

Available online at http://scik.org
J. Math. Comput. Sci. 2 (2012), No. 6, 1766-1784

ISSN: 1927-5307

COSET CAYLEY DIGRAPH STRUCTURES

ANIL KUMAR V^{1}, PARAMESWARAN ASHOK NAIR ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, University of Calicut, Malappuram, Kerala, India 673635
${ }^{2}$ Mannaniya College of Arts \& Science, Pangode, Trivandrum, Kerala, India 695609

Abstract

In this paper, we generalize the results in [9] to produce a new classes of Cayley digraph structures induced by groups.

Keywords: Cayley digraph, Digraph structure, Cayley digraph structure.
2000 AMS Subject Classification: 05C25

1. Introduction

A binary relation on a set V is a subset E of $V \times V$. A digraph is a pair (V, E) where V is a non empty set (called vertex set) and E is a binary relation on V. The elements of E are called edges. Let V be a non empty set and let $E_{1}, E_{2}, \ldots, E_{n}$ be mutually disjoint binary relations on V. Then the $(n+1)$-tuple $G=\left(V ; E_{1}, E_{2}, \ldots, E_{n}\right)$ is called a digraph structure[9]. The elements of V are called vertices and the elements of E_{i} are called E_{i}-edges. The following definition were introduced in [9].

A digraph structure $\left(V ; E_{1}, E_{2}, \ldots, E_{n}\right)$ is called (i) $E_{1} E_{2} \cdots E_{n}$-trivial if $E_{i}=\emptyset$ for all i, and $E_{i^{-}}$trivial if $E_{i}=\emptyset$ (ii) $E_{1} E_{2} \cdots E_{n^{-}}$reflexive if for all $x \in G,(x, x) \in E_{i}$ for some i, and $E_{i^{-}}$reflexive if for all $x \in V,(x, x) \in E_{i}($ iii $) E_{1} E_{2} \cdots E_{n^{-}}$symmetric if $E_{i}=E_{i}^{-1}$ for all i, and $E_{i^{-}}$symmetric if $E_{i}=E_{i}^{-1}$ (iv) $E_{1} E_{2} \cdots E_{n^{-}}$anti symmetric, if $(x, y) \in E_{i}$ and

[^0]Received July 13, 2012
$(y, x) \in E_{i}$ implies $x=y$ for all i, and $E_{i^{-}}$anti symmetric if $(x, y) \in E_{i}$ and $(y, x) \in E_{i}$ implies $x=y(\mathrm{v}) E_{1} E_{2} \cdots E_{n^{-}}$transitive if for every i and $j, E_{i} \circ E_{j} \subseteq E_{k}$ for some k, and E_{i} transitive if $E_{i} \circ E_{i} \subseteq E_{i}(\mathrm{vi})$ an $E_{1} E_{2} \cdots E_{n^{-}}$hasse diagram if for every positive integer $n \geq 2$ and every $v_{0}, v_{1}, \ldots, v_{n}$ of $V,\left(v_{i}, v_{i+1}\right) \in \cup E_{i}$ for all $i=0,1,2, \ldots, n-1$, implies $\left(v_{0}, v_{n}\right) \notin E_{i}$ for all i, and E_{i} - hasse diagram if for every positive integer $n \geq 2$ and every $v_{0}, v_{1}, \ldots, v_{n}$ of $V,\left(v_{i}, v_{i+1}\right) \in E_{i}$ for all $i=0,1,2, \ldots, n-1$, implies $\left(v_{0}, v_{n}\right) \notin E_{i}$, (viii) $E_{1} E_{2} \cdots E_{n^{-}}$complete if $\cup E_{i}=V \times V$, and E_{i} complete if $E_{i}=V \times V$.

A digraph structure $\left(V ; E_{1}, E_{2}, \ldots, E_{n}\right)$ is called (i) an $E_{1} E_{2} \cdots E_{n}$ - quasi ordered set if it is both $E_{1} E_{2} \cdots E_{n^{-}}$reflexive and $E_{1} E_{2} \cdots E_{n}$-transitive (ii)an $E_{1} E_{2} \cdots E_{n}$ - partially ordered set if it is $E_{1} E_{2} \cdots E_{n^{-}}$anti symmetric and $E_{1} E_{2} \cdots E_{n^{-}}$quasi ordered set. Similarly, we can define E_{i} quasi ordered set and E_{i} partially ordered set as in the case of ordinary relations.

An $E_{1} E_{2} \cdots E_{n^{-}}$walk of length k in a digraph structure is an alternating sequence $W=v_{0}, e_{0}, v_{1}, \ldots, e_{k-1}, v_{k}$, where $e_{i}=\left(v_{i}, v_{i+1}\right) \in \cup E_{i}$. An $E_{1} E_{2} \cdots E_{n}$-walk W is called a $E_{1} E_{2} \cdots E_{n}$ - path if all the internal vertices are distinct. We use notation $\left(v_{0}, v_{1}, v_{2}, \ldots, v_{n}\right)$ for the $E_{1} E_{2} \cdots E_{n}$ - path W. As in digraphs, we define $E_{i}-$ walk and $E_{i^{-}}$path. For example, an $E_{i^{-}}$path between two vertices u and v consists of only $E_{i^{-}}$edges.

A digraph structure $\left(V ; E_{1}, E_{2}, \ldots, E_{n}\right)$ is called (i) $E_{1} E_{2} \cdots E_{n}$ - connected if there exits at least one $E_{1} E_{2} \cdots E_{n}$ - path from v to u for all $u, v \in V$, (ii) $E_{1} E_{2} \cdots E_{n}$ - quasi connected if for every pair of vertices x, y there is a vertex z such that there is an $E_{1} E_{2} \cdots E_{n}$-path from z to x and an $E_{1} E_{2} \cdots E_{n}$-path from z to y, (iii) $E_{1} E_{2} \cdots E_{n}$ - locally connected iff for every pair of vertices $u, v \in V$ there is an $E_{1} E_{2} \cdots E_{n}$ - path from v to u whenever there is an $E_{1} E_{2} \cdots E_{n}$ - path from u to v and (iv) $E_{1} E_{2} \cdots E_{n^{-}}$semi connected for every pair of vertices u, v, there is an $E_{1} E_{2} \cdots E_{n^{-}}$path from u to v or an $E_{1} E_{2} \cdots E_{n^{-}}$path from v to u.

A digraph structure $\left(V ; E_{1}, E_{2}, \ldots, E_{n}\right)$ is called E_{i}-connected if there exits at least one E_{i} path from v to u for all $u, v \in V$. Similarly we can define E_{i} quasi connected, E_{i} -locally connected and E_{i} - semi connected digraph structures.

