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Abstract. In this paper, we provide explicitly the Adomian polynomials (AP) for transcendental-hyperbolic func-

tions in a linear functional and forced the convergence of inconsistent solution series when Adomian decomposition

method (ADM) is deployed in related problems by nonlinear Shanks transform (NST). These were achievable by

developing a theoretical background of AP for transcendental-hyperbolic functions based upon a thorough exami-

nation of the historical preceding of ADM. Application of the presented polynomials resulted to unreliable series

solutions which was, however, upturned on using NST in the problems considered. This paper has unified the

notion of modified AP for transcendental-hyperbolic nonlinear functions and its application to similar equations.

It further presented a reliable technique that forced convergence in unpredictable and alternating series solutions

that are obtain by ADM.
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1. INTRODUCTION

Over the years ADM [1] and its improvement has become a very powerful technique for

obtaining analytical and approximate analytical solutions to a generalised nonlinear equations.

Ln(ϑ)+N(ϑ) = ζ , ϑ = ϑ(t)(1)

Where Ln is the nth order derivative of ϑ which is a combination of highest order derivative and

other differential operator. Which is corresponding to L−n operator given as

L−n =
∫ tn

0

∫ tn−1

0

∫ tn−2

0
...

∫ t1

0
(.)dt1dt2dt3...dtn(2)

N = N(ϑ) is the nonlinear term which is transcendental-hyperbolic in this article and is to be

decomposed into AP. And, ζ = ζ (t) is the source term. The ADM by [1], has been widely

reported in [2] - [15], [17] and [18]. It is a systematic analytical and approximation method

applied to a wide class of equations. The method provided solutions in convergent series form

under physically appropriate conditions. Nonetheless, it successful application, especially on

the nonlinear problems, requires the right AP to be used for ultimate desired results, see [1, 8, 9]

and the literatures therein. However, the nonlinearity in a linear functional varies; polynomial

nonlinearity has been vividly reported in [8], other are [17, 11, 6, 12, 9, 10, 2, 13]. Trigonometric

nolinearity has extensively been investigated in [9], see also [14] and the literature therein.

Exponential and logarithmic nonlinearity can be seen in [18], transcendental hyperbolic sine

and cosine has been reported in [13].

Reported investigation of AP in the are of transcendental hyperbolic nonlinear terms are still

minimal in literature. The fundamental goal in this paper is to decompose the transcendental-

hyperbolic nonlinear term N(ϑ) in a linear functional (1) into series of polynomials Σ∞
n=0An

using the modified AP as contain in [8]. Where the An are the AP. These polynomials are in

hyperbolic form and equivalently in their respective exponential form for each N(ϑ). Due to the

presence of noise term in each polynomial, convergence to a solution in the illustrative problems

considered were far fetched by the traditional ADM. However, this was reversed on application

of NST.
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2. THE ADOMIAN POLYNOMIAL IN ADOMIAN DECOMPOSITION METHOD

These polynomials were introduced by [1] and it is given as

An =
1
n!

dn

dλ n [N(Σ∞
i=0λ

i
ϑi)]λ=0(3)

λ is a parameter introduced for convenient. An depends on ϑ0,ϑ1,ϑ2

...ϑn−2,ϑn−1,ϑn, where n ∈ Z+. Implementation of (3) on (1) basically gives

A0 = A(ϑ0)

A1 = A(ϑ0,ϑ1)

A2 = A(ϑ0,ϑ1,ϑ2)

A3 = A(ϑ0,ϑ1,ϑ2,ϑ3)

A4 = A(ϑ0,ϑ1,ϑ2,ϑ3,ϑ4)

A5 = A(ϑ0,ϑ1,ϑ2,ϑ3,ϑ4,ϑ5)

...

An = A(ϑ0,ϑ1,ϑ2, ...,ϑn−2,ϑn−1,ϑn)

From its inception till date, several modifications has been carried out on how these polynomials

can be generated. These somewhat feasible form calculates the AP in a simple way using any

known computer algebra software like Maple, Mathematica, etc. All these other forms of AP

has been implemented and reported in [2] - [15], [17] and [18].

