right)=a_{7}-{ }^{4} C_{3}\left(c_{n h d}\left(P_{8}, 3\right)\right)-{ }^{4} C_{2}\left(c_{n h d}\left(P_{8}, 2\right)\right)-4=$ $832-4(108)-6\left(2^{6}-2\right)-4=24$.

For the path $P_{9}, c_{n h d}\left(P_{9}, 4\right)=a_{8}-{ }^{4} C_{3}\left(c_{n h d}\left(P_{9}, 3\right)\right)-{ }^{4} C_{2}\left(c_{n h d}\left(P_{9}, 2\right)\right)-4=2272-4(336)-$ $6\left(2^{7}-2\right)-4=168$.

The program output for number of possibilities of neighborhood pseudo coloring of P_{9} with exactly four colors, is shown in FIGURE 5.


```
<terminated> NumberOfPossibilities [Java Application] C:\Program Files\Java\jre\\bin\javaw.exe (Jul 28, 2019, 5:52:22 PM
Enter the number of vertices, n = 9
Enter the number of colors = 4
|-------------------------------------------------------------------------
Total number of possibilities c(9, 4) is }16
```

FIGURE 5. Program output for the value of $c_{n h d}\left(P_{9}, 4\right)$

Lemma 3.13. For the path $P_{n}, n \geq 2$,

$$
c_{n h d}\left(P_{n}, 5\right)= \begin{cases}0 & \text { if } 2 \leq n \leq 9 \\ a_{n-1}-{ }^{5} C_{4}\left(c_{n h d}\left(P_{n}, 4\right)\right)-{ }^{5} C_{3}\left(c_{n h d}\left(P_{n}, 3\right)\right)-{ }^{5} C_{2}\left(c_{n h d}\left(P_{n}, 2\right)\right)-5 & \text { if } n \geq 10\end{cases}
$$

where $a_{n-1}=2 a_{n-2}+3 a_{n-3}, a_{8}=5465, a_{9}=16405$.

Proof. $\psi_{n b d}\left(P_{10}\right)=5$, which imply $c_{n h d}\left(P_{n}, 5\right)=0,2 \leq n \leq 9$. Let $n \geq 10$ and $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ represents the total number of possibilities of neighborhood pseudo color the vertices v_{1}, v_{2}, v_{3}, \ldots, v_{n} respectively, using five colors say $1,2,3,4$ and 5 , assuming $v_{1}, v_{2}, v_{3}, \ldots, v_{i-1}$ are already colored while finding the possibilities to color the vertex v_{i}. Then for neighborhood pseudo coloring, v_{1} and v_{2} should receive the same color, which imply $a_{1}=5, a_{2}=5$ and for each choice of color of v_{2}, v_{3} can color independently using five colors and hence $a_{3}=5 \times a_{2}=5^{2}=$
25. Consider the case when $c\left(v_{1}\right)=c\left(v_{2}\right)=1$ where remaining four cases follows similarly. Then neighborhood pseudo coloring of the vertex v_{4} is as follows.
i. If $c\left(v_{3}\right)=1$ then $c\left(v_{4}\right)=1$ or 2 or 3 or 4 or 5 - five possibilities.
ii. If $c\left(v_{3}\right)=2$ then $c\left(v_{4}\right)=1$ or 2 - two possibilities.
iii. If $c\left(v_{3}\right)=3$ then $c\left(v_{4}\right)=1$ or 3 - two possibilities.
iv. If $c\left(v_{3}\right)=4$ then $c\left(v_{4}\right)=1$ or 4 - two possibilities.
v. If $c\left(v_{3}\right)=5$ then $c\left(v_{4}\right)=1$ or 5 - two possibilities.

Hence v_{4} has $5 \times(5 \times 1+2 \times 4)=65$ possibilities of coloring and therefore $a_{4}=65=5 \times(5 \times$ $1+2 \times 4)=(5 \times 5+2 \times 20)=5 \times a_{2}+2 \times\left(a_{3}-a_{2}\right)$.

