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Abstract. In this paper, the first and the second Zagreb index at a distance l which are denoted respectively as

lM1(G) and lM2(G) are introduced and studied the special case when l = 2. Realization of 2M1(G) and 2M2(G)

are studied along with some chemical applicability. The bounds of 2M1(G), 2M2(G), 2M1(G) and 2M2(G) are

obtained for any r-regular graph G. Also, 2M1(G) and 2M2(G) are computed for cycloalkenes.
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1. INTRODUCTION

Let G be a simple, connected and undirected graph of order O(G) = n and size |E(G)|= m.

The degree of a vertex v is the number of vertices adjacent to v in G and is denoted by dG(v). The

distance between two vertices u,v in G is the length of a shortest path connecting u and v and is

denoted by d(u,v). Let G denote the compliment of a graph G. For undefined terminologies we

refer to [2]. Also, similar work on degree based topological indices can be referred in [6, 7, 8].
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Topological index is a numerical value associated with a graph representing a molecule where

atoms are represented as vertices and bonds as edges. One of the oldest topological indices is

the well-known Zagreb indices which was in [1], first introduced by Gutman and Trinajstic and

are defined as

M1 = ∑
uv∈E(G)

[dG(u)+dG(v)]

and

M2 = ∑
uv∈E(G)

dG(u)dG(v).

The first Zagreb index and the second Zagreb index are defined over the edges of G. In 2016,

Rizwana et al. [5] have introduced non-neighbor Zagreb indices, which are for the pair of dis-

tinct vertices u,v with d(u,v) 6= 1. Analogous to this we define the generalized first and the

second Zagreb indices of a graph G, namely the first Zagreb index and the second Zagreb index

at a distance l, 1≤ l ≤ diam(G) respectively as :

lM1(G) = ∑
d(u,v)=l

[dG(u)+dG(v)]

and

lM2(G) = ∑
d(u,v)=l

dG(u)dG(v)

Observation 1.1. For a complete graph Kn, the values 2M1(Kn) and 2M2(Kn) does not exist

due to the fact that 1≤ l ≤ diam(Kn) = 1.

Observation 1.2. Let G be a connected graph of order atleast 3 which is not a clique. Then

2M1(G)≥ 2.

Observation 1.3. Let G be a connected graph of order atleast 3 which is not a clique. Then

2M2(G)≥ 1.

For the realization work of this paper we use the following theorems, which gives the neces-

sary and sufficient condition for the existence of a graph G of a given degree sequence, estab-

lished during 1962 by Hakimi [3].

Theorem 1.4 (Hakimi [3]). The necessary and sufficient condition for positive integers d1 ≤

d2 ≤ ·· · ≤ dn to be realizable (as the degrees of the vertices of a linear graph) are:
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i)
n
∑

i=1
di = 2e, e is an integer

ii)
n−1
∑

i=1
di ≥ dn.

Theorem 1.5 (Hakimi [3]). The necessary and sufficient condition for a set of integers d1 ≤

d2 ≤ ·· · ≤ dn to be realizable as a connected graph are:

i) the set d1,d2, . . . ,dn is realizable.

ii)
n
∑

i=1
di ≥ 2(n−1).

In this paper, we consider the case of l = 2 in the newly defined Zagreb indices and compute

2M1(G) and 2M2(G) for some classes of graphs and cycloalkenes. We obtain the bounds of

2M1(G), 2M2(G), 2M1(G) and 2M2(G) for every r-regular graph G with O(G) = n. Realization

of 2M1(G) and 2M2(G) are studied and discussed their chemical applicability.

Proposition 1.6. For a path Pn (n≥ 4), 2M1(Pn) = 4n−10 and 2M2(Pn) = 4n−12.

Proposition 1.7. For a cycle Cn (n≥ 5), 2M1(Cn) = 2M2(Cn) = 4n.

Proposition 1.8. For a star graph K1,n (n≥ 3), 2M1(K1,n) = n(n−1) and 2M2(K1,n) =
n
2(n−1).

Proposition 1.9. For a wheel graph W1,n (n≥ 4),

2M1(W1,n) = 3n(n−3) and 2M2(W1,n) =
9
2n(n−3).

2. REALIZATION OF 2M1(G)

In this section, we give the existence of a graph of a given topological index namely 2M1(G).

Lemma 2.1. For a connected graph G of order n≥ 3, 2M1(G)≥ 2(n−2) and the equality holds

for G∼= Kn− e.

Proof. To obtain minimal value for 2M1(G), we need a graph having the least number of pairs

of vertices (u,v) at a distance 2. This can be attained by removal of an edge from a complete

graph Kn. Here only one pair of vertices is at distance 2. Further removal of edges from

Kn will increase the value of 2M1(G). Hence 2M1(G) is minimum for G ∼= Kn − e. Also,

2M1(G)≥ 2(n−2). �
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Theorem 2.2. For any positive integer k, there is a connected graph G with 2M1(G) = k if and

only if k /∈ {1,3,5,7,9,11,17}.

Proof. Let G be a connected graph with 2M1(G) = k. Suppose that k ∈ {1,3,5,7,9,11,17}.

