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Abstract. Fibonacci numbers and distance graphs play a very important role in day to day applications.

In this paper we construct the generalized Fibonacci prime distance graph and determine its chromatic

number. We also indicate here an interesting application involving graph vertex coloring and Fibonacci

numbers in the problem of sequence design of nucleic acids a wonderful work done by Von Mag.Ingrid

G.Abfalter in [9].
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1. Introduction

Graph Theory is a branch of mathematics that investigates the properties of graphs

and their relations. Structures that can be presented as graphs are ubiquitous and many

problems of practical interest can thus be modeled as graph theoretical problems. In

chemistry we find two main types of correspondency between graphs and chemical cat-

egories: (i) The structural or constitutional graph that corresponds to a molecule or a

group of molecules, where the nodes symbolize the atoms and edges symbolize covalent
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bonds It was this type of graph that inspired Cayley to develop a procedure for counting

the constitutional isomers of alkanes and (ii) the reaction graph that corresponds to a

reaction mixture, where points symbolize chemical species and lines represent conversions

between them. Graph coloring is a well known NP-complete problem [8]. The graphs

considered in this paper are finite, simple and undirected.

An interesting motivation for writing this paper is the following: Fibonacci numbers

work in everything from the microscopic materials like DNA molecule to the distance

between our eyes, ears, hands, even the distance of the planets in the solar system and

the way they move in the space, even the distance and pathway of the stars in the uni-

verse and finally in the currencies?prices and the way they move up and down. Fibonacci

numbers can be found anywhere in the world. The Fibonacci numbers can be used to

approximately convert from miles to kilometers and back. Take two consecutive Fibonac-

ci numbers, for example 5 and 8. And you’re done converting. There are 8 kilometers

in 5 miles. To convert back just read the result from the other end - there are 5 miles

in 8 km! Again consider the consecutive Fibonacci numbers 21 and 34. What this tells

us is that there are approximately 34 km in 21 miles and vice versa. (The exact an-

swer is 33.79 km. If you need to convert a number that is not a Fibonacci number, just

express the original number as a sum of Fibonacci numbers and do the conversion for

each Fibonacci number separately. For example, how many kilometers are there in 100

miles? Number 100 can be expressed as a sum of Fibonacci numbers 89 + 8 + 3. Now,

the Fibonacci number following 89 is 144, the Fibonacci number following 8 is 13 and

the Fibonacci number following 3 is 5. Therefore the answer is 144 + 13 + 5 = 162

kilometers in 100 miles. This is less than 1%off from the precise answer, which is 160.93

km. Another example, how many miles are there in 400 km? Well, 400 is 377 + 21 +

2. Since we are going the opposite way now from miles to km, we need the preceding

Fibonacci numbers. They are 233, 13 and 1. Therefore there are 233 + 13 + 1 = 247

miles in 400 km. (The correct answer is 248.55 miles.). If the distance to be converted

can be expressed as a single Fibonacci number, then for numbers greater than 21 the

error is always around 0.5%. However, if the distance needs to be composed as a sum
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of n Fibonacci numbers, then the error will be around sqrt(n)?.5%. We know that Fi-

bonacci numbers have a property that the ratio of two consecutive numbers tends to the

Golden ratio as numbers get bigger and bigger. The Golden ratio is a number and it

happens to be approximately 1.618. Coincidentally, there are 1.609 kilometers in a mile,

which is within 0.5% of the Golden ratio. Now that we know these two key facts, we

can figure out how to do the conversion. If two consecutive Fibonacci numbers, are Fn+1

and Fn, then Fn+1/Fn is approximately 1.618. Since the ratio is also almost the same

as kilometers per mile, we can write Fn+1/Fn = [mile]/[km]. It follows that Fn[mile] =

Fn+1?[km], whichtranslatestoEnglishas”n−thF ibonaccinumberinmilesisthesameas(n+1)−thF ibonaccinumberinkilometers”.ItisapurecoincidencethattheGoldenratioisalmostthesameaskilometersinamile.

