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Abstract. Motivated by a number of recent investigations, we define and investigate the various properties of the

ruled surfaces depend on three dimensional Lie groups with a bi-variant metric. We give useful results involving

the characterizations of these ruled surfaces. Some special ruled surfaces such as normal surface, binormal surface,

tangent developable surface, rectifying developable surface and Darboux developable surface are worked. From

those applications, we make use of such a work to interpret the Gaussian, mean curvatures of these surfaces and

geodesic, normal curvature and geodesic torsion of the base curves with respect to these surfaces depend on three

dimensional Lie groups.
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1. INTRODUCTION

In the surface theory of geometry, ruled surfaces were found by French mathematician Gas-

pard Monge who was a founder of constructive geometry. Recently, many mathematicians have

studied the ruled surfaces on Euclidean space and Minkowski space for a long time. The infor-

mation about these topic, see, e.g., [1, 9, 10, 16, 17, 18] for a systematic work. A ruled surface
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in R3 is surface which can be described as the set of points swept out by moving a straight line

in surface. It therefore has a parametrization of the form

Φ(s,v) = α(s)+ vδ (s)

where α and δ are a curve lying on the surface called base curve and director curve, respec-

tively. The straight lines are called rulings. By using the equation of ruled surface we assume

that α ′ is never zero and δ is not identically zero. The rulings of ruled surface are asymptotic

curves. Furthermore, the Gaussian curvature of ruled surface is everywhere non-positive. The

ruled surface is developable if and only if the distribution parameter vanishes and it is mini-

mal if and olny if its mean curvature vanishes [7]. A ruled surface is doubly ruled if through

every one of its points there are two distinct lines that lie on the surface. Cylinder, cone, heli-

coid, Mobius strip, right conoid are some examples of ruled surfaces and hyperbolic paraboloid

and hyperboloid of one sheet are doubly ruled surfaces. Recently, there are many works about

geometry and curve theory in three dimensional Lie groups. Çöken and Çiftçi studied the

degenerate semi- Riemannian geometry of Lie Gruops. They found reductive homogeneous

semi-Riemannian space from the Lie group in a natural way [5]. Next, general helices in three

dimensional Lie group with bi-invariant metric are defined by Çiftçi in [4]. He generalized the

Lancret’s theorem and obtained so-called spherical general helices, and also he gave a relation

between the geodesics of the so-called cylinders and general helices. In [4], a cylinder which is

a surface was defined in a three dimensional Lie group with a bi-variant metric in accordance

with the definition of a ruled surface in Riemannian manifold. If G is a three dimensional Lie

group and g is its Lie algebra, then a cylinder is a surface ϕ(t,λ ) given by ϕ : R×R −→ G,

ϕ(t,λ ) = α(t)exp(λX), where α : R−→ G is a curve in G, X ∈ g and

exp : g−→ G

is the exponential mapping of G. Meeks and Pérez studied geometry of constant mean curvature

H ≥ 0 surfaces which are called H-surfaces in three dimensional simply-connected Lie group

see[12].

Slant helices in three dimensional Lie groups were defined by Okuyucu et al. in [13]. They

obtained a characterization of slant helices and gave some relations between slant helices and
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their involutes, spherical images. They also defined Bertrand curves and Mannheim curves

in three dimensional lie groups in [8, 14] and gave the harmonic curvature function for some

special curves such as helix, slant curves, Mannheim curves and Bertrand curves. In the present

paper, we define and investigate the ruled surface in three dimensional Lie groups with a bi-

variant metric. We obtain the Gaussian and mean curvatures, distribution parameter of the ruled

surface. Also we find the geodesic, normal curvatures and geodesic torsion of the base curve of

ruled surface with respect to ruled surface in three dimensional Lie groups. In the final part of

this paper, we give some characterizations of the ruled surface using the curvatures.

2. PRELIMINARIES

A Lie group is a nonempty subset G which satisfies the following conditions;

1) G is a group.

2) G is a smooth manifold.

3) G is a topological group, in particular, the group operation ◦ : G ×G −→ G and the

inverse map inv : G −→ G are smooth.

Let g be the Lie algebra of G. g is a vector space together with a bilinear map

[ , ] : g×g−→ g

called Lie bracket on g, such that the following two identities hold for all a,b,c ∈ g

[a,a] = 0

and the so-called Jacobi identity

[a, [b,c]]+ [c, [a,b]]+ [b, [c,a]] = 0.

It is immediately verified that [a,b] =− [b,a] .

If G is a Lie group, a vector field X on G is left-invariant, if

d(La)b(X(b)) = X(La)b) = X(ab)
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for all a,b ∈G. Here La : G−→G and d(La) : TG −→ TG where TG is a tangent vector space.