The $E_{1} E_{2} \cdots E_{n}$ - distance between two vertices x and y in a digraph structure G is the length of the shortest $E_{1} E_{2} \cdots E_{n^{-}}$path between x and y, denoted by $d_{1,2,3, \ldots, n}(x, y)$. Let $G=\left(V ; E_{1}, E_{2}, \ldots, E_{n}\right)$ be a finite $E_{1} E_{2} \cdots E_{n^{-}}$connected digraph structure. Then the $E_{1} E_{2} \cdots E_{n}$ diameter of G is defined as $d(G)=\max _{x, y \in G}\left\{d_{1,2,3, \ldots, n}(x, y)\right\}$. Similarly we can define E_{i} distance and E_{i} diameter as in digraphs.

Two digraph structures $\left(V_{1} ; E_{1}, E_{2}, \ldots, E_{n}\right)$ and $\left(V_{2} ; R_{1}, R_{2}, \ldots, R_{m}\right)$ are said to be isomorphic if (i) $m=n$ and (ii) there exits a bijective function $f: V_{1} \longmapsto V_{2}$ such that $(x, y) \in E_{i} \Leftrightarrow(f(x), f(y)) \in R_{i}$. This concept of isomorphism is a generalization of isomorphism between two digraphs. An isomorphism of a digraph structure onto itself is called an automorphism. A digraph structure $\left(V ; E_{1}, E_{2}, \ldots, E_{n}\right)$ is said to be vertextransitive if, given any two vertices a and b of V, there is some digraph automorphism $f: V \rightarrow V$ such that $f(a)=b$. Let $\left(V ; E_{1}, E_{2}, \ldots, E_{n}\right)$ be a digraph structure and let $v \in V$. Then the $E_{1} E_{2} \cdots E_{n}$ out-degree of u is $\left|\left\{v \in V:(u, v) \in \cup E_{i}\right\}\right|$ and $E_{1} E_{2} \cdots E_{n}$ in-degree of u is $\left|\left\{v \in V:(v, u) \in \cup E_{i}\right\}\right|$. Similarly we can define the E_{i} out- degree and E_{i} in- degree as in the case of digraphs.

Let $\left(V_{1} ; E_{1}, E_{2}, \ldots, E_{n}\right)$ be a digraph structure. A vertex $v \in G$ is called an $E_{1} E_{2} \cdots E_{n}$ -source if for every vertex $x \in G$, there is an $E_{1} E_{2} \cdots E_{n}$ - path from v to x. Similarly a vertex $u \in G$ is called an $E_{1} E_{2} \cdots E_{n^{-}} \operatorname{sink}$ if for very vertex $y \in G$ there is an $E_{1} E_{2} \cdots E_{n^{-}}$path from y to u. As in digraphs, we define E_{i} - source and E_{i} - sink. Let $\left(V_{1} ; E_{1}, E_{2}, \ldots, E_{n}\right)$ be a digraph structure and let $v \in G$. Then the $E_{1} E_{2} \cdots E_{n}$ reachable set $R_{1,2,3, \cdots, n}(u)$ is $\left\{x \in G\right.$: there is an $E_{1} E_{2} \cdots E_{n^{-}}$path from u to $\left.x\right\}$. Similarly, the $E_{1} E_{2} \cdots E_{n^{-}}$antecedent set $Q_{1,2, \ldots, n}(u)$ is defined as

$$
Q_{1,2, \ldots, n}(u)=\left\{x \in G: \text { there is an } E_{1} E_{2} \cdots E_{n^{-}} \text {path from } x \text { to } u\right\}
$$

As in the case of digraphs, we can define the $E_{i^{-}}$reachable set and E_{i}-antecedent set of a vertex.

2. Coset Cayley Digraph Structures

In [9] the authors introduced a class of Cayley digraph structures induced by groups. In this paper, we introduce a class of coset Cayley digraph structures induced by groups
and prove that every vertex transitive digraph structure is isomorphic to the coset Cayley digraph structure. These class of Cayley digraphs structures can be viewed as a generalization of those obtained in [9].

We start with the following definition:
Definition 2.1. Let G be a group and $S_{1}, S_{2}, \ldots, S_{n}$ be mutually disjoint subsets of G and H be a subgroup of G. Then coset Cayley digraph structure of G with respect to $S_{1}, S_{2}, \ldots, S_{n}$ is defined as the digraph structure $\left(G / H ; E_{1}, E_{2}, \ldots, E_{n}\right)$, where

$$
E_{i}=\left\{(x H, y H): x^{-1} y \in H S_{i} H\right\} .
$$

The sets $S_{1}, S_{2}, \ldots, S_{n}$ are called connection sets of $\left(G / H ; E_{1}, E_{2}, \ldots, E_{n}\right)$. We denote the coset Cayley digraph structure of G with respect to $S_{1}, S_{2}, \ldots, S_{n}$ by

$$
\mathscr{C}=\operatorname{Cay}\left(G / H ; H S_{1} H, H S_{2} H, \ldots, H S_{n} H\right) .
$$

In this paper, we may use the following notations: Let \mathscr{C} be a coset Cayley digraph structure induced by the group G with respect to the connection sets $S_{1}, S_{2}, \ldots, S_{n}$.
(1) Let A_{k} be the union of set of all k products of the form $\left(H S_{i 1} H\right)\left(H S_{i 2} H\right) \cdots\left(H S_{i k} H\right)$ from the set $\left\{H S_{1} H, H S_{2} H, \ldots, H S_{n} H\right\}$. Then $\bigcup_{k} A_{k}$. is denoted by $[H S H]$.
(2) Let A_{k}^{-1} be the union of set of all k products of the form:

$$
\left(H S_{i_{1}}^{-1} H\right)\left(H S_{i 2}^{-1} H\right) \cdots\left(H S_{i k}^{-1} H\right) .
$$

Then $\bigcup_{k} A_{k}^{-1}$ is denoted by $\left[H S^{-1} H\right]$.
(3) Let A be a subset of a group G, then the semigroup generated by A is denoted by $<A>$.

2.1 Main Theorems

Theorem 2.1.1 If G is a group and let $S_{1}, S_{2}, \ldots, S_{n}$ are mutually disjoint subsets of G and H is a subgroup of G, then the coset Cayley digraph structure \mathscr{C} is vertex transitive.