2. Fibonacci Sequences

Fibonacci sequences are interesting sequences in all of mathematics. Fibonacci numbers

Fk is defined by the second-order linear recurrence formula and initial terms:

Fk+1 = Fk + Fk−1, F0 = 0, F1 = 1.

The generalization of this sequence F
(n)
k , the Fibonacci n-step sequence is defined by a

linear recurrence formula of order n > 1:

F
(n)
k+1 = F

(n)
k + F

(n)
k−1 + ...+ F

(n)
k−n+1....(1)

and initial terms

F
(n)
1−n = 1, F

(n)
k = 0, k = −n+ 2, ..., 0.....(2)

Let us indicate the generation of generalized Fibonacci n-step sequences for certain values

of n and k.

n = 2

F
(2)
0 = 0, F

(2)
−1 = 1;F

(2)
1 = F

(2)
0 + F

(2)
−1 = 0 + 1 = 1 ;F

(2)
2 = F

(2)
1 + F

(2)
0 = 1 + 0 = 1;

F
(2)
3 = F

(2)
2 + F

(2)
1 = 1 + 1 = 2 and so on.

n = 3

F
(3)
0 = 0, F

(3)
−1 = 0, F

(3)
−2 = 1; F

(3)
1 = F

(3)
0 + F

(3)
−1 + F

(3)
−2 = 0 + 0 + 1 = 1; F

(3)
2 =

F
(3)
1 + F

(3)
0 + F

(3)
−1 = 1 + 0 + 0 = 1; F

(3)
3 = F

(3)
2 + F

(3)
1 + F

(3)
0 = 1 + 1 + 0 = 2 and so on.
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n = 6

F
(6)
0 = 0, F

(6)
−1 = 0, F

(6)
−2 = 0, F

(6)
−3 = 0, F

(6)
−4 = 0, F

(6)
−5 = 1; F

(6)
1 = F

(6)
0 + F

(6)
−1 + F

(6)
−2 +

F
(6)
−3 +F

(6)
−4 +F

(6)
−5 = 0+0+0+0+0+1 = 1; F

(6)
2 = F

(6)
1 +F

(6)
0 +F

(6)
−1 +F

(6)
−2 +F

(6)
−3 +F

(6)
−4 =

1+0+0+0+0+0 = 1; F
(6)
3 = F

(6)
2 +F

(6)
1 +F

(6)
0 +F

(6)
−1 +F

(6)
−2 +F

(6)
−3 = 1+1+0+0+0+0 = 2

and so on.

The sequence generated by equations (1) and (2) is also known as the k-generalized

Fibonacci numbers, which are discussed by Flores[5]. Observe that equation (1) is e-

quivalent to the three-term recursions F
(n)
k+1 = 2F

(n)
k − F

(n)
k−n which are computationally

superior for large n, and which show that n-step sequence grow at a rate less than 2k.

This recursion requires one more initial term, which we can take to be F
(n)
1 = 1.

Dickson[3] cites a long history of generalized of the Fibonacci numbers. Miles[6] used

equation (1) in 1960. Benjamin and Quinn [1] briefly discussed a combinatorial interpre-

tation of these n-step sequences.

The usual Fibonacci numbers are obtained for n = 2. For small values of n, these

sequences are called tribonacci (n = 3), tetranacci or quadranacci (n = 4), Pentanacci

or pentacci (n = 5), hexanacci or esanacci (n = 6), heptanacci (n = 7) and octanacci

(n = 8).

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14

n

2 1 1 2 3 5 8 13 21 34 55 89 144 233 377

3 1 1 2 4 7 13 24 44 81 149 274 504 927 1705

4 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872

5 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525

6 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840

7 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984

8 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048

9 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076

Table 1:

Table 1 shows Fibonacci n-step sequences where the primes are in bold letters.

Note that every Mersenne prime- a prime of the form 2p− 1 appears in these sequences

as F
(p)
p+2.
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The above observation in Table 1 indicates that there are only small number of Fi-

bonacci prime numbers in the respective sequences. The Fraction of odd numbers in the

sequence F
(n)
k is 2/(n+ 1). Hence, there are only a fewer prime numbers.