Similarly possibilities of neighborhood pseudo coloring of the vertex v_{5} are as follows:
Case 1: $c\left(v_{3}\right)=1$.
i. If $c\left(v_{4}\right)=1$ then $c\left(v_{5}\right)=1$ or 2 or 3 or 4 or 5 - five possibilities.
ii. If $c\left(v_{4}\right)=2$ then $c\left(v_{5}\right)=1$ or 2 - Two possibilities.
iii. If $c\left(v_{4}\right)=3$ then $c\left(v_{5}\right)=1$ or 3 - Two possibilities.
iv. If $c\left(v_{4}\right)=4$ then $c\left(v_{5}\right)=1$ or 4 - Two possibilities.
v. If $c\left(v_{4}\right)=5$ then $c\left(v_{5}\right)=1$ or 5 - Two possibilities.

Case 2: $c\left(v_{3}\right)=2$.
i. If $c\left(v_{4}\right)=1$ then $c\left(v_{5}\right)=1$ or 2 - two possibilities.
ii. If $c\left(v_{4}\right)=2$ then $c\left(v_{5}\right)=1$ or 2 or 3 or 4 or 5 - five possibilities.

Case 3: $c\left(v_{3}\right)=3$.
i. If $c\left(v_{4}\right)=1$ then $c\left(v_{5}\right)=1$ or 3 - two possibilities.
ii. If $c\left(v_{4}\right)=3$ then $c\left(v_{5}\right)=1$ or 2 or 3 or 4 or 5 - five possibilities.

Case 4: $c\left(v_{3}\right)=4$.
i. If $c\left(v_{4}\right)=1$ then $c\left(v_{5}\right)=1$ or 4 - two possibilities.
ii. If $c\left(v_{4}\right)=4$ then $c\left(v_{5}\right)=1$ or 2 or 3 or 4 or 5 - five possibilities.

Case 5: $c\left(v_{3}\right)=5$.
i. If $c\left(v_{4}\right)=1$ then $c\left(v_{5}\right)=1$ or 5 - two possibilities.
ii. If $c\left(v_{4}\right)=5$ then $c\left(v_{5}\right)=1$ or 2 or 3 or 4 or 5 - five possibilities.

Hence v_{5} has $5 \times(5 \times 5+2 \times 8)=205$ possibilities of coloring and therefore $a_{5}=205=$ $5 \times(5 \times 5+2 \times 8)=\left(5 \times 5^{2}+2 \times 40\right)=5 \times a_{3}+2 \times\left(a_{4}-a_{3}\right)$ and the recurrence formula follows at each level, hence $a_{i}=5 \times a_{i-2}+2 \times\left(a_{i-1}-a_{i-2}\right)=2 a_{i-1}+3 a_{i-2}$ for any i with $4 \leq$ $i \leq n-1$. Also, $a_{n}=a_{n-1}=5 \times a_{n-3}+2 \times\left(a_{n-2}-a_{n-3}\right)=2 a_{n-2}+3 a_{n-3}$. Particulary $a_{4}=65$, $a_{5}=205 \Rightarrow a_{6}=2 a_{5}+3 a_{4}=2(205)+3(65)=605, a_{7}=2 a_{6}+3 a_{5}=2(605)+3(205)=1825$, $a_{8}=2 a_{7}+3 a_{6}=2(1825)+3(605)=5465$.

But this a_{n} represents the number of possibilities of neighborhood pseudo coloring of path P_{n} using five colors which includes the coloring with exactly one, two, three, four colors.
Therefore when $n \geq 10, \quad c_{n h d}\left(P_{n}, 5\right)=a_{n-1}-{ }^{5} C_{4}\left(c_{n h d}\left(P_{n}, 4\right)\right)-{ }^{5} C_{3}\left(c_{n h d}\left(P_{n}, 3\right)\right)-{ }^{5}$ $C_{2}\left(c_{n h d}\left(P_{n}, 2\right)\right)-5$ where $a_{n-1}=2 a_{n-2}+3 a_{n-3}$ with $a_{8}=5465, a_{9}=16405$.