Proof. To see that $\operatorname{Cay}\left(G / H ; H S_{1} H, H S_{2} H, \ldots, H S_{n} H\right)$ is a vertex transitive digraph structure, we first need only show that E_{i} 's are well defined. Let $x, y, x^{\prime}, y^{\prime}$ be any four elements of G with $x H=x^{\prime} H$ and $y H=y^{\prime} H$. Then $x=x^{\prime} h_{1}$ and $y=y^{\prime} h_{2}$ for some
$h_{1}, h_{2} \in H$. Observe that

$$
\begin{aligned}
(x H, y H) \in E_{i} & \Leftrightarrow x^{-1} y \in H S_{i} H \\
& \Leftrightarrow\left(x^{\prime} h_{1}\right)^{-1}\left(y^{\prime} h_{2}\right) \in H S_{i} H \\
& \Leftrightarrow h_{1}^{-1}\left(x^{\prime}\right)^{-1} y^{\prime} h_{2} \in H S_{i} H \\
& \Leftrightarrow\left(x^{\prime}\right)^{-1} y^{\prime} \in H S_{i} H \\
& \Leftrightarrow\left(x^{\prime} H, y^{\prime} H\right) \in H S_{i} H .
\end{aligned}
$$

Hence each E_{i} 's are well defined and hence $\operatorname{Cay}\left(G / H ; H S_{1} H, H S_{2} H, \ldots, H S_{n} H\right)$ is a digraph structure. Let $a H$ and $b H$ be any two arbitrary elements in G / H. Define a mapping $\varphi: G \longmapsto G$ by

$$
\varphi(x H)=b a^{-1} x H \text { for all } x H \in G / H
$$

This mapping defines a permutation of the vertices of $\operatorname{Cay}\left(G / H ; H S_{1} H, H S_{2} H, \ldots, H S_{n} H\right)$. It is also an automorphism. Note that

$$
\begin{aligned}
(x H, y H) \in E_{i} & \Leftrightarrow x^{-1} y \in H S_{i} H \\
& \Leftrightarrow\left(b a^{-1} x\right)^{-1}\left(b a^{-1} y\right) \in H S_{i} H \\
& \Leftrightarrow\left(b a^{-1} x H, b a^{-1} y H\right) \in E_{i} \\
& \Leftrightarrow(\varphi(x H), \varphi(y H)) \in E_{i} .
\end{aligned}
$$

Also we note that

$$
\varphi(a H)=b a^{-1} a H=b H
$$

Hence $\operatorname{Cay}\left(G / H ; H S_{1} H, H S_{2} H, \ldots, H S_{n} H\right)$ is vertex transitive digraph structure.

Theorem 2.1.2

Let $\left(V ; W_{1}, W_{2}, \cdots, W_{n}\right)$ be any vertex transitive digraph structure such that $|V| \geq n$.
Then $\left(V ; W_{1}, W_{2}, \cdots, W_{n}\right)$ is isomorphic to $\operatorname{Cay}\left(G / H ; H S_{1} H, H S_{2} H, \ldots, H S_{n} H\right)$.

Proof. Let G be the automorphism group of the digraph structure ($V ; W_{1}, W_{2}, \cdots, W_{n}$). Let $q_{1}, q_{2}, \cdots, q_{n}$ be fixed elements in V. For $i=1,2, \ldots, n$, define the following:

$$
\begin{aligned}
H_{i} & :=\left\{\theta \in G: \theta\left(q_{i}\right)=q_{i}\right\}, \\
S_{i} & :=\left\{\theta \in G:\left(q_{i}, \theta\left(q_{i}\right)\right) \in W_{i}\right\} .
\end{aligned}
$$

Note that $H=\cap_{i=1}^{n} H_{i}$ is a subgroup of G. Construct the Cayley digraph structure $\operatorname{Cay}\left(G / H ; H S_{1} H, H S_{2} H, \ldots, H S_{n} H\right)$ as in theorem 2.2.1.
Define a $\operatorname{map} \varphi: G / H \longmapsto V$ by

$$
(x H) \varphi=x\left(q_{i}\right) \text { for all } x H \in G / H
$$

where q_{i} is a fixed element in the set $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$.
(i) φ is well defined:

Let $x H=y H$. Then $y=x h_{1}$, for some $\quad h_{1} \in H$. Observe that

$$
\begin{aligned}
\varphi(y H) & =y\left(q_{i}\right) \\
& =\left(x h_{1}\right)\left(q_{i}\right) \\
& =x\left[h_{1}\left(q_{i}\right)\right] \\
& =x\left(q_{i}\right) \\
& =\varphi(x H)
\end{aligned}
$$

(ii) φ is one to one:

$$
\begin{aligned}
\varphi(x H)=\varphi(y H) & \Leftrightarrow x\left(q_{i}\right)=y\left(q_{i}\right) \\
& \Leftrightarrow y^{-1} x\left(q_{i}\right)=q_{i} \\
& \Leftrightarrow y^{-1} x \in H \\
& \Leftrightarrow x H=y H .
\end{aligned}
$$

(iii) φ is onto:

Let v be any element in V. Since $\left(V ; W_{1}, W_{2}, \cdots, W_{n}\right)$ is vertex transitive, there exists an
automorphism θ such that $\theta(v)=q_{i}$. This implies that $v=\theta^{-1}\left(q_{i}\right)$. That is, $v=\varphi\left(\theta^{-1} H\right)$. (iv) φ preserves adjacency relation :

Observe that

$$
\begin{aligned}
(x H, y H) \in E_{i} & \Leftrightarrow x^{-1} y \in H S_{i} H \\
& \Leftrightarrow x^{-1} y=h_{1} s_{i} h_{2} \\
& \Leftrightarrow h_{1}^{-1} x^{-1} y h_{2}^{-1}=s_{i} \in S_{i} \\
& \Leftrightarrow\left(q_{i},\left(h_{1}^{-1} x^{-1} y h_{2}^{-1}\right)\left(q_{i}\right)\right) \in W_{i} \\
& \Leftrightarrow\left(h_{1}\left(q_{i}\right), x^{-1} y\left(q_{i}\right)\right) \in W_{i} \\
& \Leftrightarrow\left(x\left(q_{i}\right), y\left(q_{i}\right)\right) \in W_{i} \\
& \Leftrightarrow(\varphi(x H), \varphi(y H)) \in W_{i} .
\end{aligned}
$$

2.2 Corollaries

In this section we can prove many graph theoretic properties in terms of algebraic properties. Moreover, these results can be considered as the generalization of those obtained in [9].

Proposition 2.3 The coset Cayley graph structure \mathscr{C} is an $E_{1} E_{2} \cdots E_{n}$-trivial digraph structure $\Leftrightarrow S_{i}=\emptyset$ for all i.

Proof. By definition, \mathscr{C} is $E_{1} E_{2} \cdots E_{n}$ - trivial $\Leftrightarrow E_{i}=\emptyset$ for all i. This implies that $S_{i}=\emptyset$ for all i.

Proposition 2.4 The coset Cayley graph structure \mathscr{C} is an E_{i}-trivial digraph structure $\Leftrightarrow S_{i}=\emptyset$.

Proposition 2.5 The coset Cayley graph structure \mathscr{C} is $E_{1} E_{2} \cdots E_{n}$ - reflexive $\Leftrightarrow 1 \in S_{i}$ for some i.

