
Available online at http://scik.org

J. Math. Comput. Sci. 10 (2020), No. 3, 497-506

https://doi.org/10.28919/jmcs/4457

ISSN: 1927-5307

MEMORY-EFFICIENT SELF-CROSS-PRODUCT FOR LARGE MATRICES USING
R AND PYTHON

MOHAMMAD ALI NILFOROOSHAN∗

Livestock Improvement Corporation, Private Bag 3016, Hamilton 3240, New Zealand

Copyright c© 2020 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In many quantitative studies, calculations of matrix self-cross-products (B′B) are needed, where B is

any matrix of interest. For matrix B with many number of rows, there might be memory limitations in storing B′B.

Also, calculating B′B has a computational complexity of m2n, for B with n and m number of rows and columns,

respectively. Because B′B is symmetric, almost half of the calculations and the memory usage are redundant.

The half-matrix multiplication algorithm (HMMA) was introduced, which creates B′B upper-triangular. Matrix

multiplication functions %*% and crossprod in R, numpy.dot in Python, and user-defined HMMA functions

hmma r and hmma py in R and Python were compared, for matrix B with 40,000 real numbers, and various

dimensions. Runtime of B′B calculation was less than a second when B had more than 4 rows. The longest

runtime was for B with 1 row and crossprod (21.3 sec), and then numpy.dot (9.7 sec). Considering B with

4 or less number of rows, hmma py, %*%, and hmma r ranked 1 to 3 for the shortest runtime. The memory usage

of a (40,000 × 40,000) B′B was 12.8 Gb, and the main advantage of HMMA was reducing it to the half.

Keywords: matrix; cross-product; symmetric; computational complexity; memory usage; runtime; animal model.

2010 AMS Subject Classification: 17D92.

∗Corresponding author

E-mail address: mohammad.nilforooshan@lic.co.nz

Received January 5, 2020
497

498 MOHAMMAD ALI NILFOROOSHAN

1. INTRODUCTION

In many fields of quantitative science, the cross-product of a matrix to itself (transpose of

a matrix multiplied to the matrix) is needed. Quantitative Genetic is one of them, in which,

animal models have been widely used in livestock genetic evaluations. There are numerous

types of animal models, some of them explained by Mrode [1]. All animal models are based on

the best linear unbiased prediction (BLUP) methodology developed by Henderson [2]. As an

example, a repeatability animal model is [1]:

(1) y = Xb+Za+Wpe+ e,

where y, b, a, pe, and e are the vectors of observations, fixed effects, random animal genetic

effects, random permanent environmental effect, and random residuals, and X, Z, W are inci-

dence matrices relating y to b, a, pe, respectively. In matrix notations, Eq. (1) is written as

[1]:

(2)

X′X X′Z X′W

Z′X Z′Z+A−1α1 Z′W

W′X W′Z W′W+ Iα2

b̂

â

p̂e

=

X′y

Z′y

W′y

 ,

where A is the pedigree relationship matrix, I is an identity matrix with the order of the total

number of animals in the pedigree, α1 = σ2
e /σ2

a , α2 = σ2
e /σ2

pe, σ2
a , σ2

pe, and σ2
e are the additive

genetic, permanent environment, and residual variances, respectively. Given the left-hand-side

matrix and the right-hand-side vector, b̂, â, and p̂e vectors are being predicted. There are matrix

self-cross-products (X′X, Z′Z, and W′W) on the diagonal blocks of the left-hand-side matrix.

These square matrices have sizes equal to the total number of levels for fixed effects, number

of animals in the pedigree, and the number of animals with observed phenotypes, respectively.

There might be millions of animals in the pedigree.

If various residual variances are associated with y, the equation system (2) is changed to [1]:

MEMORY-EFFICIENT MATRIX SELF-CROSS-PRODUCT USING R AND PYTHON 499

(3)

X′R−1X X′R−1Z X′R−1W

Z′R−1X Z′R−1Z+A−1σ−2
a Z′R−1W

W′R−1X W′R−1Z W′R−1W+ Iσ−2
pe

b̂

â

p̂e

=

X′R−1y

Z′R−1y

W′R−1y

 ,

where R is the diagonal matrix of residual variances. Matrix self-cross-products do still exist.

For example, X′R−1X = (R−.5X)′R−.5X. Also, V = [X Z W]:

(4)

V′R−1V+

0 0 0

0 A−1σ−2
a 0

0 0 Iσ−2
pe

b̂

â

p̂e

= V′R−1y.