Observation 3.14. For $n \geq 10$, value of the neighborhood pseudo chromatic polynomial of path P_{n} with atmost five colors is $P_{n h d}\left(P_{n}, 5\right)=a_{n-1}=2 a_{n-2}+3 a_{n-3}$ with $a_{8}=5465, a_{9}=16405$.

Example 3.15. For the path $P_{n}, c_{n h d}\left(P_{10}, 5\right)=a_{9}-{ }^{5} C_{4}\left(c_{n h d}\left(P_{10}, 4\right)\right)-{ }^{5} C_{3}\left(c_{n h d}\left(P_{10}, 3\right)\right)-{ }^{5}$ $C_{2}\left(c_{n h d}\left(P_{10}, 2\right)\right)-5=16405-5(816)-10(966)-10\left(2^{8}-2\right)-5=120$.

Theorem 3.16. The $k^{\text {th }}$ coefficient of the neighborhood pseudo chromatic polynomial of path P_{n} with $n \geq 2 k$ and $k \geq 3$ is $c_{n h d}\left(P_{n}, k\right)=a_{n-1}(k)-{ }^{k} C_{k-1}\left(c_{n h d}\left(P_{n}, k-1\right)\right)-{ }^{k} C_{k-2}\left(c_{n h d}\left(P_{n}, k-\right.\right.$ $2))-\cdots-{ }^{k} C_{2}\left(c_{n h d}\left(P_{n}, 2\right)\right)-k$ where $a_{n-1}(k)=2 a_{n-2}(k)+(k-2) a_{n-3}(k)$.

Proof. From Lemma 3.7, given 3 colors, $a_{1}=a_{2}=3, a_{3}=3^{2}, a_{4}=3 \times(3 \times 1+2 \times 2), \cdots, a_{i}=$ $3 \times a_{i-2}+2 \times\left(a_{i-1}-a_{i-2}\right)=2 a_{i-1}+a_{i-2}, \cdots, a_{n-1}=2 a_{n-2}+a_{n-3}$

From Lemma 3.10, given 4 colors, $a_{1}=a_{2}=4, a_{3}=4^{2}, a_{4}=4 \times(4 \times 1+2 \times 3), \cdots, a_{i}=$ $4 \times a_{i-2}+2 \times\left(a_{i-1}-a_{i-2}\right)=2 a_{i-1}+2 a_{i-2}, \cdots, a_{n-1}=2 a_{n-2}+2 a_{n-3}$

From Lemma 3.13, given 5 colors, $a_{1}=a_{2}=5, a_{3}=5^{2}, a_{4}=5 \times(5 \times 1+2 \times 4), \cdots, a_{i}=$ $5 \times a_{i-2}+2 \times\left(a_{i-1}-a_{i-2}\right)=2 a_{i-1}+3 a_{i-2}, \cdots, a_{n-1}=2 a_{n-2}+3 a_{n-3}$

Representing $a_{i}(k)$ be the number of possibilities of neighborhood pseudo coloring of the vertex v_{i} of path P_{n} with k colors, then by induction on $k, a_{1}(k)=k, a_{2}(k)=k, a_{3}(k)=k^{2}$,

$$
\begin{aligned}
a_{4}(k) & =k(k \times 1+2(k-1)) \\
& =k \times k+2\left(k^{2}-k\right) \\
& =k \times a_{2}(k)+2\left(a_{3}(k)-a_{2}(k)\right) \\
& =2 a_{3}(k)+(k-2) a_{2}(k), \\
& \vdots \\
a_{i}(k) & =2 a_{i-1}(k)+(k-2) a_{i-2}(k), \\
& \vdots \\
a_{n}(k) & =a_{n-1}(k)=2 a_{n-2}(k)+(k-2) a_{n-3}(k) .
\end{aligned}
$$

Therefore, $c_{n h d}\left(P_{n}, k\right)=a_{n-1}(k)-{ }^{k} C_{k-1}\left(c_{n h d}\left(P_{n}, k-1\right)\right)-{ }^{k} C_{k-2}\left(c_{n h d}\left(P_{n}, k-2\right)\right)-\cdots-{ }^{k}$ $C_{2}\left(c_{n h d}\left(P_{n}, 2\right)\right)-k$ where $a_{n-1}(k)=2 a_{n-2}(k)+(k-2) a_{n-3}(k)$.