3. THE ADOMIAN POLYNOMIALS OF MAJOR TRANSCENDENTAL-HYPERBOLIC NON-

LINEAR TERMS

In this section, we apply equation (3) to (1) to obtain the AP of the first five terms for each ma-

jor hyperbolic functions; sinhϑ , coshϑ , tanhϑ , sechϑ , cschϑ and cothϑ . And, to avoid

excessively long expressions, we denote eϑ0− e−ϑ0 as ϑ− and eϑ0 + e−ϑ0 as ϑ+.

3.1: For N(ϑ) = sinhϑ

A0 = sinhϑ0
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A1 = ϑ1 coshϑ0

A2 =
1
2!

ϑ
2
1 sinhϑ0 +ϑ2 coshϑ0

A3 =
1
3!

ϑ
3
1 coshϑ0 +ϑ1ϑ2 sinhϑ0 +ϑ3 coshϑ0

A4 =
1
4!

ϑ
4
1 sinhϑ0 +

1
2!

ϑ
2
1 ϑ2 coshϑ0 +

1
2!

ϑ
2
2 sinhϑ0 +ϑ3ϑ1 sinhϑ0 +ϑ4 coshϑ0

Equivalently,

A0 =
1
2

ϑ−

A1 =
1
2

ϑ1ϑ+

A2 =
1
2

ϑ2ϑ++
1
4

ϑ
2
1 ϑ−

A3 =
1
2

ϑ3ϑ++
1
2

ϑ1ϑ2ϑ−+
1

12
ϑ

3
1 ϑ+

A4 =
1
2

ϑ4ϑ++
1
2

ϑ1ϑ3ϑ−+
1
4

ϑ
2
1 ϑ2ϑ++

1
4

ϑ
2
2 ϑ−+

1
48

ϑ
4
1 ϑ−

3.2: For N(ϑ) = coshϑ

A0 = coshϑ0

A1 = ϑ1 sinhϑ0

A2 =
1
2!

ϑ
2
1 coshϑ0 +ϑ2 sinhϑ0

A3 =
1
3!

ϑ
3
1 sinhϑ0 +ϑ1ϑ2 coshϑ0 +ϑ3 sinhϑ0

A4 =
1
4!