By Observation 1.2, 2M1(G)≥ 2. Now we consider all possible graphs for different O(G) and

find 2M1(G). We observe that for O(G) = 4 : 2M1(G) ∈ {4,6,8}, for O(G) = 5 : 2M1(G) ∈

{6,10,12,13,14,15,16,18,20} and for O(G) = 6 : 2M1(G) ∈ {8, 14, 16, 18, 19, 20, 21, 22, 24,

25,26,27,28,29,30,32,34,36}. From Lemma 2.1 for O(G) = 7 : 2M1(G)≥ 10 and O(G) = 8 :

2M1(G)≥ 12. Hence there is no connected graph G for 2M1(G) = {1,3,5,7,9,11,17}.

Conversely, let k be any positive integer and k /∈ {1,3,5,7,9,11,17}. We prove the existence

of G in the following cases:

Case 1: k ≥ 32 and k ≡ 0(mod 4).

Let k = 4i for some integer i ≥ 8. Consider the sequence d1,d2, . . . ,di,di+1, where

d1 = d2 = d3 = d4 = 1, d j = 2 for all j,5≤ j≤ i−1 and di = di+1 = 3. Then ∑
i+1
j=1 d j =

2(i) = 2(i+ 1− 1) is even and ∑
i
j=1 d j = 2(i− 3)+ 3 > 3 = dn. So, by Theorem 1.5,

there is a connected graph G with d1,d2, . . . ,di+1 as its degree sequence. One such graph

is the graph G of order i+ 1, obtained by Pi−1 : v1− v2− v3− ·· ·− vi−1 by attaching

two pendent vertices at v2 and vi−3, for which 2M1(G) = ∑d(u,v)=2 dG(u) + dG(v) =

32+∑
i−6
j=3 dG(v j)+dG(v j+2) = 4(i−8)+32 = 4i = k.

Case 2: k ≥ 21 and k ≡ 1(mod 4).

Let k = 21+4i for some integer i≥ 0. Consider the sequence d1,d2, . . . ,di,di+1, . . . ,

di+6, where d1 = 1, d j = 2 for all j,2≤ j≤ i+5 and di+6 = 3. Then ∑
i+6
j=1 d j = 2(i+6)>

2(i+6−1) is even and ∑
i+5
j=1 d j = 2(i+3)+3 > 3 = dn. So, by Theorem 1.5, there is

a connected graph G with d1,d2, . . . ,di+6 as its degree sequence. One such graph is

a tadpole graph T4,i+2, of order i+ 6, for which 2M1(G) = ∑d(u,v)=2 dG(u)+ dG(v) =

25+∑
i−1
j=1 dG(v j)+dG(v j+2) = 4(i−1)+25 = 4i+21 = k.

Case 3: k ≡ 2(mod 4).

Let k = 4i+2 for some integer i≥ 0. Consider the sequence d1,d2, . . . ,di,di+1,di+2,

di+3, where d1 = d2 = 1 and d j = 2 for all j,3 ≤ j ≤ i+3. Then ∑
i+3
j=1 d j = 2(i+2) =

2(i+ 3− 1) is even and ∑
i+2
j=1 d j = 2(i)+ 2 > 2 = dn. So, by Theorem 1.5, there is a
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connected graph G with d1,d2, . . . ,di+3 as its degree sequence. The path Pi+3 is one such

graph for which 2M1(G) = ∑d(u,v)=2 dG(u)+dG(v) = 2(3)+∑
i
j=2 dG(v j)+dG(v j+2) =

4(i−1)+2(3) = 4i+2 = k.

Case 4: k ≥ 19 and k ≡ 3(mod 4).

Let k = 19+4i for some integer i≥ 0. Consider the sequence d1,d2, . . . ,di,di+1, . . . ,

di+6, where d1 = 1, d j = 2 for all j,2 ≤ j ≤ i+ 3 and di+4 = di+5 = di+6 = 3. Then

∑
i+6
j=1 d j = 2(i+ 7) > 2(i+ 6− 1) is even and ∑

i+5
j=1 d j = 2(i+ 4)+ 3 > 3 = dn. So, by

Theorem 1.5, there is a connected graph G with d1,d2, . . . ,di+6 as its degree sequence.

One such graph is a graph G obtained by identifying a vertex of degree 2 of K4− e and

one of the end vertices of Pi+3. For this graph G, 2M1(G) = ∑d(u,v)=2 dG(u)+dG(v) =

23+∑
i−1
j=1 dG(v j)+dG(v j+2) = 4(i−1)+23 = 4i+19 = k.

Case 5: k = {4,8,12,13,15,16,20,24,28}.

For k = 4. Consider the sequence d1,d2,d3,d4, where d1 = d2 = 2 and d3 = d4 = 3.

Then ∑
4
j=1 d j = 2(5)> 2(4−1) is even and ∑

3
j=1 d j = 7 > 3 = dn. So, by Theorem 1.5,

there is a connected graph G with d1,d2,d3,d4 as its degree sequence. One such graph is

a fan graph F1,3, of order 4, for which 2M1(G) = ∑d(u,v)=2 dG(u)+dG(v) = 1(2+2) =

4 = k.