3. Chromaticity of the Fibonacci Graph

A prime distance graph is a graph G(Z, P ) with the set of integers as vertex set and

with an edge joining two vertices u and v if and only if | u− v |∈ P where P is the set of

all prime numbers. We call a graph a Fibonacci prime distance graph, denoted G
(n)
k (Z,D)

if D ⊆ P is a set of primes appearing in the Fibonacci n-step sequence.

A k-coloring of a graph G is an assignment of k different colors to the vertices of G

such that adjacent vertices receive different colors. The minimum cardinality k for which

G has a k-coloring is called the chromatic number of G and is denoted by χ(G).

By a chromatic subgraph of a graph G we mean a minimal subgraph of G with the

same chromatic number as G.What class of graphs will include a chromatic subgraph of

G(Z,D) for D ⊆ Z ?.

A graph G is color critical if its only chromatic subgraph is G itself. For any positive

integer m,n, let G(m,n) be the graph comprising (m + 1) distinct vertices u0, u1, ..., um

and m distinct subgraphs H1, ..., Hm each of which is a copy of Kn, (Where Kn is the

complete graph on n vertices)such that u0 is adjacent to um and each vertex of Hi is

adjacent to ui−1 and ui, for 1 ≤ i ≤ m. G(m, 1) ∼= C2m+1, G(1, n) ∼= Kn+2, where C2m+1

is the cycle on 2m+1 vertices.

Theorem 3.1. χ(G
(n)
k (Z,D)) =

{
3, for all n≥ 3, and k≥ 1;

4, if n=2 and k≥ 1.

Proof. We divide the proof into the following Lemmas.

Lemma 1. For any positive integers m,n the graph G(m,n) is color critical with

χ(G(m,n)) = n+ 2.

Proof of Lemma 1.



1456 V.YEGNANARAYANAN∗

Suppose we had a proper coloring of G(m,n) using n + 1 colors. Without loss of

generality let u0 has color 0 and the vertices of H1 have colors 1,2,...,n. Since u1 is adjacent

to all the vertices of H1 it follows that u1 has color 0. Iterating this argument shows that

um has color 0. But this is impossible, since um is adjacent to u0. Hence any proper

coloring of G(m,n) requires at least n + 2 colors. Clearly n + 2 colors are sufficient, so

χ(G(m,n)) ≤ n + 2. Also if any edge is removed from G(m,n) the resulting graph has

chromatic number n+ 1, so G(m,n) is color critical.

We now compute the χ(G(Z, P )).

Figure 1. In the figure H1 and H2 are isomorphic to K2

Lemma 2. χ(G(Z, {2, 3, 5})) = 4 and hence χ(G(Z, P )) = 4.

Proof of Lemma 2.

Let each integer x be assigned a color class i precisely when x ≡ i(mod 4), for 0 ≤ i ≤ 4.

Since integers assigned to the same color differ by a multiple of 4, they are not adja-

cent in G(Z, P ), so χ(G(Z, P )) ≤ 4. Since G(Z, {2, 3, 5}) ⊆ G(Z, P ) and χ is mono-

tone, we have χ(G(Z, {2, 3, 5})) ≤ χ(G(Z, P )). But as G(Z, {2, 3, 5}) ⊇ G(2, 2) we have

χ(G(Z, {2, 3, 5})) ≥ 4 where G(2, 2) is shown in the Figure determined by the vertices

u0 = 2, u1 = 3, u2 = 4 and the subgraphs H1, H2 with vertex sets {0, 5} and {1, 6}

respectively. The proof now follows from the Lemma 1.

In view of Lemma 2,we can allocate the subsets D of P to four classes, according as

G(Z,D) has chromatic number 1,2,3 or 4. Obviously empty set is the only member of class

1 and every singleton subset is in class 2. The following result addresses the classification

of subsets with at least two elements.
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Lemma 3. χ(G(Z, {r, s})) = 2 if r, s are both odd and are coprime.

First we prove the following Sub Lemma.