ϑ
4
1 coshϑ0 +

1
2

ϑ
2
1 ϑ2 sinhϑ0 +

1
2

ϑ
2
2 coshϑ0 +ϑ3ϑ1 coshϑ0 +ϑ4 sinhϑ0

Alternatively,

A0 =
1
2

ϑ+

A1 =
1
2

ϑ1ϑ−

A2 =
1
2

ϑ2ϑ−+
1
4

ϑ
2
1 ϑ+

A3 =
1
2

ϑ3ϑ−+
1
2

ϑ1ϑ2ϑ++
1

12
ϑ

3
1 ϑ−
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A4 =
1
2

ϑ4ϑ−+
1
2

ϑ1ϑ3ϑ++
1
4

ϑ
2
1 ϑ2ϑ−+

1
4

ϑ
2
2 ϑ++

1
48

ϑ
4
1 ϑ+

3.3: For N(ϑ) = tanhϑ

A0 = tanhϑ0

A1 = ϑ1 sech2
ϑ0

A2 = ϑ2 sech2
ϑ0−ϑ

2
1 sech2

ϑ0 tanhϑ0

A3 = ϑ3 sech2
ϑ0−2ϑ1ϑ2 tanhϑ0 sech2

ϑ0 +
2
3

ϑ
3
1 tanh2

ϑ0 sech2
ϑ0−

1
3

ϑ
3
1 sech4

ϑ0

A4 =
2
3

ϑ
4
1 tanhϑ0 sech4

ϑ0−ϑ
2
1 ϑ2 sech4

ϑ0−
1
3

ϑ
4
1 tanh3

ϑ0 sech2
ϑ0

+2ϑ
2
1 ϑ2 tanh2

ϑ0 sech2
ϑ0−ϑ

2
2 tanhϑ0 sech2

ϑ0−2ϑ1ϑ3 tanhϑ0 sech2
ϑ0

+ϑ4 sech2
ϑ0

Alternatively,

A0 =
ϑ−
ϑ+

A1 = ϑ1−
ϑ1ϑ 2

−
ϑ 2
+

A2 = ϑ2−
ϑ1ϑ 2

−
ϑ+

+
ϑ1ϑ 2

−
ϑ 3
+

−
ϑ2ϑ 2

−
ϑ 2
+

A3 =−
1

3ϑ 4
+

(−3ϑ3ϑ
4
++ϑ

3
1 ϑ

4
+−2ϑ

3
1 ϑ

2
+ϑ

2
−−3ϑ

2
1 ϑ

2
+ϑ−+3ϑ1ϑ

4
−−6ϑ1ϑ2ϑ+ϑ

3
−

−3ϑ3ϑ
2
+ϑ

2
−)

A4 =
1

24ϑ+
(24ϑ4ϑ++24ϑ1ϑ3ϑ−+12ϑ

2
2 ϑ−+12ϑ

2
1 ϑ2ϑ++ϑ

4
1 ϑ−)

− 1
6ϑ 2

+

(6ϑ3ϑ++6ϑ1ϑ2ϑ−+ϑ
3
1 ϑ+)(ϑ1ϑ−)

+
1

2ϑ 3
+

(2ϑ2ϑ++ϑ
2
1 ϑ−)(ϑ1ϑ−)

2− 1
4ϑ 2

+

(ϑ1ϑ++ϑ
2
1 ϑ−)(2ϑ2ϑ−+ϑ

2
1 ϑ+)

+
ϑ 2

1 ϑ−

ϑ 3
+

+
1

ϑ 3
+

(ϑ 2
1 ϑ+ϑ−)(ϑ2ϑ−+ϑ

2
1 ϑ+)−

ϑ1ϑ+

6ϑ 2
+

(6ϑ3ϑ−+6ϑ1ϑ2ϑ++ϑ
3
1 ϑ−)

+
ϑ 4

1 ϑ 5
−

ϑ 5
+

− 3
2ϑ 4

+

(ϑ 2
1 ϑ

3
−)(2ϑ2ϑ−+ϑ

2
1 ϑ+)+

ϑ−
4ϑ 3

+

(2ϑ2ϑ−+ϑ
2
1 ϑ+)

2
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+
ϑ1ϑ 2

−
3ϑ 3

+

(6ϑ3ϑ−+6ϑ1ϑ2ϑ++ϑ
3
1 ϑ−)+

ϑ−
ϑ 2
+

(24ϑ4ϑ−+24ϑ1ϑ3ϑ3 +12ϑ
2
2 ϑ+

+12ϑ
2
1 ϑ2ϑ−+ϑ

4
1 ϑ+)