Similarly X is right-invariant, if

d(Ra)b(X(b)) = X(Ra)b) = X(ba).

A Riemannian metric on a Lie group G is called left-invariant if

〈u,v〉= 〈d(La)(u),d(La)(v)〉

where u,v ∈ TG(a), a ∈ G . A metric on G that is both left-invariant and right-invariant is

called bi-invariant (see [11]). Let G be a Lie group with bi-invariant metric 〈,〉 and let D be

the corresponding Levi-Civita connection. If g is the Lie algebra of G, then g is isomorph to TeG

(1) 〈X , [Y,Z]〉= 〈[X ,Y ] ,Z〉

(2) DXY =
1
2
[X ,Y ]

for all X ,Y,Z ∈ g. Let α : I ⊂ R −→ G be a parametrized curve and {X1,X2, ...,Xn} be an

orthonormal basis of g. We can write two vector fields W and Z as W =
n
∑

i=1
ωiXi and Z =

n
∑

i=1
ziXi

where ωi : I −→R and zi : I −→R are smooth functions. The Lie bracket of W and Z is defined

by [W,Z] =
n
∑

i, j=1
ωiz j

[
Xi,X j

]
. If the directional derivative of W is

·
W =

n
∑

i=1

·
ωiXi for

·
ωi =

dω

dt ,

then the following equation hold as;

(3) Dα ′W =
·

W +
1
2
[T,W ]

where α ′ = T is the tangent vector field of α . Note that if W is left-invariant vector field of α ,

then
·

W = 0 (see [3, 4])

Now, let α be a parametrized curve in three dimensional Lie group G and {T,N,B,κ,τ} be

the Frenet apparatus of the curve α . Then Çiftçi [4] defined τG as;

(4) τG =
1
2
〈[T,N] ,B〉

or

τG =
1

2κ2τ

〈
··
T ,
[

T,
·
T
]〉

+
1

4κ2τ

∥∥∥∥[T,
·
T
]∥∥∥∥2

.
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Also the following equalities were given in [13];

[T,N] = 〈[T,N] ,B〉B = 2τGB(5)

[T,B] = 〈[T,B] ,N〉N =−2τGN

Let α : I ⊂ R−→G be a curve with arc-length parameter s, in three dimensional Lie group G,

then the Frenet formulae in G is given by [2]

dT
ds

= κN

dN
ds

=−κT +(τ− τG)B(6)

dB
ds

=−(τ− τG)N

After some computation which we use equations (3) and (6), the curvature κ and torsion τ are

found by

κ =

∥∥∥∥dT
ds

∥∥∥∥= ∥∥∥∥ ·T∥∥∥∥
τ =

∥∥∥∥dB
ds

∥∥∥∥+ τG(7)

(for curvature κ see [4]). It is known that cross product × in R3 is a Lie bracket. If the three

dimensional special orthogonal group with the bi-variant metric is SO(3), then by identifying

so(3) with (R3,×), we have [X ,Y ] = X ×Y for all X ,Y ∈ so(3). So for a curve in SO(3), it is

shown that (see [4])

(8) τG =
1
2
〈T ×N,B〉= 1

2
.

Also if G is Abelian ,then τG = 0 (see [4]).

3. RULED SURFACES IN THREE DIMENSIONAL LIE GROUPS

We will define ruled surfaces in three dimensional Lie groups .Then we will obtain the distri-

bution parameter, Gaussian curvature and mean curvature of these ruled surfaces. Also we will

identify the geodesic curvature, the normal curvature and geodesic torsion of the base curve of

ruled surfaces.
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Definition 1: Let G be the three dimensional Lie group with a bi-invariant metric 〈,〉 . A

ruled surface ϕ(s,v) in G , ϕ : R×R−→G, is given by

(9) ϕ(s,v) = α(s)+ vX(s)

where α : R−→G is called base curve and X ∈ g is a left-invariant unit vector field which is

called director. The directors denote straight lines which are called rulings of the ruled surface.

The base curve α is given with the arc-length parameter s, the set {T,N,B,κ,τ} denote the

Frenet apparatus of α , α ′ = T , κ 6= 0 and τG = 1
2 〈[T,N] ,B〉 .

Definition 2: If there exists a common perpendicular to two constructive rulings in the sur-

face, then the foot of the common perpendicular on the main ruling is called central point. The

locus of the central point is called striction curve. The striction curve of the ruled surface ϕ in

three dimensional Lie group G is given by

(10) α = α− 〈α
′,DT X〉
‖DT X‖2 X .