Proof. Assume that \mathscr{C} is an $E_{1} E_{2} \cdots E_{n}$-reflexive digraph structure. Then for every $x H \in G / H,(x H, x H) \in E_{i}$ for some i. This implies that $1 \in H S_{i} H$ for some i. Conversely, assume that $1 \in S_{i}$ for some i. This implies for each $x H \in G / H,(x H, x H) \in E_{i}$ for some i. That is, $(x H, x H) \in \cup E_{i}$ for all $x \in G$.

Proposition 2.6 The coset Cayley graph structure \mathscr{C} is E_{i} - reflexive $\Leftrightarrow 1 \in H S_{i} H$.
Proposition 2.7 The coset cayley graph structure \mathscr{C} is $E_{1} E_{2} \cdots E_{n}$ - symmetric if and only if $H S_{i} H=H S_{i}^{-1} H$ for all i.

Proof. First, assume that \mathscr{C} is an $E_{1} E_{2} \cdots E_{n}$-symmetric digraph structure. Let $a \in$ $H S_{i} H$. Then $(H, a H) \in E_{i}$. Since \mathscr{C} is symmetric $(a, 1) \in E_{i}$. This implies that $a^{-1} \in H S_{i} H$. That is $a \in H S_{i}^{-1} H$. Hence $H S_{i} H \subseteq H S_{i}^{-1} H$. Similarly, we can prove that $H S_{i}^{-1} H \subseteq H S_{i} H$.

Conversely, if $H S_{i} H=H S_{i}^{-1} H$, we can prove that \mathscr{C} is an $E_{1} E_{2} \cdots E_{n}$-symmetric digraph structure.

Proposition $2.8 \mathscr{C}$ is E_{i} symmetric if and only if $H S_{i} H=H S_{i}^{-1} H$.
Proposition $2.9 \mathscr{C}$ is an $E_{1} E_{2} \cdots E_{n}$ - transitive if and only if for every $i, j, H S_{i} H S_{j} H \subseteq$ $H S_{k} H$ for some k.

Proof. First, assume that \mathscr{C} is $E_{1} E_{2} \cdots E_{n}$ - transitive. We will show that for all (i, j), $H S_{i} H S_{j} H \subseteq H S_{k} H$ for some k. Let $x \in H S_{i} H S_{j} H=H S_{i} H H S_{j} H$. Then

$$
x=z_{1} z_{2} \text { for some } \quad z_{1} \in H S_{i} H, z_{2} \in H S_{j} H
$$

This implies that $\left(H, z_{1} H\right) \in E_{i}$ and $\left(z_{1} H, z_{1} z_{2} H\right) \in E_{j}$. Since \mathscr{C} is $E_{1} E_{2} \cdots E_{n}$ - transitive, $\left(H, z_{1} z_{2} H\right) \in H S_{k} H$ for some k. That is $z_{1} z_{2} \in H S_{k} H$. Hence $H S_{i} H S_{j} H \subseteq H S_{k} H$.

Conversely, assume that all $(i, j), H S_{i} H S_{j} H \subseteq H S_{k} H$ for some k. We will show that \mathscr{C} is $E_{1} E_{2} \cdots E_{n}$ - transitive. Let $(H, x H) \in E_{i},(x H, y H) \in E_{j}$. Then $x \in H S_{i} H$ and $x^{-1} y \in H S_{j} H$. This implies that $y=x x^{-1} y \in H S_{i} H S_{j} H$. Since $H S_{i} H S_{j} H \subseteq H S_{k} H$, we have $y \in H S_{k} H$. It follows that $(H, y H) \in E_{k}$.

Proposition $2.10 \mathscr{C}$ is an $E_{1} E_{2} \cdots E_{n}$ - k - transitive if and only if for every $i_{1}, i_{2}, \ldots, i_{k} \in$ $\{1,2, \ldots, k\}$, we have

$$
\begin{gathered}
\left(H S_{i_{1}} H\right)\left(H S_{i_{2}} H\right) \cdots\left(H S_{i_{k}} H\right) \subseteq\left(H S_{j_{1}} H\right) \text { for some } j_{1} ; \\
\left(H S_{i_{1}} H\right)\left(H S_{i_{2}} H\right) \cdots\left(H S_{i_{k-1}} H\right) \subseteq\left(H S_{j_{2}} H\right) \text { for some } j_{2} ; \\
\vdots \\
\left(H S_{i_{1}} H\right)\left(H S_{i_{2}} H\right) \subseteq\left(H S_{j_{k-1}} H\right) \text { for some } j_{1} .
\end{gathered}
$$

Proof. First, assume that \mathscr{C} is an $E_{1} E_{2} \cdots E_{n}-k$ - transitive. Let $x \in\left(H S_{i_{1}} H\right)\left(H S_{i_{2}} H\right) \cdots\left(H S_{i_{k}} H\right)$. Then there exits $z_{j} \in\left(H S_{i_{j}} H\right), j=1,2, \ldots, k$ such that $x=z_{1} z_{2} \cdots z_{k}$. This implies that

$$
\left(H, z_{1} H, z_{1} z_{2} H, z_{1} z_{2} z_{3} H, \ldots, z_{1} z_{2} z_{3} \ldots z_{k} H\right)
$$

is a path from 1 to x. Since \mathscr{C} is an $E_{1} E_{2} \cdots E_{n}-k$ - transitive, we have

$$
\begin{aligned}
&\left(H, z_{1} z_{2} z_{3} \ldots z_{k} H\right) \in E_{j_{1}} \text { for some } j_{1}, \\
&\left(H, z_{1} z_{2} z_{3} \ldots z_{k-1} H\right) \in E_{j_{1}} \text { for some } j_{2}, \\
& \vdots \\
&\left(H, z_{1} z_{2} H\right) \in E_{j_{k-1}} \text { for some } j_{k-1} .
\end{aligned}
$$

The above statements tells us that

$$
\begin{aligned}
&\left(H S_{i_{1}} H\right)\left(H S_{i_{2}} H\right) \cdots\left(H S_{i_{k}} H\right) \subseteq\left(H S_{j_{1}} H\right) \text { for some } j_{1} ; \\
&\left(H S_{i_{1}} H\right)\left(H S_{i_{2}} H\right) \cdots\left(H S_{i_{k-1}} H\right) \subseteq\left(H S_{j_{2}} H\right) \text { for some } j_{2} ; \\
& \vdots \\
&\left(H S_{i_{1}} H\right)\left(H S_{i_{2}} H\right) \subseteq\left(H S_{j_{k-1}} H\right) \text { for some } j_{k-1} .
\end{aligned}
$$

Conversely, assume that the above conditions holds. Let $x_{1} H, x_{2} H, \ldots, x_{n} H \in G / H$ such that $\left(x_{1} H, x_{2} H\right) \in E_{i_{1}},\left(x_{2} H, x_{3} H\right) \in E_{i_{2}}, \ldots,\left(x_{k-1} H, x_{n} H\right) \in E_{i_{k}}$. Then

$$
x_{2}=x_{1} t_{1}, x_{3}=x_{2} t_{2}, \ldots, x_{k}=x_{k-1} t_{k-1}
$$

for some $t_{i} \in H S_{i_{1}} H$.
The above equations can be written as:

$$
\begin{gathered}
x_{3}=x_{1}\left(t_{1} t_{2}\right) \\
x_{4}=x_{1}\left(t_{1} t_{2} t_{3}\right) \\
\vdots \\
x_{k-1}=x_{1}\left(t_{1} t_{2} \cdots t_{n}\right)
\end{gathered}
$$

The above equations tells as that $\left(x_{1} H, x_{3} H\right) \in E_{i_{1}},\left(x_{1} H, x_{4} H\right) \in E_{i_{2}}, \ldots,\left(x_{1} H, x_{k-1} H\right) \in$ $E_{i_{k-1}}$. This completes the proof.