3.4: For N(ϑ) = cschϑ

A0 = cschϑ0

A1 =−ϑ1 cschϑ0 cothϑ0

A2 =
1
2

ϑ
2
1 cschϑ0 coth2

ϑ0 +
1
2

ϑ
2
1 csch3

ϑ0−ϑ2 cschϑ0 cothϑ0

A3 =−
1
6

ϑ
3
1 cschϑ0 cothϑ0 +

5
6

ϑ
3
1 csch3

ϑ0 cothϑ0 +ϑ1ϑ2 cschϑ0 coth2
ϑ0

+ϑ1ϑ2 csch3
ϑ0−ϑ3 cschϑ0 cothϑ0

A4 =
1

24
ϑ

4
1 cschϑ0 coth4

ϑ0−
3
4

ϑ
4
1 csch3

ϑ0 coth2
ϑ0−

1
2

ϑ
2
1 ϑ2 cschϑ0 coth3

ϑ0

+
5

24
ϑ

4
1 csch5

ϑ0 +
5
2

ϑ
2
2 ϑ2 csch3

ϑ0 cothϑ0 +
1
2

ϑ
2
2 cschϑ0 coth2

ϑ0

+ϑ1ϑ3cschϑ0 coth2
ϑ0−

1
2

ϑ
2
2 csch3

ϑ0−ϑ1ϑ3 csch3
ϑ0−ϑ4 cschϑ0 cothϑ0

Alternatively,

A0 =
2

ϑ−

A1 =
2ϑ1ϑ+

ϑ−

A2 =
2ϑ 2

1 ϑ+

ϑ−
−

2ϑ1ϑ++ϑ 2
1 ϑ−

ϑ 2
−

A3 =−
2ϑ 3

1 ϑ 3
+

ϑ 4
−

+
2ϑ1ϑ+(2ϑ2ϑ++ϑ 2

1 ϑ−)

ϑ 3
−

+
6ϑ3ϑ++6ϑ1ϑ2ϑ−+ϑ 3

1 ϑ+

3ϑ 2
−

A4 =
2ϑ 4

1 ϑ 4
+

ϑ 5
−
−

3ϑ 2
1 ϑ 2

+(2ϑ2ϑ++ϑ 2
1 ϑ−)

ϑ 4
−

+
(2ϑ2ϑ++ϑ 2

1 ϑ 2
−)

2

2ϑ 3
+

+
2ϑ1ϑ+(6ϑ3ϑ++6ϑ2ϑ1ϑ−+ϑ 3

1 ϑ+)

3ϑ 3
−

+
24ϑ4ϑ++24ϑ3ϑ1ϑ−+12ϑ 2

2 ϑ−+12ϑ2ϑ 2
1 ϑ++ϑ 4

1 ϑ−
12ϑ 2

−
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3.5: For N(ϑ) = sechϑ

A0 = sechϑ0

A1 =−ϑ1 sechϑ0 tanhϑ0

A2 =
1
2

ϑ
2
1 sechϑ0 tanh2

ϑ0−
1
2

ϑ
2
1 sech3

ϑ0−ϑ2 sechϑ0 tanhϑ0

A3 =−
1
6

ϑ
3
1 sechϑ0 tanhϑ0 +

5
6

ϑ
3
1 sech3

ϑ0 tanhϑ0

+ϑ1ϑ2 sechϑ0 tanhϑ0−ϑ1ϑ2 sech3
ϑ0−ϑ3 sechϑ0 tanhϑ0

A4 =
1

24
ϑ

4
1 sechϑ0 tanhϑ0−

3
4

ϑ
4
1 sech3

ϑ0 tanh2
ϑ0−

1
2

ϑ
2
1 ϑ2 sechϑ0 tanhϑ0 +

5
24

ϑ
4
1 sech5

ϑ0

+
5
2

ϑ
2
1 ϑ2 sech3

ϑ0 tanhϑ0 +
1
2

ϑ
2
2 sechϑ0 tanhϑ0 +ϑ1ϑ3sechϑ0 tanh2

ϑ0−
1
2

ϑ
2
2 sech3

ϑ0

−ϑ1ϑ3 sech3
ϑ0−ϑ4 sechϑ0 tanhϑ0

Equivalently,

A0 =
2

ϑ+

A1 =
2ϑ1ϑ−

ϑ 2
+

A2 =
2ϑ 2

1 ϑ 2
−

ϑ 3
+

−
2ϑ2ϑ−+ϑ 2

1 ϑ+

ϑ 2
+

A3 =−
2ϑ 3

1 ϑ 3
−

ϑ 4
−

+
2ϑ1ϑ−(2ϑ2ϑ−+ϑ 2

1 ϑ+)

ϑ 3
+

−
6ϑ3ϑ−+6ϑ1ϑ2ϑ++ϑ 3

1 ϑ−

3ϑ 2
+

A4 =
2ϑ 4

1 ϑ 4
−

ϑ 5
+

−
3ϑ 2

1 ϑ 2
−(2ϑ2ϑ−+ϑ 2

1 ϑ+)