Solving the recurrence relation $a_{n-1}(k)=2 a_{n-2}(k)+(k-2) a_{n-3}(k)$, indicated in Theorem 3.16, by taking $a_{n-1}=A m^{n-1}, a_{n-2}=A m^{n-2}, a_{n-3}=A m^{n-3}$ we get

$$
a_{n-1}=A(1+\sqrt{k-1})^{n}+B(1-\sqrt{k-1})^{n} .
$$

The constants A and B are found using $a_{1}=a_{2}=k$ and hence $a_{n-1}(k)=\frac{k}{2}\left[(1+\sqrt{k-1})^{n-2}+\right.$ $\left.(1-\sqrt{k-1})^{n-2}\right]$. We record this fact together with the results in Theorem 3.5 in the form of the following theorem.

Theorem 3.17. The neighborhood pseudo chromatic polynomial of a path P_{n} is given by

$$
P_{n h d}\left(P_{n}, \lambda\right)=\sum_{k=1}^{\lambda}{ }^{\lambda} C_{k} c_{n h d}\left(P_{n}, k\right)
$$

where
$c_{n h d}\left(P_{n}, k\right)=a_{n-1}(k)-{ }^{k} C_{k-1}\left(c_{n h d}\left(P_{n}, k-1\right)\right)-{ }^{k} C_{k-2}\left(c_{n h d}\left(P_{n}, k-2\right)\right) \cdots-{ }^{k} C_{2}\left(c_{n h d}\left(P_{n}, 2\right)\right)-k$
and

$$
a_{n-1}(k)= \begin{cases}2^{n-2} & \text { if } \quad n \geq 4 \text { and } k=2 \\ \frac{k}{2}\left[(1+\sqrt{k-1})^{n-2}+(1-\sqrt{k-1})^{n-2}\right] & \text { if } \quad n \geq 2 k \text { and } k \geq 3\end{cases}
$$

Example 3.18. The value of neighborhood pseudo chromatic polynomial of a path P_{5}, given six colors, is $P_{n h d}\left(P_{5}, 6\right)={ }^{6} C_{1} \times c_{n h d}\left(P_{5}, 1\right)+{ }^{6} C_{2} \times c_{n h d}\left(P_{5}, 2\right)+{ }^{6} C_{3} \times c_{n h d}\left(P_{5}, 3\right)+{ }^{6} C_{4} \times$ $c_{n h d}\left(P_{5}, 4\right)+{ }^{6} C_{5} \times c_{n h d}\left(P_{5}, 5\right)+{ }^{6} C_{6} \times c_{n h d}\left(P_{5}, 6\right)=6(1)+15\left(2^{3}-2\right)+20(0)+15(0)+6(0)+$ $1(0)=96$.

Example 3.19. The value of neighborhood pseudo chromatic polynomial of a path P_{8}, given four colors is

$$
\begin{aligned}
P_{n h d}\left(P_{8}, 4\right) & ={ }^{4} C_{1} \times c_{n h d}\left(P_{8}, 1\right)+{ }^{4} C_{2} \times c_{n h d}\left(P_{8}, 2\right)+{ }^{4} C_{3} \times c_{n h d}\left(P_{8}, 3\right)+{ }^{4} C_{4} \times c_{n h d}\left(P_{8}, 4\right) \\
& =4(1)+6\left(2^{8}-2\right)+4(108)+1(24)=1984
\end{aligned}
$$

The program outcome for the value of neighborhood pseudo chromatic polynomial of P_{6} when $\lambda=10$, is shown in the FIGURE 6.


```
<terminated> NumberOfPossibilities (1) [Java Application] C:\Program Files\\ava\jre^_bin\javaw.exe (Jul 28, 2019, 11:33:36 AM)
Enter the number of vertices, n = 6
Enter the number of colors = IO
Total number of possibilities c(6, 2) is 14
Total number of possibilities c(6, 3) is 6
Total number of possibilities c(6, 1) is 1
Total number of ways of coloring :: 1360
```

Figure 6. Program output for the value of $P_{n h d}\left(P_{6}, 10\right)$.