For k = 8. Consider the sequence d1,d2,d3,d4, where d1 = d2 = d3 = d4 = 2. Then

∑
4
j=1 d j = 2(4)> 2(4−1) is even and ∑

3
j=1 d j = 6 > 2 = dn. So, by Theorem 1.5, there

is a connected graph G with d1,d2,d3,d4 as its degree sequence. One such graph is a

cycle C4 for which 2M1(G) = ∑d(u,v)=2 dG(u)+dG(v) = 2(2+2) = 8 = k.

For k = 12. Consider the sequence d1,d2,d3,d4,d5, where d1 = d2 = d3 = d4 = 1

and d5 = 4. Then ∑
5
j=1 d j = 2(4) > 2(5− 1) is even and ∑

4
j=1 d j = 4 = dn. So, by

Theorem 1.5, there is a connected graph G with d1,d2,d3,d4,d5 as its degree sequence.

One such graph is a star graph K1,4, of order 5, for which 2M1(G) = ∑d(u,v)=2 dG(u)+

dG(v) = 6(1+1) = 12 = k.

For k = 13. Consider the sequence d1,d2,d3,d4,d5, where d1 = 1, d2 = 2 and d3 =

d4 = d5 = 3. Then ∑
5
j=1 d j = 2(6)> 2(5−1) is even and ∑

4
j=1 d j = 9 > 3 = dn. So, by

Theorem 1.5, there is a connected graph G with d1,d2,d3,d4,d5 as its degree sequence.
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One such graph is a kite graph obtained by adding a new vertex to a vertex of degree 2 of

K4− e through an edge between them, for which 2M1(G) = ∑d(u,v)=2 dG(u)+dG(v) =

2(1+3)+1(2+3) = 13 = k.

For k = 15. Consider the sequence d1,d2,d3,d4,d5, where d1 = 1, d2 = d3 = d4 = 2

and d5 = 3. Then ∑
5
j=1 d j = 2(5)> 2(5−1) is even and ∑

4
j=1 d j = 7 > 3 = dn. So, by

Theorem 1.5, there is a connected graph G with d1,d2,d3,d4,d5 as its degree sequence.

One such graph is C4 with one pendent vertex, for which 2M1(G) = ∑d(u,v)=2 dG(u)+

dG(v) = 2(1+2)+1(2+3)+1(2+2) = 15 = k.

For k = 16. Consider the sequence d1,d2,d3,d4,d5,d6, where d1 = d2 = d3 = 1, d4 =

d5 = 2 and d6 = 3. Then ∑
6
j=1 d j = 2(5)> 2(6−1) is even and ∑

5
j=1 d j = 7 > 3 = dn.

So, by Theorem 1.5, there is a connected graph G with d1,d2,d3,d4,d5,d6 as its degree

sequence. One such graph G is a graph obtained by subdividing twice exactly one of

the edges of K1,3, for which 2M1(G) = ∑d(u,v)=2 dG(u)+dG(v) = 1(1+1)+3(1+2)+

1(2+3) = 16 = k.

For k= 20. Consider the sequence d1,d2,d3,d4,d5, where d1 = d2 = d3 = d4 = d5 = 2.

Then ∑
5
j=1 d j = 2(5)> 2(5−1) is even and ∑

4
j=1 d j = 8 > 2 = dn. So, by Theorem 1.5,

there is a connected graph G with d1,d2,d3,d4,d5 as its degree sequence. One such

graph is a cycle C5 for which 2M1(G) = ∑d(u,v)=2 dG(u)+dG(v) = 5(2+2) = 20 = k.

For k = 24. Consider the sequence d1,d2,d3,d4,d5,d6, where d1 = d2 = d3 = d4 =

d5 = d6 = 2. Then ∑
6
j=1 d j = 2(6) > 2(6− 1) is even and ∑

5
j=1 d j = 10 > 2 = dn. So,

by Theorem 1.5, there is a connected graph G with d1,d2,d3,d4,d5,d6 as its degree

sequence. One such graph is a cycle C6, for which 2M1(G) = ∑d(u,v)=2 dG(u)+dG(v) =

6(2+2) = 24 = k.

For k = 28. Consider the sequence d1,d2,d3,d4,d5,d6,d7,d8, where d1 = d2 = d3 =

d4 = 1, d5 = d6 = 2 and d7 = d8 = 3. Then ∑
8
j=1 d j = 2(7) = 2(8− 1) is even and

∑
7
j=1 d j = 11> 3= dn. So, by Theorem 1.5, there is a connected graph G with d1,d2,d3,

d4,d5,d6,d7,d8 as its degree sequence. One such graph G is a graph obtained by two

graphs K1,3 and P4 by adding an edge between one of the pendent vertices of K1,3 and
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one of the non pendent vertex of P4, for which 2M1(G) = ∑d(u,v)=2 dG(u) + dG(v) =

1(1+1)+4(1+2)+1(2+2)+1(3+3)+1(1+3) = 28 = k.

Hence the theorem. �

3. REALIZATION OF 2M2(G)

In this section, we give the existence of a graph of a given topological index namely 2M2(G).

Lemma 3.1. For a connected graph G of order n ≥ 3, 2M2(G) ≥ (n−1)(n−2)
2 and the equality

holds for G∼= K1,n−1.