ϑ 4
+

+
(2ϑ2ϑ−+ϑ 2

1 ϑ+)
2

2ϑ 3
+

+
2ϑ1ϑ−(6ϑ3ϑ−+6ϑ2ϑ1ϑ++ϑ 3

1 ϑ−)

3ϑ 3
+

+
24ϑ1ϑ3ϑ++12ϑ 2

2 ϑ++12ϑ1ϑ 2
2 ϑ−+ϑ 4

1 ϑ+

12ϑ 2
+

3.6: For N(ϑ) = cothϑ

A0 = cothϑ0

A1 = ϑ1(1− coth2
ϑ0)

A2 = ϑ2(1− coth2
ϑ0)−ϑ

2
1 cothϑ0(1− coth2

ϑ0)
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A3 =−
1
3

ϑ
3
1 (1− coth2

ϑ0)
2 +

2
3

ϑ
3
1 coth2

ϑ0(1− coth2
ϑ0)

−2ϑ1ϑ2 cothϑ0(1− coth2
ϑ0)+ϑ3(1− coth2

ϑ0)

A4 =
2
3

ϑ
4
1 cothϑ0(1− coth2

ϑ0)
2−ϑ

2
1 ϑ2(1− coth2

ϑ0)
2− 1

3
ϑ

4
1 coth3

ϑ0(1− coth2
ϑ0)

+2ϑ
2
1 ϑ2 coth2

ϑ0(1− coth2
ϑ0)−ϑ

2
2 cothϑ0(1− coth2

ϑ0)

−2ϑ1ϑ3 cothϑ0(1− coth2
ϑ0)+ϑ4(1− coth2

ϑ0)

Equivalently, with e2ϑ0 +1 = ϑ2+ and e2ϑ0−1 = ϑ2−, we have

A0 =
ϑ2+

ϑ2−

A1 =
2ϑ1e2ϑ0

ϑ2−
− 2ϑ1ϑ2+e2ϑ0

ϑ 2
2+

A2 =
2ϑ2e2ϑ0

ϑ2−
+

2ϑ 2
1 e2ϑ0

ϑ2−
−

4ϑ 2
1 e4ϑ0

ϑ 2
2−

+
4ϑ 2

1 ϑ2+e4ϑ0

ϑ 3
2+

− 2ϑ2ϑ2+e2ϑ0

ϑ 2
2−

−
2ϑ 2

1 ϑ2+e2ϑ0

ϑ 2
2−

A3 =
2ϑ3e2ϑ0

ϑ2−
+

4ϑ1ϑ2e2e2ϑ0

ϑ2−
−

8ϑ 2
1 e4ϑ0

ϑ 2
2−

+
4ϑ 3

1 e2ϑ0

3ϑ 2
2−

+
2ϑ2ϑ2+e2ϑ0

ϑ2−
−

8ϑ 3
1 e4ϑ0

ϑ 2
2−

+
8ϑ 3

1 e6ϑ0

ϑ 3
2−

−
8ϑ 3

1 ϑ 3
1 e6ϑ0

ϑ 4
2−

+
8ϑ1ϑ2ϑ2+e4ϑ0

ϑ 3
2−

+
8ϑ 3

1 ϑ2+e4ϑ0

ϑ2−
− 2ϑ2ϑ3e2ϑ0

ϑ 2
2−

+
4ϑ1ϑ2ϑ2−e2ϑ0

2ϑ 2
2−

−
4ϑ 3

1 ϑ2+e4ϑ0

3ϑ 2
2−

4. THEORY OF ADOMIAN DECOMPOSITION METHOD AND NONLINEAR SHANKS

TRANSFORM ON TRANSCENDENTAL-HYPERBOLIC EQUATIONS

The nonlinear hyperbolic-trigonometric equation

f (ϑ) = 0(4)

can be expressed as

ϑ = c+N(ϑ), ϑ ∈R(5)

where N(ϑ) is a nonlinear function and c is a constant. ADM considers the solution equation

(5) as

ϑ =
∞

∑
n=0

ϑn(6)
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And, ϑn is calculated recursively. The nonlinear term is decomposed as

N(ϑ) =
∞

∑
n=0

An(7)

where An is as defined in equation (3). See [15], [3], [4], [5], [7] and the literature therein.