4. PSEUDO CODE TO COMPUTE NEIGHBORHOOD PSEUDO CHROMATIC POLYNOMIAL OF A PATH P_{n}

Input number of colors and vertices.
If (chromatic number of path $>$ input Colors)
psi $=$ input colors;
else
$\mathrm{psi}=$ chromatic number

For loop from 1 to $p s i$, as i,
$\left\{\right.$ calculate c_{n} for each i value from 1 to $\left.p s i\right\}$
if index $=1$
$c_{n}=1$
else
value $\mathrm{A}=\left\{\right.$ compute a_{n-1} using recursive findValueOfA(vertices -1 , index) algorithm $\}$
For (i from 1 to index) do
Compute $n C_{r}$ with $n=$ index and $r=($ index $-i)$
Multiply computed $n C_{r}$ value with previous computed c_{n} value $\left[c_{n}\right.$ value of $i-1$]
Subtract result from valueA
End for loop
$c_{n}=$ value A
polynomialValue $=0$
Loop through all the calculated c_{n} values as $p i$ and do,
a. extract index i value from $p i$
b. compute $n C_{r}$ with $n=$ input colors and $r=i$
c. polynomialValue $=$ polynomialValue + computed $n C_{r} * p i$
polynomialValue is the result.

Logic to find Value of A

findValueOfA(vertices, input colors)
if vertices <1 or input colors <1
return "Invalid input"
else if vertices $=1$ or vertices $=2$
return input colors
else if vertices $=3$
return input colors $*$ input colors
else
return $2 *$ findValueOfA(vertices $+1-2$, input colors) + (input colors -2) $*$ findValueOfA(vertices $+1-3$, input colors)

5. CONCLUSION

We have derived the general formula for $k^{t h}$ coefficient of the pseudo chromatic polynomial and hence obtained the pseudo chromatic polynomial of a path P_{n}. The complexity of computing the coefficients and pseudo chromatic polynomial of a path P_{n} is reduced by solving the recurrence formula, developing the pseudo code and implemented the same through Java program.

Acknowledgment

Authors are very much thankful to the Management, Dr. B. Sooryanarayana, Professor, department of Mathematics and the Principal of Dr. Ambedkar Institute of Technology, Bangalore for their constant support and encouragement during the preparation of this paper.

Conflict of Interests

The author(s) declare that there is no conflict of interests.

References

[1] Brown Jason and Erey Aysel, New bounds for chromatic polynomials and chromatic roots, Discrete Math., 338(11) (2015), 1938-1946.
[2] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley,(1990).
[3] G.L. Chia, A bibliography on chromatic polynomials, Discrete Math., 172(1997), 175-191.
[4] George D. Birkhoff, A determinant formula for the number of ways of coloring a map, Ann. Math. 14(1) (1912), 42-46.
[5] F. Harary, Graph Theory, Narosa Publishing home, (1969).
[6] G. H. J. Meredith, Coefficients of Chromatic Polynomials, J. Comb. Theory, Ser. B, 13 (1972), 14-17.
[7] R. C. Read, An Introduction to Chromatic Polynomials, J. Comb. Theory, 4 (1968), 52-71.
[8] B. Sooryanarayana and Narahari N, The Neighborhood Pseudochromatic Number of a Graph, Int. J. Math. Comb. 4 (2014), 92-99.

[^0]: *Corresponding author
 E-mail address: jayachatra@yahoo.co.in
 Received September 27, 2019