Proposition $2.11 \mathscr{C}$ is an E_{i} - k - transitive if and only if $\left(H S_{i} H\right)^{n} \subseteq\left(H S_{i} H\right)$ for $n=$ $2,3, \ldots, k$.

Proposition $2.12 \mathscr{C}$ is $E_{1} E_{2} \cdots E_{n}$-complete if and only if $G=\cup H S_{i} H$.
Proof. Suppose \mathscr{C} is $E_{1} E_{2} \cdots E_{n}$ complete. Then for every $x H \in G / H$, we have $(H, x H) \in \cup E_{i}$. This implies that $x \in H S_{i} H$ for some i. This implies that $G=\cup H S_{i} H$. Conversely, assume that $G=\cup H S_{i} H$. Let $x H$ and $y H$ be two arbitrary elements in G / H such that $y=x z$. Then $z \in G$. This implies that $z \in H S_{i} H$ for some i. That is, $(H, z H) \in \cup E_{i}$. That is $(x H, x z H)=(x H, y H) \in \cup E_{i}$. This shows that \mathscr{C} is complete.

Proposition $2.13 \mathscr{C}$ is E_{i} complete if and only if $G=H S_{i} H$.
Proposition $2.14 \mathscr{C}$ is $E_{1} E_{2} \cdots E_{n}$ connected if and only if $G=[H S H]$.
Proof. Suppose \mathscr{C} is $E_{1} E_{2} \cdots E_{n}$ connected and let $x H \in G / H$.
Let $\left(H, y_{1} H, y_{2} H, \ldots, y_{n} H, x H\right)$ be an $E_{1} E_{2} \cdots E_{n^{-}}$path leading from H to $x H$. Then

$$
\begin{gathered}
y_{1} \in H S_{i_{1}} H \text { for some } i_{1} ; \\
y_{1}^{-1} y_{2} \in H S_{i_{2}} H \text { for some } i_{2} ; \\
y_{2}^{-1} y_{3} \in H S_{i_{3}} H \text { for some } i_{3} ; \\
\vdots \\
y_{n}^{-1} x \in H S_{i_{n+1}} H \text { for some } i_{n+1} .
\end{gathered}
$$

Note that $x=y_{1} y_{1}^{-1} y_{2} y_{2}^{-1} y_{3} \cdots y_{n}^{-1} x$. Hence from the above equations, we have: $x \in\left(H S_{i_{1}} H\right)\left(H S_{i_{2}} H\right)\left(H S_{i_{3}} H\right) \cdots\left(H S_{i_{n}} H\right) \subseteq[H S H]$. Since x is arbitrary, $G=[H S H]$.

Conversely, assume that $G=[H S H]$. Let x and y be any arbitrary elements in G. Let $y=x z$. Then $z \in G$. That is, $z \in\left(H S_{i} H\right)\left(H S_{j} H\right) \cdots\left(H S_{k} H\right)$ for some i, j, \ldots and k. This implies that $z=s_{i} s_{j} \ldots s_{k}$ for some $i, j \ldots$ and k. Then clearly, $\left(H, s_{i} H, s_{i} s_{j} H, \ldots, s_{i} s_{j} \ldots s_{k} H\right)$ is an $E_{1} E_{2} \cdots E_{n^{-}}$path from H to $z H$. That is $\left(x H, x s_{i} H, x s_{i} s_{j} H, \ldots, x s_{i} s_{j} \ldots s_{k} H\right)$ is a $E_{1} E_{2} \cdots E_{n^{-}}$path from $x H$ to $y H$. Hence \mathscr{C} is connected.

Proposition $2.15 \mathscr{C}$ is E_{i} connected if and only if $G=<H S_{i} H>$, where $<H S_{i} H>$ is the semigroup generated by $H S_{i} H$.

Proposition $2.16 \mathscr{C}$ is $E_{1} E_{2} \cdots E_{n}$ quasi connected if and only if $G=[H S H]^{-1}[H S H]$.
Proof. First, assume that \mathscr{C} is quasi strongly connected. Let $x H$ be any arbitrary element in G / H. Then there exits a vertex $y H \in G$ such that there is a path from $y H$ to $x H$, say: $\left(y H, y_{1} H, y_{2} H, \cdots, y_{n} H, H\right)$ and a path from $y H$ to H, say: $\left(y H, x_{1} H, x_{2} H, \ldots, x_{m} H, x H\right)$. Then we have the following system of equations:

$$
\begin{gather*}
y^{-1} y_{1} \in H S_{i_{1}} H \\
y_{1}^{-1} y_{2} \in H S_{i_{2}} H \\
y_{2}^{-1} y_{3} \in H S_{i_{3}} H \tag{1}\\
\vdots \\
y_{n}^{-1} \in H S_{i_{n+1}} H .
\end{gather*}
$$

and

$$
\begin{gather*}
y^{-1} x_{1} \in H S_{i_{1}} H \\
x_{1}^{-1} x_{2} \in H S_{i_{2}} H \\
x_{2}^{-1} x_{3} \in H S_{i_{3}} H \tag{2}\\
\vdots \\
x_{m}^{-1} x \in H S_{i_{m+1}} H
\end{gather*}
$$

From equation (1) we obtain the following:

$$
y^{-1}=\left(y^{-1} y_{1}\right)\left(y_{1}^{-1} y_{2}\right)\left(y_{2}^{-1} y_{3}\right) \cdots\left(y_{n}^{-1}\right) \in S_{i_{2}} \in\left(H S_{i_{1}} H\right)\left(H S_{i_{2}} H\right) \cdots\left(H S_{i_{n+1}} H\right) .
$$

This implies that

$$
\begin{equation*}
y \in\left(H S_{i_{1}}^{-1} H\right)\left(H S_{i_{2}}^{-1} H\right) \cdots\left(H S_{i_{n+1}}^{-1} H\right) \in\left[H S^{-1} H\right] . \tag{3}
\end{equation*}
$$