The genomic relationship matrix (G), which is used instead of A in genomic-BLUP [3] is

also a matrix self-cross-product. There are several forms of G (e.g., VanRaden [3], Yang et

al. [4]). For example, in one of the methods introduced by VanRaden [3], G = L′L, where

L = Z′/
√

2∑ pi(1− pi), Z is a centered incidence matrix of SNP genotypes, and pi is the allele

frequency at loci i.

A matrix self-cross-product is always symmetric. As a result, (m – 1)m/2 of the calculations

and the memory usage are redundant, where the dimension of the cross-product is m×m. The

aim of this study was finding an algorithm for obtaining the upper triangular of a matrix self-

cross-product in the shortage of memory, and benchmarking runtime and memory usage with

high level programming languages, R and Python. Whereas, there are advanced matrix mul-

tiplication algorithms in mathematical libraries of low-level languages such Fortran and C, it

was of interest exploring how programmers in high-level languages such as R and Python can

perform these operations, when due to the size of the problem, memory usage is a limitation.

2. MATERIALS

A vector of 40,000 random real numbers, sampled from a uniform distribution, ranged from

0 to 100, was used to form matrix B, from which B′B was going to be calculated. Various B

were formed with different dimensions, and the number of rows being any integer from 1 to

500 MOHAMMAD ALI NILFOROOSHAN

40,000, with a remainder of 0 with 40,000. That means, there were 35 values for the number of

rows, where the first 6 values were 1, 2, 4, 5, 8, and 10.

Benchmarking were run on a t3.xlarge Amazon EC2 instance, which features Intel Xeon

Platinum 8000 series processor with Turbo CPU clock speed of up to 3.1 Ghz, 4 virtual CPUs,

16 Gb of RAM, and solid-state drive volume type. Softwares R 3.4.4 [5], Python 3.6.7 [6], and

the Python library numpy 1.16.2 [7] were installed on an Ubuntu Server 18.04 LTS-64-bit (x86)

operating system.

3. METHODS

The computational complexity of B′B is m2n, where n and m are the number of rows and

columns of B, respectively. The dimension of B′B is m×m, and it is symmetric. Thus, not all the

multiplications are necessary. Introducing the half-matrix multiplication algorithm (HMMA),

to calculate the upper triangular of B′B:

FOR j IN (1:m): B′B[j, j..m] = B′[j,]B[, j..m]

Examples for a (3 × 4) B matrix are:

B = matrix(0:11, nrow=3)

BtB = list()

for(j in 1:ncol(B)) BtB[[j]] = B[,j] %*% B[,j:ncol(B)]

in R, and the following in Python:

B = numpy.array(range(12))

B.shape = (3, B.size//3)

BtB = []

for j in range(B.shape[1]):

BtB.append(B[:,j].dot(B[:,j:]))

Using HMMA, the computational complexity is reduced to nm(m+ 1)/2+∑
m
k=1 lk, where l

is the loop cost, decreasing by increasing the iteration number. Fig. 1 shows the reduction in the

computational complexity of B′B (nm(m + 1)/2 – m2n) by using HMMA, excluding the loop

cost, with the number of rows (n) and the number of columns (m) of B being variable from 1 to

10.

MEMORY-EFFICIENT MATRIX SELF-CROSS-PRODUCT USING R AND PYTHON 501

FIGURE 1. The effect of n and m on nm(m + 1)/2 – m2n.

However, additional costs are involved in forming the full matrix after HMMA. The steps of

retrieving the full B′B matrix from the list object BtB obtained from HMMA are described in

Appendix A (R function list2mat). However, forming the full B′B matrix might not always

be necessary. As for multiplication with other vector or matrix, only rows of B′B need to be

retrieved, one after another. R function get rowcol (Appendix B) extracts the ith row/column

of B′B from the BtB list. Given B with 40,000 elements and various dimensions, runtime in

seconds, and memory usage in bytes were compared across %*%, crossprod, and hmma r

(HMMA, Appendix C) functions in R, and numpy.dot, and hmma py (HMMA, Appendix

D) functions in Python. Runtime was averaged over 4 reiterations. Using %*% or crossprod

inside the hmma r function (the 4th line of the function (Appendix C)) produced similar timimg

results. Therefore, results for hmma r with %*% inside are presented.

4. RESULTS AND DISCUSSION

4.1. Runtime. Runtime for B′B calculation or its upper triangular (HMMA) were com-

pared for the 3 functions in R (%*%, crossprod, hmma r) and the 2 functions in Python

(numpy.dot, hmma py), for B with 40,000 elements and various dimensions. The results for

B’s number of rows from 1 to 10 are presented in Fig. 2. Runtime for B with more number of

rows was very short, and provided in the data repository (Data Availability).