Proof. To obtain minimal value for 2M2(G), we need a graph where degree of vertices are

least for given pair of vertices (u,v) whose d(u,v) = 2. This can be obtained for the graph

K1,n−1. If the degree of vertices are higher for pairs of vertices (u,v) whose d(u,v) = 2, the

value of 2M2(G) will increase. Hence 2M2(G) is minimum for G ∼= K1,n−1. Also, 2M2(G) ≥
(n−1)(n−2)

2 . �

Theorem 3.2. For any positive integer k, there is a connected graph G with 2M2(G) = k if and

only if k /∈ {2,5,7}.

Proof. Let G be a connected graph with 2M2(G) = k. Suppose that k ∈ {2,5,7}. Now

we consider all possible graphs for different O(G) and find 2M2(G). We observe that for

O(G) = 3 : 2M2(G) ∈ {1}, for O(G) = 4 : 2M2(G) ∈ {3,4,8}, for O(G) = 5 : 2M2(G) ∈

{6,8,9,10,11,12,14, 16,18,20,21} and for O(G) = 6 : 2M2(G)≥ 10 from Lemma 3.1. Hence

there is no connected graph G for 2M2(G) = {2,5,7}.

Conversely, let k be any positive integer and k /∈ {2,5,7}. We prove the existence of G in the

following cases:

Case 1: k ≡ 0(mod 4) .

Let k = 4i for some integer i≥ 1. Consider the sequence d1,d2, . . . ,di,di+1,di+2,di+3,

where d1 = d2 = 1 and d j = 2 for all j,3 ≤ j ≤ i + 3. Then ∑
i+3
j=1 d j = 2(i + 2) =

2(i+ 3− 1) is even and ∑
i+2
j=1 d j = 2(i)+ 2 > 2 = dn. So, by Theorem 1.5, there is a

connected graph G with d1,d2, . . . ,di+3 as its degree sequence. The path Pi+3 is one such
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graph for which 2M2(G) = ∑d(u,v)=2 dG(u)dG(v) = 2(1× 2)+∑
i
j=2 dG(v j)dG(v j+2) =

4(i−1)+4 = 4i = k.

Case 2: k ≥ 13 and k ≡ 1(mod 4)

Let k = 13+4i for some integer i≥ 0. Consider the sequence d1,d2, . . . ,di,di+1, . . . ,

di+6, where d1 = d2 = d3 = 1, d j = 2 for all j,4 ≤ j ≤ i + 5 and di+6 = 3. Then

∑
i+6
j=1 d j = 2(i+ 5) = 2(i+ 6− 1) is even and ∑

i+5
j=1 d j = 2(i+ 2)+ 3 > 3 = dn. So, by

Theorem 1.5, there is a connected graph G with d1,d2, . . . ,di+6 as its degree sequence.

One such graph is a graph G of order i+ 6, obtained by Pi+5 : v1− v2− ·· ·− vi+5 by

attaching one pendent vertex at v2, for which 2M2(G) = ∑d(u,v)=2 dG(u)dG(v) = 13+

∑
i+2
j=3 dG(v j)dG(v j+2) = 4i+13 = k.

Case 3: k ≥ 22 and k ≡ 2(mod 4).

Let k = 22+4i for some integer i≥ 0. Consider the sequence d1,d2, . . . ,di, . . . ,di+8,

where d1 = d2 = d3 = d4 = 1, d j = 2 for all j,5 ≤ j ≤ i + 6 and di+7 = di+8 = 3.

Then ∑
i+8
j=1 d j = 2(i+ 7) = 2(i+ 8− 1) is even and ∑

i+7
j=1 d j = 2(i+ 4)+ 3 > 3 = dn.

So, by Theorem 1.5, there is a connected graph G with d1,d2, . . . ,di+8 as its degree

sequence. One such graph is a graph G of order i+8, obtained by Pi+6 : v1− v2−·· ·−

vi+6 by attaching two pendent vertices one at v2 and other at vi+5, for which 2M2(G) =

∑d(u,v)=2 dG(u)dG(v) = 22+∑
i+2
j=3 dG(v j)dG(v j+2) = 4i+22 = k.

Case 4: k ≥ 19 and k ≡ 3(mod 4).

Let k = 19+4i for some integer i≥ 0. Consider the sequence d1,d2, . . . ,di, . . . ,di+7,

where d1 = d2 = d3 = 1, d j = 2 for all j,4 ≤ j ≤ i+ 6 and di+7 = 3. Then ∑
i+7
j=1 d j =

2(i+6) = 2(i+7−1) is even and ∑
i+6
j=1 d j = 2(i+3)+3 > 3 = dn. So, by Theorem 1.5,

there is a connected graph G with d1,d2, . . . ,di+7 as its degree sequence. One such graph

is a graph G of order i+7, obtained by Pi+6 : v1−v2−·· ·−vi+6 by attaching one pendent

vertex at v3, for which 2M2(G) = ∑d(u,v)=2 dG(u)dG(v) = 19+∑
i+3
j=4 dG(v j)dG(v j+2) =

4i+19 = k.

Case 5: k = {3,6,10,11,14,15,18}

For k = 3. Consider the sequence d1,d2,d3,d4, where d1 = d2 = d3 = 1 and d4 = 3.