Similarly, from equation (2) we obtain the following:

$$
\begin{equation*}
y^{-1} x=\left(y^{-1} x_{1}\right)\left(x_{1}^{-1} x_{2}\right) \cdots\left(x_{m}^{-1} x\right) \in\left(H S_{i_{1}} H\right)\left(H S_{i_{2}} H\right) \cdots\left(H S_{i_{m+1}} H\right) . \tag{4}
\end{equation*}
$$

That is

$$
y^{-1} x \in[H S H] .
$$

That is

$$
x \in y[H S H] \subseteq\left[H S^{-1} H\right][H S H] .
$$

Since x is arbitrary, we have

$$
G=\left[H S^{-1} H\right][H S H] .
$$

Conversely, assume that $G=\left[H S^{-1} H\right][H S H]$. Let x and y be two arbitrary vertices in G. Let $y=x z$. Then $z \in G$. This implies that $z \in\left[H S^{-1} H\right][H S H]$. Then there exits $z_{1} \in\left[H S^{-1} H\right]$ and $z_{2} \in[H S H]$ such that $z=z_{1} z_{2} . z_{1} \in\left[H S^{-1} H\right]$ implies that there exits $t_{k} \in H S_{i_{k}} H$ such that

$$
z_{1}=t_{1} t_{2} \ldots t_{n} \text { for some } t_{k} \in H S_{i_{k}}^{-1} H, k=1,2, \ldots, n .
$$

This implies that

$$
\left(z_{1} H, t_{1} t_{2} H \ldots t_{n-1}, \ldots, H\right)
$$

is a path from $z_{1} H$ to H. That is

$$
\left(y z_{1} H, y t_{1} t_{2} H \ldots t_{n-1} H, \ldots, y H\right)
$$

is a path from $y z_{1} H$ to $y H$.
Similarly, $z_{2} \in[H S H]$ implies that there exits $a_{k} \in S_{i_{k}}$ such that

$$
z_{2}=a_{1} a_{2} \ldots a_{m}
$$

Observe that

$$
\left(z_{2} H, a_{1} a_{2} H, a_{1} a_{2} a_{3} H, \ldots, H\right)
$$

is a path from $z_{2} H$ to H. That is,

$$
\left(z_{1} z_{2} H, z_{1} a_{1} a_{2} H, a_{1} a_{2} a_{3} H, \ldots, z_{1} H\right)
$$

is a path from $z H$ to $z_{1} H$. That is

$$
\left(y z H, y z_{1} a_{1} a_{2} H, y a_{1} a_{2} a_{3} H, \ldots, z_{1} H\right)
$$

is a path from $x H$ to $z_{1} H$.
Proposition 2.17 \mathscr{C} is $E_{i^{-}}$quasi connected if and only if $G=<H S_{i}^{-1} H><H S_{i} H>$.
Proposition $2.18 \mathscr{C}$ is $E_{1} E_{2} \cdots E_{n}$ - locally connected if and only if $[H S H]=\left[H S^{-1} H\right]$. Proof.

Assume that \mathscr{C} is $E_{1} E_{2} \cdots E_{n}$ - locally connected. Let $x \in[H S H]$. Then $x \in A_{m}$ for some m. Then $x=s_{i} s_{j} \ldots s_{m}$. Let $x_{0}=1, x_{1}=s_{i}, x_{2}=s_{i} s_{j}, \ldots, x_{m}=s_{i} s_{j} \ldots s_{m}$. Then

$$
\left(x_{0} H, x_{1} H, x_{2} H, \ldots, x_{m} H\right)
$$

is a path leading from 1 to x. Since \mathscr{C} is locally connected, there exits a path from $x H$ to H, say:

$$
\left(x H, y_{1} H, y_{2} H, \ldots, y_{m} H, H\right)
$$

This implies that

$$
\begin{gathered}
x^{-1} y_{1} \in S_{i_{1}} \\
y_{1}^{-1} y_{2} \in S_{i_{2}} \\
\vdots \\
y_{m}^{-1} \in S_{i_{n}}
\end{gathered}
$$

The above equations tells us that $x^{-1} \in[H S H]$. That is $x \in\left[H S^{-1} H\right]$. Hence $[H S H]=$ $\left[H S^{-1} H\right]$. Conversely, if $[H S H]=\left[H S^{-1} H\right]$, one can easily verify that \mathscr{C} is $E_{1} E_{2} \cdots E_{n}$ - locally connected.

Proposition $2.19 \mathscr{C}$ is E_{i} - locally connected if and only if $<H S_{i}^{-1} H>=<H S_{i} H>$.
Proposition $2.20 \mathscr{C}$ is $E_{1} E_{2} \cdots E_{n}$ - semi connected if and only if $G=[H S H] \cup\left[H S^{-1} H\right]$.
Proof. Assume that \mathscr{C} is $E_{1} E_{2} \cdots E_{n}$ - semi connected and let $x H \in G / H$. Then there is a path from H to $x H$, say

$$
\left(H, x_{1} H, x_{2} H, \cdots, x_{n} H, x H\right)
$$

or a path from $x H$ to H, say

$$
\left(x H, y_{1} H, y_{2} H, \cdots, y_{m} H, H\right)
$$

This implies that $x \in[H S H]$ or $x \in\left[H S^{-1} H\right]$. This implies that $G=[H S H] \cup\left[H S^{-1} H\right]$.
Similarly, if $G=[H S H] \cup\left[H S^{-1} H\right]$, then one can prove that \mathscr{C} is $E_{1} E_{2} \cdots E_{n^{-}}$semi connected.

Proposition $2.21 \mathscr{C}$ is E_{i} - semi connected if and only if $G=<H S_{i} H>\cup<H S_{i}^{-1} H>$. Proposition $2.22 \mathscr{C}$ is an $E_{1} E_{2} \cdots E_{n}$ - quasi ordered set if and only if
$(i) 1 \in\left(H S_{1} H\right) \cup\left(H S_{2} H\right) \cdots \cup\left(H S_{n} H\right)$,
(ii)for every $(i, j), H S_{i} H S_{j} H \subseteq H S_{k} H$ for some k.