Substituting equations (6) and (7) in equation (5), we have a recurrence relation

ϑ0 = c(8)

ϑn+1 = An(ϑ)(9)

Suppose {ϑn} is a sequence of partial sum of the series in equation (6), then the Shanks nonlin-

ear transform by [16], denoted T{ϑn}, is given as

T{ϑn}=
{ϑn+1}{ϑn−1}−{ϑn}2

{ϑn+1}+{ϑn−1}−2{ϑn}
(10)

which the first order iteration is given as

ιn = T{ϑn}(11)

Subsequent Shanks nonlinear iterated transform are

κn = T{ιn}

µn = T{κn}

...

These iterations, according to [16], often leads to the reasonable results. The more the iterations

the better the results, this can be seen in the numerical illustrations in the following section.

5. MAIN RESULTS

In this section we give examples by adopting the technique stated in the previous section on

the theory of ADM and NST. The numerical calculations were made using Maple Mathemati-

cal software to ensure double precision arithmetic in order to reduce the round-off errors to the

barest minimum.

Numerical Example 1. Consider the equation

x+ sinhx = 1
2
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The approximate analytical solution is x = 0.2487139369 . Applying the Adomian polynomial,

the theory of ADM and NST, we have the result as presented in Table 1. Its easy to see from

Table 1 that ϑ = ∑
∞
n=0 ϑn failed to yield reasonable converging result in column ϑn. This was

quickly upturn on application of NST in column ιn, κn, µn and finally through column ρn.

TABLE 1. Nonlinear Shanks Transform of Numerical Example 1

n ϑn ιn κn µn ρn

0 0.5000000000 0.2550813376 0.2484650317 0.2487523931 0.2468039040

1 −0.0216953055 0.2402894297 0.2488573072 0.2448934649 0.2487321902

2 0.5665052912 0.2585674172 0.2487140775 0.2486770372

3 −0.1668375910 0.2378526863 0.2485760245 0.2487313987

4 0.846290120 0.2606866501 0.2489524909

5 −0.6767877430 0.2348986366 0.2484167479

6 1.761565625 0.2657846151

7 −2.321585858 0.2261027720

8 4.741363540

9 −7.776280080

Numerical Example 2. Consider the equation

x+ sinhx = 1
2 + coshx

The approximate analytical solution is x = 0.9046738485 . Also, applying the Adomian poly-

nomial, the theory of ADM and NST, we have the result as presented in Table 2. Its obvious

from Table 2 that ϑ = ∑
∞
n=0 ϑn failed to yield reasonable converging result in column ϑn. How-

ever, this was overturn on application of NST in column ιn, κn, µn and finally through column

ρn

6. CONCLUSION

Modified Adomian decomposition method (ADM) has been successfully adapted to obtain

Adomian polynomials (AP) of frequently occuring transcendental-hyperbolic nonlinear terms

in a linear functional. We demonstrated with two test problems of transcendental hyperbolic
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TABLE 2. Nonlinear Shanks Transform of Numerical Example 2

n ϑn ιn κn µn ρn

0 0.5000000000 0.8775406695 0.9036872640 0.9039309631 0.9039260151

1 1.106530660 0.9139030481 0.9049958618 0.9048670639

2 0.7386512191 0.8996958171 0.8992782428 1.082847107

3 1.073346459 0.9081495808 1.147379091

4 0.7124523708 1.087748017 1.060161471

5 1.139978405 1.132515271

6 1.080479044 1.249930499

7 1.495334687

8 0.8945290538

form to show the reliability of the AP so obtained. As a result of the noise term occurrence, the

solution series convergence were contradictory as shown in column ϑn of Tables 1 and 2. These

we facilitated to convergence using the nonlinear Shanks transform (NST), although the results

accuracy depended on the order of nonlinear Shanks iteration used. In all, the result obtained

were in excellent agreement with those obtained via analytic method with maximum absolute

error less than 1%.
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