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Abstract. In this paper, we introduce a new class of separation axioms namely (gg)∗- Tk,k = 0,1,2 spaces. We

investigated some of their properties using (gg)∗-continuous functions, (gg)∗-irresolute functions, (gg)∗-closed

maps, (gg)∗-open maps.
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1. INTRODUCTION

In 1975, S. N. Maheshwari and R. Prasad [1], used semi-open sets to define and investigate

new separation axiom namely Semi-T0, Semi-T1,Semi-T2. Following them many topologist

defined new separation axioms namely gpr-separation axioms[2], gsp-separation axioms[3],

gg-separation axioms[4] etc. In this paper we used (gg)∗-closed sets in topological spaces[5],

to define a new seperation axioms namely (gg)∗- T0, (gg)∗- T1, (gg)∗- T2 spaces and the

characterizations are studied.
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2. PRELIMINARIES

Throughout this paper X or (X ,τ) and Y or (Y,σ) represents topological spaces on which

no separation axioms are assumed unless otherwise mentioned. For a subset A of a topological

space X , the closure of A and the interior of A are denoted by cl(A), int(A) and Ac denotes the

complement of A in X. We recall some of the basic definitions and results.

Definition 2.1. A subset A of a topological space (X ,τ) is called a

(i) regular open set [4] if A = int(cl(A)) and a regular closed set if cl(int(A)) = A.

(ii) regular semi open [5] if there is a regular open set U such that U ⊆ A⊆ cl(U).

(iii)generalized - closed set (briefly g - closed) [7] if cl(A)⊆U whenever A⊆U and U is open

in X .

(iv) generalization of generalized closed set (briefly gg-closed) [4] if gcl(A) ⊆ U whenever

A⊆Uand U is regular semi - open in X.

(v) generalization of generalized star closed sets (briefly (gg)∗- closed) [5] if rcl(A) ⊆ U

wheneverA⊆Uand U is gg - open in X.

The complements of the above sets are their respective open sets and vice versa.

Definition 2.2. A function f : (X ,τ)→ (Y,σ) is called (gg)∗- continuous [6] if f−1(V ) is (gg)∗

- closed in X for every closed setV of Y .

Definition 2.3. A function f : (X ,τ)→ (Y,σ) is called (gg)∗- irresolute[6] if f−1(V ) is (gg)∗ -

closed in (X ,τ) for every (gg)∗- closed set V in (Y,σ).

Definition 2.4. A map f : (X ,τ)→ (Y,σ) is called generalization of generalized star closed

map (briefly (gg)∗- closed map) if the image of every closed set in (X ,τ) is (gg)∗- closed in

(Y,σ).

Definition 2.5. A map f : (X ,τ)→ (Y,σ) is called generalization of generalized star open map

(briefly (gg)∗- open map) if the image of every open set in (X ,τ) is (gg)∗- open in (Y,σ).

Definition 2.6. For a subset A of a space X , (gg)∗−cl(A) =
⋂
{B⊆ X : B is (gg)∗ -closed and

A⊆ B} .
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3. (gg)∗-Tk SPACES, k ∈ {0,1,2}

Definition 3.1. A topological space (X ,τ) said to be (gg)∗- T0 if for each pair of distinct points

x,y ∈ X, there exists a (gg)∗-open set U such that x ∈U and y /∈U or x /∈U and y ∈U.

Definition 3.2. A topological space (X ,τ) said to be (gg)∗- T1 if for each pair of distinct points

x,y ∈ X, there exists (gg)∗-open sets U and V containing x and y such that x ∈U and y /∈U or

x /∈V and y ∈V .

Definition 3.3. A topological space (X ,τ) said to be (gg)∗- T2 if for each pair of distinct points

x,y ∈ X, there exists disjoint (gg)∗-open sets U and V such that x ∈U and y ∈V .

Theorem 3.4. (i) Every (gg)∗- T1 space is (gg)∗- T0 space.

(ii) Every (gg)∗-T2 space is (gg)∗- T1 space.

Proof. (i) Let X be a (gg)∗- T1 space. Let x,y ∈ X with x 6= y. Since X is a (gg)∗- T1 space,

there exists (gg)∗-open sets U and V containing x and y such that x ∈U and y /∈U or x /∈V and

y ∈V . Therefore X is a (gg)∗- T0 space.

(ii)Let X be a (gg)∗- T2 space. Let x,y ∈ X with x 6= y. Since X is a (gg)∗- T2 space, there exists

disjoint (gg)∗-open sets U and V containing x and y such that x ∈U and y ∈ V . That is x /∈ V

and y /∈U . Therefore X is a (gg)∗- T1 space. �

Theorem 3.5. A topological space X is (gg)∗- T0 iff (gg)∗-closure of distinct points are distinct.

Proof. Let X be a (gg)∗- T0 space. Let x,y ∈ X be such that x 6= y. Since X is a (gg)∗- T0 space,

there exists a (gg)∗-open set U such that x ∈U and y /∈U or x /∈U and y ∈U .