SubLemma 3.1. For any positive integer n, let D =
∞∪
k=0

[k(n+1)+1, k(n+1)+n]. Then

χ(G(R,D)) is at most n+ 1.

Proof of Sublemma 3.1.

Let all points of the real line be assigned to color classes numbered 0, 1, ..., n such that

x has color i precisely when ⌊x⌋ ≡ i(mod n + 1). We will show that this is a proper

coloring of G(R,D). Let x, y be two reals assigned to each color class i with x < y. Then

there are integers r, s such that r ≤ s and r(n + 1) + i ≤ x < r(n + 1) + i + 1 and

s(n + 1) + i ≤ y < s(n + 1) + i + 1. If r = s then y − x < 1, so x is not adjacent to y in

G(R,D). If r < s, let t = s−r. Then we have t(n+1)−1 < y−x < t(n+1)+1, so x and

y will be adjacent only if there is some integer k ≥ 0 such that [k(n+1)+1, k(n+1)+n]

has a non empty intersection with (t(n + 1) − 1, t(n + 1) + 1). This happens precisely

when k(n+ 1) + 1 < t(n+ 1) + 1 and k(n+ 1) + n > t(n+ 1)− 1. But then we get k < t

and k + 1 > t, which then implies that t is not an integer, a contradiction. Therefore the

distance between x and y is not in D, so they are not adjacent in G(R,D).

Proof of Lemma 3.

Now take n = 1 in Sub Lemma 3.1. We see that D is the set of odd positive integers

and hence χ(G(Z, {r, s})) is at most 2. Since G(Z, {r, s}) contains K2, χ ≥ 2 and hence

the Sub Lemma 3.1.

Lemma 4. Let D ⊆ P, with | D |≥ 2. Then D may be classified as follows:

a)D is in class 2 if 2 ̸∈ D; otherwise D is in class 3 or class 4.

b)If 2 ∈ D and 3 ̸∈ D, then D is in class 3.

Proof of Lemma 4(a).

By the Lemma 3, if D is a subset of the odd primes then it is in class 2. If D contains

2 and any odd prime p, then G(Z,D) contains a cycle v0v1...vpwv0 where vi = 2i for

0 ≤ i ≤ p, and w = p. This cycle has order p+ 2, which is odd, so has chromatic number
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3. Now with Lemma 2 we say that D is in class 3 or class 4.

Proof of Lemma 4(b).

Here a proper coloring of G(Z,D) is obtained by assigning the integer x to color class

i precisely when x ≡ i(mod 3), for 0 ≤ i < 3. So in view of Lemma 4(a), D is in class 3.

Now as G
(n)
k (Z,D) ⊆ G(Z, P ) we have by Lemma 2 an easy lower and upper bound

namely 1 ≤ χ(G
(n)
k (Z,D)) ≤ 4. First consider the graph G

(2)
k (Z,D). As {2, 3, 5} ⊆ D we

have by Lemma 2 χ(G
(2)
k (Z,D)) = 4. But as 2 ∈ D and 3 ̸∈ D for all n and k when n ≥ 3

we deduce that χ(G
(n)
k (Z,D)) = 3 for all n ≥ 3 and all k.

4. An Interesting Application

Sequence design represents an integral part of research on nucleic acids and is equally

important for industrial applications. The development of new theoretical approaches and

hence the implementation of new program packages that assist with the rational design

of nucleic acids is therefore of fundamental interest.

Fibonacci sequences are used in the creation of a software tool to support the ra-

tional design of RNA molecules capable of forming two or more alternative metastable

structures. This required the creation of a logical information model, isolating relevant

aspects of the biological problem as posed, and incorporating these into a graph-based

mathematical model. An appropriate design of an algorithm based on this model reduces

the problem to vertex coloring the union of all prescribed outerplanar secondary struc-

ture graphs, called dependency-graph. Starting from a decomposition of this dependency

graph, colorings can then be obtained by a dynamic programming procedure. The se-

quences so designed can then be optimized for particular properties by means of standard

optimization heuristics. The connection between sequence design and vertex-colorings is

