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Abstract. Some times it is not easy to find the exact solution of certain differential equations. In this paper we

study atomic solutions of fractional vector valued differential equations.
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1. INTRODUCTION.

In [4], a new definition called α−conformable fractional derivative was introduced:

Let α ∈ (0,1), and f : E ⊆ (0,∞)→ R. For x ∈ E let:

Dα f (x) = lim
ε→0

f (x+ εx1−α)− f (x)
ε

.

If the limit exists then it is called the α− conformable fractional derivative of f at x.

For x = 0, Dα f (0) = lim
x→0

Dα f (0) if such limit exists.

The new definition satisfies:

1.Tα(a f +bg) = aTα( f )+bTα(g), for all a,b ∈ R.
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2.Tα(λ ) = 0, for all constant functions f (t) = λ .

Further, for α ∈ (0,1] and and f ,g be α−differentiable at a point t, with g(t) 6= 0. Then

3. Tα( f g) = f Tα(g)+gTα( f ).

4. Tα(
f
g ) =

gTα ( f )− f Tα (g)
g2

We list here the fractional derivatives of certain functions,

(1) 5.Tα(t p) = p t p−α .

6.Tα(sin 1
α

tα) = cos 1
α

tα .

7.Tα(cos 1
α

tα) =−sin 1
α

tα .

8.Tα(e
1
α

tα

) = e
1
α

tα

.

On letting α = 1 in these derivatives, we get the corresponding ordinary derivatives.

One should notice that a function could be α−conformable differentiable at a point but not

differentiable, for example, take f (t) = 2
√

t. Then T1
2
( f )(t) = 1. Hence T1

2
( f )(0) = 1. But

T1( f )(0) does not exist. This is not the case for the known classical fractional derivatives.

For more on fractional calculus and its applications we refer to [1 ], [8 ] and [ 9].

2. ATOMIC SOLUTION

Let X and Y be two Banach spaces and X∗ be the dual of X . Assume x ∈ X and y ∈ Y. The

operator T : X∗→Y, defined by T (x∗) = x∗(x)y is a bounded one rank linear operator. We write

x⊗y for T. such operators are called atoms. Atoms are among the main ingredient in the theory

of tensor product. Atoms are used in theory of best approximation in Banach spaces, [6], and

[7].

It is a known result, [5 ], and we need it in our paper that: If the sum of two atoms is an atom,

the either the first component are dependent or the second are dependent.

An equation of the form

(1) TαTαv+ATαv = f (t)

Is called a fractional vector valued differential equation, where, v and f are nice functions

from [0,∞) to the Banach space X , and A is a closed linear operator on X .

A solution of this equation of the form v = u⊗ x is called an atomic solution. In this paper

we are interested in finding an atomic solution to equation (1).
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That is, we will find solution to the equation:

(2) u(2α)(t)⊗ x+u(α)(t)⊗Ax = f (t)⊗ z , where u(0) = 1,u
(α)
(0) = 1

Here u(t) and x are the unknowns, while A,z, and f are given. Further, we assume without

loss of generality that f (0) = 1.

Theorem 2.1. Let z be a unique image in the range of the operator I+A, and A has a unique

fixed point. Then equation (2) has a unique solution.

Proof. Now , u(2α)⊗ x and u(α)⊗Ax are two atoms whose sum is also an atom f ⊗ z .

Hence, [5], we have two cases:

Case (i): u(2α) = βu(α).

Since x⊗ y = βx⊗ 1
β

y, then with no loss of generality, we can assume β = 1. So we have

(3) TαTαu = Tαu

Using result in [ 10] and property 8 that the conformable derivative satisfies we get

u(t) =C1 +C2e(
β

α
)tα

But from (2), u(0) = 1 and u(α)(0) = 1. Hence

C1 +C2 = 1 and C2 = 1.

Consequently

(4) u(t) = e(
1
α
)tα

Now, we go back to (2), to get:

e
tα
α (x+Ax) = f (t)z.

The conditions on u and f give a unique x such that x+Ax = z. Thus equation (2) has a

unique solution.

Case (ii): Ax= βx . Again with no loss of generality we can assume that β = 1. Thus Ax= x.

By the assumption on A, there is a unique x such that Ax = x
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Now, substitute in (2) to get

u(2α)(t)⊗ x+u(α)(t)⊗ x = f (t)⊗ z.

So

(u(2α)+u(α))⊗ x = f ⊗ z

By the condition on u, we get x = z. Consequently, we get

u(2α)+u(α) = f

Being a linear fraction differential equation, we can use a result in [10 ] to obtain:

ug = uh +up, the general solution is the sum of the homogenous part plus the particular part.

Using the same result in [10], to get

uh =C1 +C2e
−tα

α

The conditions on u imply

uh = 2− e
−tα

α

As for the particular solution, we use variation of parameters introduced in [8]. Thus we have

up(t) =
t∫
b

∣∣∣∣∣∣ u1(t) u2(t)

u1(x) u2(x)

∣∣∣∣∣∣∣∣∣∣∣∣ u1(t) u2(t)

Tαu1(t) Tαu2(t)

∣∣∣∣∣∣
f (t)

dt
t1−α

which can be evaluated for a given function f .
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