Proposition $2.23 \mathscr{C}$ is an E_{i} quasi ordered set if and only if

$$
\begin{aligned}
& (i) 1 \in H S_{i} H \\
& (i i)\left(H S_{i} H\right)^{2} \subseteq H S_{i} H
\end{aligned}
$$

Proposition $2.24 \mathscr{C}$ if an $E_{1} E_{2} \cdots E_{n}$ - partially ordered set if and only if

$$
\begin{aligned}
& (i) 1 \in\left(H S_{1} H\right) \cup\left(H S_{2} H\right) \cdots \cup\left(H S_{n} H\right) \\
& (i i) \text { for every }(i, j),\left(H S_{i} H\right)\left(H S_{j} H\right) \subseteq\left(H S_{k} H\right) \text { for some } k, \\
& (i i i) \cup\left(H S_{i} H\right) \cap\left(H S_{i}^{-1} H\right)=\{1\} .
\end{aligned}
$$

Proof. Observe that

$$
x \in \cup\left(H S_{i} H\right) \cap H\left(S_{i}\right)^{-1} H \Leftrightarrow x \in\left(H S_{i} H\right) \cap\left(H S_{i}^{-1} H\right) \text { for some } i
$$

$$
\begin{aligned}
& \text { ANIL KUMAR } \mathrm{V}^{1} \text {, PARAMESWARAN ASHOK NAIR }{ }^{2, *} \\
& \qquad \begin{array}{l}
\Leftrightarrow x \in H S_{i} H \text { and } x \in H S_{i}^{-1} H \\
\\
\Leftrightarrow(H, x H) \in E_{i} \text { and }(x H, H) \in E_{i} \\
\end{array} \begin{array}{l}
\Leftrightarrow x=1 .
\end{array}
\end{aligned}
$$

Proposition $2.25 \mathscr{C}$ if an E_{i} partially ordered set if and only if

$$
\begin{aligned}
& (i) 1 \in H S_{i} H \\
& (i i)\left(H S_{i} H\right)^{2} \subseteq H S_{i} H \\
& (i i i)\left(H S_{i} H\right) \cap\left(H S_{i}^{-1} H\right)=\{1\}
\end{aligned}
$$

Proposition 2.26 Let $A_{m}(m \geq 2)$ is the set of m products of the form $S_{i_{1}} S_{i_{2}} \cdots S_{i_{m}}$. Then \mathscr{C} is an $E_{1} E_{2} \cdots E_{n}$ - hasse diagram if and only if $C \cap S_{i}=\emptyset$ for all i and for all $C \in A_{m}$.

Proof. Suppose the condition holds. Let $x_{0} H, x_{1} H, \ldots, x_{m} H$ be $(m+1)$ elements in G / H such that $\left(x_{i} H, x_{i+1} H\right) \in \cup E_{i}$ for $i=0,1, \ldots, m-1$. This implies that

$$
\begin{gathered}
x_{0}^{-1} x_{1} \in S_{i_{1}} ; \\
x_{1}^{-1} x_{2} \in S_{i_{2}} ; \\
x_{2}^{-1} x_{3} 3 \in S_{i_{3}} ; \\
\vdots \\
x_{m-1}^{-1} x_{m} \in S_{i_{m}} .
\end{gathered}
$$

The above equation tells us that $x_{0}^{-1} x_{m} \in A_{m}$. Since $C \cap S_{i}=\emptyset$ for all i and for all $C \in A_{m},\left(x_{0}, x_{m}\right) \notin \cup E_{i}$.

Conversely assume that \mathscr{C} is an $E_{1} E_{2} \cdots E_{n}$ hasse diagram. We will show that $C \cap S_{i}=\emptyset$ for all i and for all $C \in A_{m}$. Let $S_{i_{1}} S_{i_{2}} S_{i_{3}} \cdots S_{i_{m}}$ be any element in A_{m}. Let $x \in$ $S_{i_{1}} S_{i_{2}} S_{i_{3}} \cdots S_{i_{m}}$. Then $x=s_{i_{1}} s_{i_{2}} s_{i_{3}} \ldots s_{i_{n}}$ for some $s_{i_{k}} \in S_{i_{k}}$. This implies that

$$
\left(H, s_{i_{1}} H, s_{i_{2}} s_{i_{3}} H, \ldots, x H\right)
$$

is a path from H to $x H$. Since \mathscr{C} is an $E_{1} E_{2} \cdots E_{n}$ hasse- diagram, $x \notin S_{i}$ for any i. That is, $A_{m} \cap S_{i}=\emptyset$ for all i.

Proposition 2.27 The $E_{1} E_{2} \cdots E_{n}$ out-degree of \mathscr{C} is the cardinal number $\mid S_{1} \cup S_{2} \cup \cdots \cup$ $S_{n} / H \mid$.

Proof. Since \mathscr{C} is vertex- transitive it suffices to consider the out degree of the vertex $H \in G / H$. Observe that

$$
\begin{aligned}
\rho(H) & =\{u H:(H, u H) \in E\} \\
& =\left\{u H: u \in H S_{i} H \text { for some } i\right\} \\
& =\left(H S_{1} H\right) \cup\left(H S_{2} H\right) \cup \cdots \cup\left(H S_{n} H\right) / H
\end{aligned}
$$

Hence $|\rho(H)|=\left|\left(H S_{1} H\right) \cup\left(H S_{2} H\right) \cup \cdots \cup\left(H S_{n} H\right) / H\right|$.
Proposition 2.28 The E_{i} out-degree of \mathscr{C} is the cardinal number $\left|H S_{i} H / H\right|$.
Proposition 2.29 The $E_{1} E_{2} \cdots E_{n}$ in-degree of \mathscr{C} is the cardinal number $\mid\left(H S_{1}^{-1} H\right) \cup$ $\left(H S_{2}^{-1} H\right) \cup \cdots \cup\left(H S_{n}^{-1} H\right) / H \mid$.

Proof. Since \mathscr{C} is vertex- transitive it suffices to consider the in degree of the vertex $H \in G / H$. Observe that

$$
\begin{aligned}
\sigma(H) & =\{u H:(u H, H) \in E\} \\
& =\left\{u H:(u H, H) \in E_{i}\right\} \\
& =\left\{u H: u^{-1} \in H S_{i} H\right\} \\
& =\left\{u H: u \in H S_{i}^{-1} H\right\}
\end{aligned}
$$

Hence $|\sigma(H)|=\left|\left(H S_{1}^{-1} H\right) \cup\left(H S_{2}^{-1} H\right) \cup \cdots \cup\left(H S_{n}^{-1} H\right) / H\right|$.
Proposition 2.30 The E_{i} in-degree of \mathscr{C} is the cardinal number $\left|H S_{i}^{-1} H / H\right|$.
Proposition 2.31 For $k=1,2,3, \ldots$ let A_{k} be the set of all k products of the form $\left(H S_{i_{1}} H\right)\left(H S_{i_{2}} H\right) \cdots\left(H S_{i_{k}} H\right)$. If \mathscr{C} has finite diameter, then the diameter of \mathscr{C} is the least positive integer m such that

$$
G=A_{m}
$$

Proof.Let m be the smallest positive integer such that $G=A_{m}$. We will show that the diameter of \mathscr{C} is m. Let $x H$ and $y H$ be any two arbitrary elements in G such that $y=x z$. Then $z \in G$. This implies that $x \in A_{m}$. But then z has a representation of the form $x=s_{i_{1}} s_{i_{2}} \cdots s_{i_{m}}$. This implies that