Then ∑
4
j=1 d j = 2(3) = 2(4− 1) is even and ∑

3
j=1 d j = 3 = dn. So, by Theorem 1.5,
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there is a connected graph G with d1,d2,d3,d4 as its degree sequence. One such graph

is K1,3 (star graph), for which 2M2(G) = ∑d(u,v)=2 dG(u)dG(v) = 3(1×1) = 3 = k.

For k = 6. Consider the sequence d1,d2,d3,d4,d5, where d1 = d2 = d3 = d4 = 1

and d5 = 4. Then ∑
5
j=1 d j = 2(4) = 2(5− 1) is even and ∑

4
j=1 d j = 4 = dn. So, by

Theorem 1.5, there is a connected graph G with d1,d2,d3,d4,d5 as its degree sequence.

One such graph is K1,4 (star graph), for which 2M2(G) = ∑d(u,v)=2 dG(u)dG(v) = 6(1×

1) = 6 = k.

For k = 10. Consider the sequence d1,d2,d3,d4,d5,d6, where d1 = d2 = d3 =

d4 = d5 = 1 and d6 = 5. Then ∑
6
j=1 d j = 2(5) = 2(6− 1) is even and ∑

5
j=1 d j =

5 = dn. So, by Theorem 1.5, there is a connected graph G with d1,d2,d3,d4,d5,d6

as its degree sequence. One such graph is K1,5 (star graph), for which 2M2(G) =

∑d(u,v)=2 dG(u)dG(v) = 10(1×1) = 10 = k.

For k = 11. Consider the sequence d1,d2,d3,d4,d5, where d1 = 1, d2 = d3 = d4 = 2

and d5 = 3. Then ∑
5
j=1 d j = 2(5)> 2(5−1) is even and ∑

4
j=1 d j = 7 > 3 = dn. So, by

Theorem 1.5, there is a connected graph G with d1,d2,d3,d4,d5 as its degree sequence.

One such graph is T3,2 (tadpole graph), for which 2M2(G) = ∑d(u,v)=2 dG(u)dG(v) =

1(1×3)+2(2×2) = 11 = k.

For k = 14. Consider the sequence d1,d2,d3,d4,d5, where d1 = 1, d2 = d3 = d4 = 2

and d5 = 3. Then ∑
5
j=1 d j = 2(5)> 2(5−1) is even and ∑

4
j=1 d j = 7 > 3 = dn. So, by

Theorem 1.5, there is a connected graph G with d1,d2,d3,d4,d5 as its degree sequence.

One such graph is T4,1 (tadpole graph), for which 2M2(G) = ∑d(u,v)=2 dG(u)dG(v) =

2(1×2)+1(2×3)+1(2×2) = 14 = k.

For k = 15. Consider the sequence d1,d2,d3,d4,d5,d6,d7, where d1 = d2 = d3 =

d4 = d5 = d6 = 1 and d7 = 6. Then ∑
7
j=1 d j = 2(6) = 2(7− 1) is even and ∑

6
j=1 d j =

6 = dn. So, by Theorem 1.5, there is a connected graph G with d1,d2,d3,d4,d5,d6,d7

as its degree sequence. One such graph is K1,6 (star graph), for which 2M2(G) =

∑d(u,v)=2 dG(u)dG(v) = 15(1×1) = 15 = k.

For k = 18. Consider the sequence d1,d2,d3,d4,d5, where d1 = d2 = d3 = d4 = 3 and

d5 = 4. Then ∑
5
j=1 d j = 2(8) > 2(5− 1) is even and ∑

4
j=1 d j = 12 > 4 = dn. So, by
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Theorem 1.5, there is a connected graph G with d1,d2,d3,d4,d5 as its degree sequence.

One such graph is W1,4 (wheel graph), for which 2M2(G) = ∑d(u,v)=2 dG(u)dG(v) =

2(3×3) = 18 = k.

Hence the theorem. �

Proposition 3.3. For every perfect square k, there is a graph G with 2M2(G) = k. Moreover,

the graph G∼= K√k+2− e.

Proof. Let k = i2 for some integer i ≥ 1. Consider the sequence d1,d2, . . . ,di+2, where d1 =

d2 = i and d j = (i+ 1) for all j,3 ≤ j ≤ i+ 2. Then ∑
i+2
j=1 d j = 2i( i

2 +
3
2) > 2(i+ 2− 1) is

even and ∑
i+1
j=1 d j = i(i+2)−1 > (i+1) = dn. So, by Theorem 1.5, there is a connected graph

G with d1,d2, . . . ,di+2 as its degree sequence. But then G ∼= K√k+2− e and hence 2M2(G) =

∑d(u,v)=2 dG(u)dG(v) = 1(i× i) = i2 = k implies that G is the required graph with 2M2(G) = k

and is of order (
√

k+2). �

4. BOUNDS FOR r-REGULAR GRAPH

We begin this section with the following theorems which gives the upper bound of 2M1(G)

and 2M2(G) for any r-regular graph of G.

Theorem 4.1. For any r-regular graph G of order n≥ 5, 2M1(G)≤ nr2(r−1).

Proof. For any r-regular graph G of order n ≥ 5, for each u ∈ V (G) there are at most r(r− 1)

vertices at a distance 2.