interestingly worth probing.
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Biopolymers such as RNA, DNA or proteins fold into well-defined three dimensional

structures that are of the utmost importance for their biological functions. The most fun-

damental features of the 3D shape of these molecules are captured in so-called connection

graphs which have the atoms of small molecules or the monomers of a biopolymer as their

vertices and the connections between spatially adjacent objects as their edges. Obviously,

this simplification discards many structural details, yet it retains and exposes a wealth

of structural information that can be gained from a variety of experimental and com-

putational methods. Biopolymers share a number of common features that distinguish

them from other classes of molecular contact graphs. They have a spanning path that

corresponds to the covalent backbone and the remaining non-covalent bonds determine

the fold of the 3D structure of the molecule. Nucleic acids in particular form a special

type of contact structure called secondary structure.

The primary structure of RNA is simply the sequence of nucleotides, the secondary

structure is represented by a graph where the vertices are the bases and the edges depict

the contacts (hydrogen bonds) between these bases and the backbone along the sequence.

Thus the secondary structure is actually a topology that indicates which sequence posi-

tions are adjacent, but says nothing about the spatial distances between the positions.

Therefore, it is not a real two-dimensional representation of the structure. The so-called

tertiary structure depicts the spatial arrangement of the secondary structure elements,

i.e. the real three dimensional fold of the molecule.

A nucleic acid secondary structure can be understood as the set Θ of base pairs. The

graph of the secondary structure consists of a set of vertices (bases) V = 1, 2, ..., i, ..., n

and a set E of edges i?j, 1 ≤ i ≤ j ≤ n with the following constraints:

(i) (backbone) for all i < n : i?(i+ 1) ∈ E and

(ii) (binary pairing) for each i there is at most one k ̸= i− 1, i+ 1 where i?k ∈ E, and

(iii) (pseudoknots are not allowed) if i?j ∈ E and k?l ∈ E and i < k < j then i < l < j.

According to this definition the set of vertices just contains the enumerated set of

nucleotides of the sequence of the length n. The set of edges contains the backbone of the
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chain and the base pairs where base pairing between consecutive positions i and i + 1 is

ruled out. In practice, this does not represent a limitation, since steric reasons make it

almost impossible for the bases i and i + 1 to form a base pair. To be able to compute

secondary structures we now have to define a set B ⊂ A × A of allowed base pairs for

the alphabet A of riobonucleotides. The dependency graph Ψ of a collection of secondary

structures {Θi} with n nucleotides consists of n vertices and edges connecting k with l if

and only if (k, l) is a base pair in at least one of the secondary structures Θi.

Given a secondary structure Θ, our choice of sequences compatible with Θ is restricted,

since for each pair i, j ∈ Θ and each sequence x, the positions xi and xj must be able

to form one of the permitted base pairs. We write C[Θ] for the set of all sequences that

are compatible with Θ in the sense that every base pair (i, j) ∈ Θ is realized by a pair

(xi, xj) ∈ B of pairing nucleotides. It follows that the number of sequences compatible

with a given structure |C[Θ]| is |C[Θ]| = |A||γ||B||Θ| (1) (where γ is the set of unpaired

positions) since for each i ∈ γ we can choose any random letter of the nucleic acid alphabet

and for each pair we may choose one of the possible base pairs.

The first obvious question that arises when trying to design multi-stable sequences is:

Can sequences be found that fold into two (and consequently more) predefined structures

and if so, how many, i.e. what is the size of the cardinality of the intersection of two given

secondary structures? This is answered by the Intersection Theorem.

Intersection Theorem: ”If the nucleic acid alphabet admits at least one type of com-

plementary base pairs, then, for any two secondary structures Θ1 and Θ2 there exists at

least one sequence that is compatible with both structures, in symbols: C[Θ1] ∩ C[Θ2] ̸=

Φ”...(2). This means whenever we have symmetric base pairs, i.e. XY ∈ B implies

Y X ∈ B, we can always find sequences that can fold into both θ1 and Θ2. An abstract

group-theoretical proof can be found in [7], for a purely combinatorial proof see [2].