$$
\left(H, s_{i_{1}} H, s_{i_{1}} s_{i_{2}} H, \ldots, z H\right)
$$

is path of m edges from H to $z H$. That is

$$
\left(x H, x s_{i_{1}} H, x s_{i_{1}} s_{i_{2}} H, \ldots, y H\right)
$$

is a path of length m from $x H$ to $y H$. This shows that $d(x H, y H) \leq n$. Since $x H$ and $y H$ are arbitrary,

$$
\max _{x H, y H \in G}\left\{d_{1,2, \cdots, n}(x H, y H)\right\} \leq m
$$

Therefore the diameter of \mathscr{C} is less than or equal to n. On the other hand let the diameter of \mathscr{C} be k. Let $x \in G$ and $d_{1,2, \cdots, n}(H, x H)=k$. Then we have $x \in B$ for some $B \in A_{k}$. That is

$$
G=A_{k}
$$

Now by the minimality of k, we have $m \leq k$. Hence $k=m$.
Proposition 2.32 The vertex H is an $E_{1} E_{2} \cdots E_{n}$ - source of \mathscr{C} if and only if $G=[H S H]$.
Proof. First, assume that H is an $E_{1} E_{2} \cdots E_{n}$-source of \mathscr{C}. Then for any vertex $x H \in G / H$, there is an $E_{1} E_{2} \cdots E_{n^{-}}$path from H to $x H$. This implies that $G=[H S H]$. Conversely, if $G=[H S H]$, one can prove that H is an $E_{1} E_{2} \cdots E_{n}$ - source.

Proposition 2.33 The vertex H is an E_{i} - source of \mathscr{C} if and only if $G=<H S_{i} H>$.
Proposition 2.34 The vertex H is an $E_{1} E_{2} \cdots E_{n^{-}}$sink of \mathscr{C} if and only if $G=\left[H S^{-1} H\right]$.
Proof. First, assume that H is an $E_{1} E_{2} \cdots E_{n}-\operatorname{sink}$ of \mathscr{C}. Then for each $x H \in G / H$, there is an $E_{1} E_{2} \cdots E_{n^{-}}$path from $x H$ to H. This implies that $x \in\left[H S^{-1} H\right]$. Hence $G=\left[H S^{-1} H\right]$.
Conversely, if $G=\left[H S^{-1} H\right]$, one can easily prove that H is an $E_{1} E_{2} \cdots E_{n}-\operatorname{sink}$ of \mathscr{C}.
Proposition 2.35 The vertex H is an $E_{i} \operatorname{sink}$ of \mathscr{C} if and only if $G=<H S_{i}^{-1} H>$.

Proposition 2.36 The $E_{1} E_{2} \cdots E_{n}$ - reachable set $R_{1,2, \ldots, n}(H)$ of the vertex H is the set [HSH].

Proof. By definition,

$$
R(H)=\left\{x H: \text { there exits an } E_{1} E_{2} \cdots E_{n} \text { - path from } H \text { to } x H\right\}
$$

Observe that

$$
x H \in R_{1,2, \ldots, n}(H) \Leftrightarrow \text { there exits an } E_{1} E_{2} \cdots E_{n} \text {-path from } H \text { to } x H, \text { say }
$$

$$
\begin{aligned}
& \left(H, x_{1} H, x_{2} H, \ldots, x_{n} H, x H\right) \\
\Leftrightarrow & x \in[H S H]
\end{aligned}
$$

Therefore, $R_{1,2,3, \cdots, n}(H)=[H S H]$.
Proposition 2.37 The E_{i} reachable set $R_{i}(H)$ of the vertex H is the set $\left.<S_{i}\right\rangle$.
Proposition 2.38 The $E_{1} E_{2} \cdots E_{n-}$ antecedent set $Q_{1,2, \ldots, n}(H)$ of the vertex H is the set $\left[H S^{-1} H\right]$.

Proof. Observe that

$$
\begin{aligned}
& x \in Q_{1,2, \ldots, n}(H) \Leftrightarrow \text { there exits an } E_{1} E_{2} \cdots E_{n} \text { path from } x H \text { to } H \text {, say } \\
& \\
& \quad\left(x H, x_{1} H, x_{2} H, \ldots, x_{n} H, H\right) \\
& \Leftrightarrow x \in\left[H S^{-1} H\right] . \\
& \therefore \quad Q_{1,2, \ldots, n}(H)=\left[H S^{-1} H\right] .
\end{aligned}
$$

Proposition 2.39 The E_{i} antecedent set $Q_{i}(H)$ of the vertex H is the set $<H S_{i}^{-1} H>$.

References

[1] B. Alspach and C. Q. Zhang, Hamilton cycles in cubic Cayley graphs on dihedral groups, Ars Combin. 28 (1989), 101 - 108.
[2] B. Alspach, S. Locke and D. Witte, The Hamilton spaces of Cayley graphs on abelian groups, Discrete Math. 82 (1990), $113-126$.
[3] B. Alspach and Y. Qin, Hamilton-connected Cayley graphs on hamiltonian groups, Europ. J. Combin. 22 (2001), $777-787$.
[4] C. Godsil and R. Gordon , Algebraic Graph Theory, Graduate Texts in Mathematics, New York: Springer-Verlag, 2001.
[5] D. Witte and K. Keating, On hamilton cycles in Cayley graphs in groups with cyclic commutator subgroup, Ann. Discrete Math. 27 (1985), 89 - 102.
[6] E. Dobson, Automorphism groups of metacirculant graphs of order a product ot two distinct primes, Combinatorics, Probability and Computing 15(2006), 150-130.
[7] G. Sabidussi, On a class of fixed-point-free graphs, Proc. Amer. Math. Soc. 9(1958), 800-804.
[8] J. B. Fraleigh, A First course in abstract algebra, Pearson Education, 2008.
[9] Kumar V., Anil and Nair Parameswaran Ashok, A class of Cayley digraph structures induced by groups, Journal of Mathematics Research 4(2) (2012), 28-33.
[10] Kumar V. Anil, A class of double coset Cayley digraphs induced by loops, International Journal of Algebra 22(5) (2011), 1073-1084.
[11] S. B. Akers and B. Krishamurthy, A group theoritic model for symmetric interconnection networks, IEEE Trans. comput. 38 (1989), 555 - 556.
[12] S. J. Curran and J. A. Gallian, Hamiltonian cycles and paths in cayley graphs and digraphs- A survey, Discrete Math., 156 (1996) 1-18.
[13] S.Lakshmivarahan, J. Jwo and S. K. Dhall, Symmetry in interconnection networks based on cayley graphs of permutation groups- A survey, Parallel Comput. 19(1993), 361-407.

[^0]: *Corresponding author