2M1(G) = ∑
d(u,v)=2

[dG(u)+dG(v)] = ∑
d(u,v)=2

2r ≤ nr(r−1)(2r)
2

≤ nr2(r−1).

Equality holds for 2-regular graphs. �

Theorem 4.2. For any r-regular graph G of order n≥ 5, 2M2(G)≤ n
2r3(r−1).

Proof. For any r-regular graph G of order n ≥ 5, for each u ∈ V (G) there are at most r(r− 1)

vertices at a distance 2.

2M2(G) = ∑
d(u,v)=2

dG(u)dG(v) = ∑
d(u,v)=2

r2 ≤ nr(r−1)(r2)

2
≤ n

2
r3(r−1).

Equality holds for 2-regular graphs. �
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We now obtain the sharp lower and the upper bound of 2M1(G), 2M2(G), 2M1(G) and 2M2(G)

for a given r-regular graph G.

Proposition 4.3. For a r-regular graph G of order n, if S= {{u,v} | u,v∈V (G) and d(u,v)= 2}

then | S | is maximum for diam(G) = 2.

Theorem 4.4. For a given r-regular graph G of order n; 4n≤ 2M1(G)≤ nr(n−1− r). Further,

the equality holds for n = 5,r = 2.

Proof. For the lower bound: Graph G ∼= Cn is the only regular graph with the least value of

2M1(G). Therefore, 2M1(G)≥ 2M1(Cn) = 4n by Proposition 1.7.

For the upper bound: Let S = {{u,v} | u,v ∈ V (G) and d(u,v) = 2}. For regular graph G

of regularity r, 2M1(G) = 2r | S |. By Proposition 4.3, we consider regular graph of diam = 2.

Now, | S |= n(n−1)
2 − nr

2 = n
2(n−1− r). 2M1(G)≤ nr(n−1− r).

Maximality of 2M1(G) is discussed in the following cases:

(i) When n is even (n≥ 8) for r = n
2 and r = n

2 −1, 2M1(G) = n2

4 (n−2).

(ii) When n = 4k+1 (n≥ 5) for r = (n−1)
2 , 2M1(G) = n

4(n−1)2.

(iii) When n = 4k+3 (n≥ 11) for r = (n+1)
2 and r = (n+1)

2 −2, 2M1(G) = n
4(n+1)(n−3).

�

Theorem 4.5. For a given r-regular graph G of order n; 4n≤ 2M2(G)≤ nr2

2 (n−1−r). Further,

the equality holds for n = 5,r = 2.

Proof. For the lower bound: Graph G ∼= Cn is the only regular graph with the least value of

2M2(G). Therefore, 2M2(G)≥ 2M2(Cn) = 4n by Proposition 1.7.

For the upper bound: Let S = {{u,v} | u,v ∈ V (G) and d(u,v) = 2}. For regular graph G

of regularity r, 2M2(G) = r2 | S |. By Proposition 4.3, we consider regular graph of diam = 2.

Now, | S |= n(n−1)
2 − nr

2 = n
2(n−1− r). 2M2(G)≤ nr2

2 (n−1− r).

Maximality of 2M2(G) is discussed in the following cases:

(i) when n = 6k (k ≥ 1) for r = n
2 +(k−1), 2M2(G) = n

16(n−2+2k)2(n−2k).

(ii) when n = 6k+1 (k ≥ 1) for r = dne
2 +(k−1), 2M2(G) = n

16(n−1+2k)2(n−2k−1).

(iii) when n = 6k+2 (k ≥ 1) for r = n
2 + k, 2M2(G) = n

16(n+2k)2(n−2k−2).
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(iv) when n = 6k+3 (k ≥ 1) for r = dne
2 + k, 2M2(G) = n

16(n+1+2k)2(n−2k−3).

(v) when n = 6k+4 (k ≥ 1) for r = n
2 + k, 2M2(G) = n

16(n+2k)2(n−2k−2).

(vi) when n = 6k+5 (k ≥ 1) for r = bnc
2 + k, 2M2(G) = n

16(n−1+2k)2(n−2k−1).

�

Theorem 4.6. For a given r-regular graph G of order n; 4n≤ 2M1(G)≤ nr(n−1−r). Further,

the equality holds for n = 5,r = 2.

Proof. For the lower bound: 2M1(G) is minimum when G is of regularity r = n−3⇒ G is of

regularity 2. Hence, G∼=Cn. Therefore, 2M1(G)≥ 2M1(Cn) = 4n by Proposition 1.7.

For the Upper bound: Let S = {{u,v} | u,v ∈ V (G) and d(u,v) = 2}. For regular graph G

of regularity r, 2M1(G) = 2(n− 1− r) | S |. By Proposition 4.3, we consider regular graph of

diam = 2. Now, | S |= n(n−1)
2 − n(n−1−r)

2 = nr
2 . 2M1(G)≤ nr(n−1− r).

Maximality of 2M1(G) is discussed in the following cases:

(i) When n is even (n≥ 8) for r = n
2 and r = n

2 −1, 2M1(G) = n2

4 (n−2).

(ii) When n = 4k+1 (n≥ 5) for r = (n−1)
2 , 2M1(G) = n

4(n−1)2.