Let us consider x ∈U and y /∈U . Then x /∈ X −U and y ∈ X −U . Since U is a (gg)∗-open

set, X −U is a (gg)∗- closed set in X containing y but not x. But (gg)∗- cl(y) is the intersection

of all (gg)∗- closed set in X containing y. Therefore (gg)∗-cl(y) ⊆ X −U . Since x /∈ X −U ,

x /∈ (gg)∗- cl(y). But y ∈ (gg)∗- cl(y). Hence (gg)∗- cl(x) 6= (gg)∗- cl(y). Similarly we can

prove the other case. Hence (gg)∗-closure of distinct points are distinct. Conversely suppose

that (gg)∗- cl(x) 6= (gg)∗- cl(y). If x 6= y with x,y ∈ X . Then there exists atleast one point z ∈ X

such that z ∈ (gg)∗- cl(x) and z /∈ (gg)∗- cl(y) or z /∈ (gg)∗- cl(x) and z ∈ (gg)∗- cl(y). Now
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let us consider z ∈ (gg)∗- cl(x) and z /∈ (gg)∗- cl(y). Suppose x ∈ (gg)∗- cl(y). Then (gg)∗-

cl(x)⊆ (gg)∗- cl(y). Hence z ∈ (gg)∗- cl(x)⊆ (gg)∗- cl(y) and so z ∈ (gg)∗- cl(y). Which is a

contradiction. Hence x /∈ (gg)∗- cl(y). This implies x ∈ X- (gg)∗- cl(y), which is a (gg)∗-open

set in X containing x but not y. Hence X is a (gg)∗- T0 space. �

Theorem 3.6. Let f : (X ,τ)→ (Y,σ) be an injective, (gg)∗-irresolute map. If Y is a (gg)∗- T0

then X is a (gg)∗- T0 space.

Proof. Let x,y ∈ X be such that x 6= y. Since f is injective, f (x) 6= f (y). As Y is a (gg)∗- T0

space, there exists a (gg)∗-open set U of Y such that f (x) ∈U and f (y) /∈U or f (x) /∈U and

f (y) ∈U . Since f is (gg)∗-irresolute, f−1(U) is (gg)∗-open set in X such that x ∈ f−1(U) and

y /∈ f−1(U) or x /∈ f−1(U) and y ∈ f−1(U). Hence X is a (gg)∗- T0 space. �

Theorem 3.7. Let f : (X ,τ)→ (Y,σ) be an injective, (gg)∗-irresolute map. If Y is a (gg)∗- T2

then X is a (gg)∗- T2 space.

Proof. Let x,y ∈ X be such that x 6= y. Since f is injective, f (x) 6= f (y). As Y is (gg)∗- T2

space, there exists (gg)∗-open sets U , V of Y such that f (x) ∈U and f (y) ∈V and U ∩V = φ .

Since f is (gg)∗-irresolute, f−1(U), f−1(V ) are (gg)∗-open sets in X such that x ∈ f−1(U) and

y ∈ f−1(V ) and f−1(U)∩ f−1(V ) = φ . Hence X is a (gg)∗- T2 space. �

Theorem 3.8. Let f : (X ,τ)→ (Y,σ) be a bijective, (gg)∗-continuous map. If Y is a T1 space

then X is a (gg)∗- T1 space.

Proof. Let x1,x2 ∈ X be such that x1 6= x2. Since f is bijective, there exists y1, y2 in Y with

y1 6= y2 such that y1 = f (x1) and y2 = f (x2) . Also since Y is a T1-space, there exists open sets

U , V of Y such that y1 ∈U and y1 /∈ V or y2 ∈ V and y1 /∈U . Since f is (gg)∗- continuous,

there exists (gg)∗-open sets f−1(U), f−1(V ) in X such that x1 ∈ f−1(U) and x1 /∈ f−1(V ) or

x2 ∈ f−1(V ) and x2 /∈ f−1(U). Hence X is a (gg)∗- T1 space. �

Theorem 3.9. Let f : (X ,τ)→ (Y,σ) be a bijective, (gg)∗- open map. If X is a T1 then Y is a

(gg)∗- T1 space.
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Proof. Let y1,y2 ∈ Y be such that y1 6= y2. Since f is bijective, there exists x1, x2 in X with

x1 6= x2 such that y1 = f (x1) and y2 = f (x2) . Also since X is a T1-space, there exists open

sets U , V of X such that x1 ∈ U and x2 /∈ V or x2 ∈ V and x1 /∈ U . Since f is (gg)∗- open

map, there exists (gg)∗-open sets f (U), f (V ) in Y such that f (x1) ∈ f (U) and f (x1) /∈ f (V ) or

f (x2) ∈ f (V ) and f (x2) /∈ f (U). That is there exists (gg)∗-open sets f (U), f (V ) in Y such that

y1 ∈ f (U) and y1 /∈ f (V ) or y2 ∈ f (V ) and y2 /∈ f (U). Hence Y is a (gg)∗- T1 space. �

Theorem 3.10. Let f : (X ,τ)→ (Y,σ) be a bijective, (gg)∗- continuous function. If Y is a T2

space then X is a (gg)∗- T2 space.

Proof. Let x1,x2 ∈ X be such that x1 6= x2. Since f is bijective, there exists y1, y2 in Y with y1 6=

y2 such that y1 = f (x1) and y2 = f (x2) . Also since Y is a T2-space, there exists disjoint open sets

U , V of Y such that y1 ∈U and y2 ∈V . Since f is (gg)∗- continuous, there exists disjoint (gg)∗-

open sets f−1(U), f−1(V ) in X such that x1 = f−1(y1) ∈ f−1(U) and x2 = f−1(y2) ∈ f−1(V ).

Hence X is a (gg)∗- T2 space. �
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