In order to determine the cardinality of the intersection of Θ1 and Θ2 we display the

graph as the conjunct union of its connected components: Ψ∗ = ∪Ψ. Depending on the

predefined structures there can be found three kinds of components:
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(i) Positions that are unpaired in both structures correspond to isolated vertices in the

graph.

(ii) Positions that are paired in both secondary structures correspond to paths of the

length one.

(iii) Base-pairing positions that occur only in one of the two different structures are

part of paths.

Using this definition we can write: C[Θ1] ∩ C[Θ2] =
∏

componentsΨofΨ∗
S(Ψ) ... (3) where

S(Ψ) describes the number of sequences compatible with a connected component Ψ of

Ψ∗. For (i) an isolated vertex K1 we get S({i}) = S(K1) = |A|, i.e. the number of

nucleotides in the alphabet, for (ii) paths of the length 1 S(K2) = |B|, the number of

allowed base pairs, for (iii) the compatible sequences of paths can be counted by using

recursive formulae called Fibonacci numbers (paths):S(Pn) = 2(F (n) + F (n + 1)) =

2F (n+ 2)... (4).

The important observation is that a sequence that is compatible with all secondary

structures can be viewed as a coloring of the vertices of the dependency graph such that

adjacent vertices have colors (a, b) ∈ B, the alphabet of base-pairs. Then one can use

a dynamic programming algorithm that counts the compatible sequences of a block and

produces colorings during the backtracking procedure. Suppose that we have fully decom-

posited graph and obtained the ear decompositions of the blocks. Then we can initiate the

counting and coloring routine of each connected component of the dependency graph. We

start by colouring blocks and then proceed outwards towards the paths that are connected

via cut-vertices until each connected component is completely coloured. The cut-vertices

are treated just like attachment points. The compatible sequences of blocks are counted

recursively starting from the utmost ear proceeding inwards to the central circle. In each

step of the counting procedure while concatenating the ears, we have to compute and

memorize the number of compatible colourings of paths given each consistent assignment

of the attachment points.. Then use recursive dynamic programming procedure for deter-

mining the number of sequences that start with a certain base i and end in a certain base
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k for all path lengths l = n (n is the maximum path length in the graph). Next generate

the matrix entries in the following manner: The number of paths with length l that start

with base i and end in base k is the sum over all path matrix entries PM(i, j) of the

path length l − 1 times 1, if (j, k) is an allowed base pair, and times zero if (j, k) cannot

form a base pair. The solution to the smallest sub problem of this dynamic programming

algorithm finding assignments for paths of the length one- is clearly the base-pairing ma-

trix. Proceeding bottom-up from this sub-instance we can generate the path matrices for

paths of arbitrary length. The implementation of this counting procedure is very complex

although it is based on a dynamic programming algorithm. It is the upkeep and update of

the colouring matrices that store consistent assignments for attachment points and their

multiplicity that result from each concatenation step which require a sophisticated table

management. The reason is that as we concatenate the ears of the graph the table size

does not always grow steadily but also decreases again when colourings become impossi-

ble due to constraints of attachment vertices in later steps. When counting on the blocks

is finished, the counting procedure continues in an analogous manner on all remaining

biconnected components of each connected component, with the exception that path con-

catenation now considers fixed assignments of cut vertices rather than attachment points.

The result is a table of consistent assignments for all attachment points and cut vertices

and the number of compatible sequences, given each assignment, which is then used to

sample colourings with uniform distribution by means of stochastic backtracking.

From Table 1 we also infer that the generalized Fibonacci prime distance graph becomes

sparser and sparser as n increases. However it is quite interesting to note that the presence

of 2 in the distance set D somehow manage to induce a clique of size 3 in G
(n)
k however

large n is. Of course this is quite possible as primes are infinitely many. Lemmas 1,2,3,4

and Sub Lemma 3.1 are given in [4]. We have reproduced the proof here for the ease

of reading and completeness. We wish to probe further the application of Theorem 1 to

sequence design of nucleic acids elsewhere in the future.
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