(iii) When n = 4k+3 (n≥ 11) for r = (n+1)
2 and r = (n+1)

2 −2, 2M1(G) = n
4(n+1)(n−3).

�

Theorem 4.7. For a given r-regular graph G of order n; 4n≤ 2M2(G)≤ nr
2 (n−1−r)2. Further,

the equality holds for n = 5,r = 2.

Proof. For the lower bound: 2M2(G) is minimum when G is of regularity r = n−3⇒ G is of

regularity 2. Hence, G∼=Cn. Therefore, 2M2(G)≥ 2M2(Cn) = 4n by Proposition 1.7.

For the upper bound: Let S = {{u,v} | u,v ∈ V (G) and d(u,v) = 2}. For regular graph G

of regularity r, 2M2(G) = (n− 1− r)2 | S |. By Proposition 4.3, we consider regular graph of

diam = 2. Now, | S |= n(n−1)
2 − n(n−1−r)

2 = nr
2 . 2M2(G)≤ nr

2 (n−1− r)2.

Maximality of 2M2(G) for regular graph G of regularity r, is discussed in the following cases:

(i) when n = 6k (k ≥ 1) for r = n
2 +(k−1), 2M2(G) = n

16(n−2+2k)2(n−2k).

(ii) when n = 6k+1 (k ≥ 1) for r = dne
2 +(k−1), 2M2(G) = n

16(n−1+2k)2(n−2k−1).

(iii) when n = 6k+2 (k ≥ 1) for r = n
2 + k, 2M2(G) = n

16(n+2k)2(n−2k−2).
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(iv) when n = 6k+3 (k ≥ 1) for r = dne
2 + k, 2M2(G) = n

16(n+1+2k)2(n−2k−3).

(v) when n = 6k+4 (k ≥ 1) for r = n
2 + k, 2M2(G) = n

16(n+2k)2(n−2k−2).

(vi) when n = 6k+5 (k ≥ 1) for r = bnc
2 + k, 2M2(G) = n

16(n−1+2k)2(n−2k−1).

�

5. 2M1(G) AND 2M2(G) OF CYCLOALKENES

In this section, we consider cycloalkene C2n−2
n having n carbon atoms and (2n−2) hydrogen

atoms and alkyl Rr,r ∈ Z+ attached instead of hydrogen atom in cycloalkenes which is denoted

as CRr
n [4]. We obtain 2M1(G) and 2M2(G) for these cycloalkenes.

FIGURE 1. Cycloalkene and its graph model C2n−2
n .

Theorem 5.1. Let n≥ 5 be a positive integer. Then for a graph C2n−2
n ,

2M1(C2n−2
n ) = 2(15n−17) and 2M2(C2n−2

n ) = 33n−40.

Proof. Let G = C2n−2
n and S = {{u,v} | u,v ∈ V (G) and d(u,v) = 2}. | V (G) |= 3n− 2 and

| S |= 6n−6. In G, there are two vertices of degree 3, (n−2) vertices of degree 4 and (2n−2)

vertices of degree 1. Then,

2M1(C2n−2
n ) = ∑

d(u,v)=2
[dG(u)+dG(v)]

= 4(4+3)+(n−4)(4+4)+6(1+3)+(4n−10)(1+4)+(n−2)(1+1)

= 2(15n−17)
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and

2M2(C2n−2
n ) = ∑

d(u,v)=2
dG(u)dG(v)

= 4(4×3)+(n−4)(4×4)+6(1×3)+(4n−10)(1×4)+(n−2)(1×1)

= 33n−40

Hence the theorem. �

FIGURE 2. Structure of CRr
n

FIGURE 3. Graph model of CRr
n

Theorem 5.2. Let n and r be the positive integers with n≥ 5 and r ≥ 2. Then for a graph CRr
n ,

2M1(CRr
n ) = 60r(n−1)+30n−46 and 2M2(CRr

n ) = 66r(n−1)+60n−112.

Proof. Let G =CRr
n and S = {{u,v} | u,v ∈V (G) and d(u,v) = 2}. |V (G) |= 6nr+3n−6r−2

and | S |= (2n−2)(6r+3). In G, there are two vertices of degree 3, [(n−2)+2r(n−1)] vertices

of degree 4 and (4nr−4r+2n−2) vertices of degree 1. Then,

2M1(CRr
n ) = ∑

d(u,v)=2
[dG(u)+dG(v)]

= 12(4+3)+(2nr−2r+4n−16)(4+4)+4(1+3)+(8nr−8r−2n−2)(1+4)

+(2nr−2r+4n−4)(1+1)

= 60r(n−1)+30n−46
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and

2M2(CRr
n ) = ∑

d(u,v)=2
dG(u)dG(v)

= 12(4×3)+(2nr−2r+4n−16)(4×4)+4(1×3)+(8nr−8r−2n−2)(1×4)

+(2nr−2r+4n−4)(1×1)

= 66r(n−1)+60n−112

Hence the theorem. �

6. ON THE CHEMICAL APPLICABILITY OF THE ZAGREB INDICES FOR l = 2

In this section, we will discuss the regression analysis of boiling point (b.p), melting point

(m.p), Molar Mass (MM) and density (D) of alkanes on the 2M1(G) and 2M2(G) of the corre-

sponding molecular graph. It is shown that the 2M1(G) and 2M2(G) has a good correlation with

boiling point (b.p), melting point (m.p) and Molar Mass (MM) of alkanes.