502 MOHAMMAD ALI NILFOROOSHAN

FIGURE 2. Runtime of B′B, with different B of 40,000 elements and different

number of rows (n).

As the number of B’s rows (n) increased, the dimension of B′B and its computational com-

plexity decreased. hmma py showed the least runtime, and crossprod showed a longer

runtime compared to its R-native equivalent %*%. Though, the time difference was small at n

= 20, crossprod’s runtime was shorter than %*%’s runtime (result not shown, but available

in the data repository). At n = 1, crossprod showed the longest runtime. However, at n >

1, numpy.dot’s runtime was longer. Loop cost increased, and the computational complexity

decreased by increasing n. As a result HMMA’s benefit decreased. At n ≥ 5, hmma r showed

the longest runtime. However, at that point, all B′B calculations were taking less than a second

time. Therefore, parallel processing to reduce the runtime was not necessary.

4.2. Memory usage. Memory usage of B′B or its upper triangular (HMMA) were com-

pared for the 3 functions in R (%*%, crossprod, hmma r) and the 2 functions in Python

(numpy.dot, hmma py), for B with 40,000 elements and various dimensions. The results for

B’s number of rows from 1 to 10 are presented in Fig. 3. Memory usage of B′B for B with more

number of rows are provided in the data repository.

Memory usage of B′B by hmma r and hmma py were almost half of the memory usage by

the other functions. The memory usage by %*% and crossprod were equal, and the memory

usage by numpy.dat was 88 bytes less than the memory usage by crossprod. Increasing

MEMORY-EFFICIENT MATRIX SELF-CROSS-PRODUCT USING R AND PYTHON 503

FIGURE 3. Memory size of B′B, with different B of 40,000 elements and dif-

ferent number of rows (n).

n from 1 to 40,000 (B′B dimension from 40,000 × 40,000 to 1 × 1), the memory usage of B′B

reduced from 12,800,000,200 to 208 bytes for crossprod and %*%, 6,408,480,288 to 256

bytes for hmma r, and 6,400,160,096 to 104 bytes for hmma py.

Testing the memory limit, a (1 × 46,000) B was created to form a (46,000 × 46,000) B′B.

Both %*% and crossprod failed, and the system returned the message “Error: cannot

allocate vector of size 15.8 Gb”. On the other hand, hmma r successfully built

B′B with 7.9 Gb memory usage. numpy.py failed and returned a “MemoryError” message.

Also, hmma py failed with the following message:

BtB = numpy.concatenate(BtB) # to get the correct memory usage

MemoryError

Excluding BtB = numpy.concatenate(BtB) from numpy.dot, it successfully cre-

ated B′B. This line of code was not necessary, but to get the correct estimate of the memory

usage. It seems that the problem was keeping 46,0002 real numbers in a single array rather

than multiple arrays in a list. To get the correct memory usage without this line of code,

sys.getsizeof (in the last line of hmma py (Appendix D)) should iterate over the arrays

in the BtB list and sum their sizes.

504 MOHAMMAD ALI NILFOROOSHAN

Storing float numbers with single-precision allows saving memory usage. R does not have

the ability to work with single-precision [8]. Thus, R stores numeric matrices with double-

precision, which takes double amount of memory (64-bit vs. 32-bit floats). Single-precision

accommodates a precision of approximately 7 decimal digits, and double-precision with a pre-

cision of approximately 16 decimal digits [9]. There is a trade-off between memory usage and

the accuracy, but in most of the tasks, high accuracy in long decimal points is not required, and

single-precision can be satisfactory. The float package [8] extends R’s linear algebra facili-

ties to include single-precision (float) data. Python has a rich family of data types, arrays can

save floats in single and double precision, and libraries like ctypes [10] and numpy [7] provide

the possibility of storing floats in single- and double-precision.

5. CONCLUSIONS

Even though, HMMA does almost half ((1 + 1/m)/2, where m is the matrix’s number of

columns) of the matrix self-cross-product multiplications, it did not necessarily reduce the com-

putational time. The reason was the additional loop cost. However, runtime was not a constraint,

because all the calculations went reasonably fast. In cases where the memory usage is a con-

straint, HMMA can be used to reduce the memory usage of B′B by (1 + 1/m)/2, and maximum

vector length by 1/m.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

[1] R. A. Mrode, Linear Models for the Prediction of Animal Breeding Values (2nd ed.), CABI, Oxfordshire, UK

(2005), pp.71–81.