We have tested the following linear regression model Y = A + BX where Y = dependent

physical property, X = topological index .

Using the values presented in Table1, we obtain the following different linear models for each

degree based topological index, which are listed below.

1: Boiling point (b.p):

bp = 97.67706+2.87081[2M1(G)]

bp = 103.41869+2.87081[2M2(G)]

2: Molar Mass (MM):

MM = 37.08732+3.50664[2M1(G)]

MM = 44.10061+3.50664[2M2(G)]

3: Melting point (m.p):

m.p =−65.78570+1.13488[2M1(G)]

m.p =−63.51593+1.13488[2M2(G)]

4: Density (D):

D = 0.69998+0.00090[2M1(G)]

D = 0.70179+0.00090[2M2(G)]
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Alkanes CnH2n+2 m.p (◦C) b.p (◦C) MM (g.mol−1) D (gmL−1) 2M1(G) 2M2(G)
Pentane C5H12 -129.8 36.1 72.15 0.626 10 8
Hexane C6H14 -95 68.8 86.18 0.660 14 12
Heptane C7H16 -90.5 98.38 100.20 0.679 18 16
Octane C8H18 -56.9 125.6 114.23 0.703 22 20
Nonane C9H20 -53.5 150.8 128.26 0.718 26 24
Decane C10H22 -29.7 174.1 142.29 0.730 30 28
Undecane C11H24 -25.6 195.9 156.31 0.740 34 32
Dodecane C12H26 -9.6 216.3 170.34 0.749 38 36
Tridecane C13H28 -5.4 235.4 184.37 0.756 42 40
Tetradecane C14H30 5.9 253.5 198.39 0.763 46 44
Pentadecane C15H32 9.9 270.6 212.42 0.768 50 48
Hexadecane C16H34 18.2 286.8 226.45 0.773 54 52
Heptadecane C17H36 21 302 240.47 0.777 58 56
Octadecane C18H38 29 317 254.50 0.777 62 60
Nonadecane C19H40 33 330 268.53 0.786 66 64
Icosane C20H42 36.7 342.7 282.55 0.789 70 68
Heneicosane C21H44 40.5 356.50 296.58 0.792 74 72
Docosane C22H46 42 224 310.61 0.778 78 76
Tricosane C23H48 49 380 324.63 0.797 82 80
Tetracosane C24H50 52 391.3 338.66 0.797 86 84
Pentacosane C25H52 54 401 352.69 0.801 90 88
Hexacosane C26H54 56.4 412.2 366.71 0.778 94 92
Heptacosane C27H56 59.5 422 380.74 0.780 98 96
Octacosane C28H58 64.5 431.6 394.77 0.807 102 100
Nonacosane C29H60 63.7 440.8 408.80 0.808 106 104
Triacontane C30H62 65.8 449.7 422.82 0.810 110 108
Hentriacontane C31H64 67.9 458 436.85 0.781 114 112
Dotriacontane C32H66 69 467 450.88 0.812 118 116
Tritriacontane C33H68 71 474 464.90 0.811 122 120
Tetratriacontane C34H70 72.6 285.4 478.93 0.812 126 124
Pentatriacontane C35H72 75 490 492.96 0.813 130 128
Hexatriacontane C36H74 75 265 506.98 0.814 134 132
Heptatriacontane C37H76 77 504.14 520.99 0.815 138 136
Octatriacontane C38H78 79 510.93 535.03 0.816 142 140
Nonatriacontane C39H80 78 517.51 549.05 0.817 146 144
Tetracontane C40H82 84 523.88 563.08 0.817 150 148
Hentetracontane C41H84 83 530.75 577.11 0.818 154 152
Dotetracontane C42H86 86 536.07 591.13 0.819 158 156

TABLE 1. The values of boiling point (b.p), melting point (m.p), Molar Mass

(MM), density (D), 2M1(G) and 2M2(G) of alkanes

Parameter
Topological
Index

r

Boiling
point

2M1(G) 0.90395

2M2(G) 0.90395
Molar
Mass

2M1(G) 1

2M2(G) 1
Melting
point

2M1(G) 0.90867

2M2(G) 0.90867

Density 2M1(G) 0.86054

2M2(G) 0.86054

TABLE 2. The Coefficient Correlation r between topological indices 2M1(G),

2M2(G) and physical properties of alkanes

7. CONCLUSION

The first and the second Zagreb index at a distance l which are denoted respectively as lM1(G)

and lM2(G) are introduced and studied the special case when l = 2 in this paper. The lower
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and the upper bound of 2M1(G), 2M2(G), 2M1(G) and 2M2(G) are obtained for any r-regular

graph G. The consistency and the existence of the inverse problem of finding a graph G with

prescribed 2M1(G) and 2M2(G) are studied. Finally, the chemical applicability are discussed

where a good correlation between boiling point (b.p), melting point (m.p), Molar Mass (MM)

with 2M1(G) and 2M2(G) of alkanes are observed.
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