[2] C. R. Henderson, Sire evaluation and genetic trends, J. Anim. Sci. 1973 (Symposium) (1973), 10–41.

[3] P. M. VanRaden, Efficient methods to compute genomic predictions, J. Dairy Sci. 91(11) (2008), 4414–4423.

[4] J. Yang, B. Benyamin, B. P. McEvoy, S. Gordon, A. K. Henders, D. R. Nyholt, P. A. Madden, et al., Common

SNPs explain a large proportion of the heritability for human height, Nat. Genet. 42 (2010), 565–569.

[5] R Core Team, The R Project for Statistical Computing, R Foundation for Statistical Computing, Vienna, Aus-

tria, https://www.R-project.org (2018). [Online; accessed 28-June-2019]

https://www.R-project.org

MEMORY-EFFICIENT MATRIX SELF-CROSS-PRODUCT USING R AND PYTHON 505

[6] Python Software Foundation, Python 3.6 documentation – The Python standard library, https://docs.

python.org/3.6/library/index.html (2019). [Online; accessed 28-June-2019]

[7] P. F. Dubois, K. Hinsen, J. Hugunin, Numerical Python, Comput. Phys. 10 (1996), Article ID 262.

[8] D. Schmidt, Introducing the float package: 32-Bit Floats for R (Version 0.2-3), https://cran.rstudio.

com/web/packages/float/vignettes/float.pdf (2019). [Online; accessed 28-June-2019]

[9] Wikipedia contributors, Floating-point arithmetic, https://en.wikipedia.org/wiki/

Floating-point_arithmetic (2019). [Online; accessed 28-June-2019]

[10] Python Software Foundation, ctypes – A foreign function library for Python, https://docs.python.

org/3.6/library/ctypes.html (2019). [Online; accessed 28-June-2019]

Data Availability: The supporting data is available at the Mendeley Data repository:

DOI:10.17632/vk8vy7ghnf.1

APPENDICES

Appendix A. list2mat function in R:

list2mat = function(BtB) {

dimmat = (sqrt(1+8*length(unlist(BtB)))-1)/2

mat = matrix(0, nrow=dimmat, ncol=dimmat)

k = 0

for(i in 1:dimmat)

{

mat[i, i:dimmat] = BtB[[i]]

k = k + dimmat - i

}

mat = mat + t(mat)

diag(mat) = diag(mat)/2

return(mat)

}

Appendix B. get rowcol function in R:

get_rowcol = function(BtB, th) {

if(th < 1 | th > length(BtB)) stop("Invalid row/column")

https://docs.python.org/3.6/library/index.html
https://docs.python.org/3.6/library/index.html
https://cran.rstudio.com/web/packages/float/vignettes/float.pdf
https://cran.rstudio.com/web/packages/float/vignettes/float.pdf
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://docs.python.org/3.6/library/ctypes.html
https://docs.python.org/3.6/library/ctypes.html
https://doi.org/10.17632/vk8vy7ghnf.1

506 MOHAMMAD ALI NILFOROOSHAN

rc = c()

if(th > 1)

{

for(i in 1:(th-1)) rc = c(rc, BtB[[i]][th-i+1])

rc = c(rc, BtB[[th]])

} else {

rc = BtB[[1]]

}

return(rc)

}

Appendix C. hmma r function in R:

hmma_r = function(B) {

start_time = Sys.time()

BtB = list()

for(i in 1:ncol(B)) BtB[[i]] = B[,i] %*% B[,i:ncol(B)]

print(paste(round(as.numeric(Sys.time()-start_time, units="secs"), 3),

object.size(BtB), nrow(B), ncol(B), sep=","))

}

Appendix D. hmma py function in Python:

def hmma_py(B):

start_time = time.time()

BtB = []

for i in range(B.shape[1]):

BtB.append(B[:,i].dot(B[:,i:]))

BtB = numpy.concatenate(BtB) # to get the correct memory usage

print("%s,%d,%d,%d" %(round(time.time()-start_time, 3), \

sys.getsizeof(BtB), B.shape[0], B.shape[1]))

	1. Introduction
	2. Materials
	3. Methods
	4. Results and Discussion
	4.1. Runtime
	4.2. Memory usage

	5. Conclusions
	Conflict of Interests
	References
	Appendices
	Appendix A
	Appendix B
	Appendix C
	Appendix D