Definition 3: The distribution parameter λ of the ruled surface ϕ in three dimensional Lie

group G given by equation (9) is dedicated as;

(11) λ =
det(T,X ,DT X)

‖DT X‖2 .

The standard unit normal vector field U on the ruled surface ϕ is defined by

(12) U =
ϕs×ϕv

‖ϕs×ϕv‖
.

where ϕs =
dϕ

ds and ϕv =
dϕ

dv .

Definition 4: The Gaussian curvature and mean curvature of the ruled surface ϕ in three

dimensional Lie group G are given respectively by

(13) K =
eg− f 2

EG−F2

and

(14) H =
Eg+Ge−2F f

2(EG−F2)

where E = 〈ϕs,ϕs〉 , F = 〈ϕs,ϕv〉 , G = 〈ϕv,ϕv〉 , e = 〈ϕss,U〉 , f = 〈ϕsv,U〉 and

g = 〈ϕvv,U〉 .
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Definition 5: For a surface Φ in three dimensional Lie group G,

1) Φ is developable if and only if the distribution parameter of Φ vanishes.

2) Φ is called minimal if and if only the mean curvature of Φ vanishes.

Definition 6: If the Gaussian curvature of a surface in in three dimensional Lie group G is K,

then

1) If K〈0 , then a point on the surface is hyperbolic.

2) If K = 0 , then a point on the surface is parabolic.

3) If K〉0 , then a point on the surface is elliptic.

Definition 7: If the curve α is the base curve of the ruled surface ϕ in three dimensional Lie

group G, then the geodesic curvature, normal curvature and geodesic torsion with respesct to

the ruled surface ϕ are computed as follows;

(15) κgϕ
= 〈U×T,DT T 〉

(16) κnϕ
= 〈DT T,U〉

and

(17) τgϕ
= 〈U×DTU,DT T 〉 .

(For the formulas of κg, κn and τg in Euclidean space see [1]).

Remark 1 : Note that the curvatures and torsion of the curve α in equations (15), (16) and

(17) are computed with respect to ruled surface ϕ and the geodesic torsion τG in equation (4) of

α is given with respect to three dimensional Lie group G.

Definition 8: For a curve β which is lying on a surface in three dimensional Lie group G, the

following statements are satisfied;

1) β is a geodesic curve if and only if the geodesic curvature of the curve with respect to the

surface vanishes.

2) β is a asymptotic line if and only if the normal curvature of the curve with respect to the

surface vanishes.

3) β is a principal line if and only if the geodesic torsion of the curve with respect to the

surface vanishes.
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Theorem 1: Let ϕ(s,v) = α(s)+ vX(s) be a ruled surface in three dimensional Lie group G

with unit left-invariant vector field X , α : R−→G be the base curve and {T,N,B,κ,τ} be the

Frenet apparatus of α . The base curve α is always the striction curve of the ruled surface ϕ .

Proof. If we use the equation (3.2) and make the appropriate calculations , we find the striction

curve as;

α = α− 〈α
′,DT X〉
‖DT X‖2 X

= α−
〈
T, 1

2 [T,X ]
〉

‖[T,X ]‖2 X

= α− 1
2
〈[T,T ] ,X〉
‖[T,X ]‖2 X

= α.

�

Theorem 2:Let ϕ(s,v) = α(s) + vX(s) be a ruled surface in three dimensional Lie group

G with unit left-invariant vector field X , α : R−→G be the base curve and {T,N,B,κ,τ}

be the Frenet apparatus of α .The distribution parameter, the Gaussian curvature and the mean

curvature of ϕ are given respesctively as;

λ = 2
〈T ×X , [T,X ]〉
‖[T,X ]‖2

K =− 〈T ×X , [T,X ]〉2

4A2(1+ v2

4 ‖[T,X ]‖2−〈T,X〉2)

and

H =

1
A(−κ 〈B,X〉− vκ

2 〈N×X , [T,X ]〉+ vκ

2 〈[N,X ] ,T ×X ,〉

+v2κ

4 〈[N,X ] , [T,X ]×X ,〉+ 1
2 〈[T, [T,X ]] ,T ×X〉

+ v
4 〈[T, [T,X ]] , [T,X ]×X〉)− 1

A 〈T,X〉〈T ×X , [T,X ]〉

2(1+ v2

4 ‖[T,X ]‖2−〈T,X〉2)

where A = ‖ϕs×ϕv‖.
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Proof. If ϕ(s,v) = α(s)+ vX(s) is a ruled surface in three dimensional Lie group G, then we

can compute

E = 1+
v2

4
‖[T,X ]‖2 , F = 〈T,X〉 , G = 1

e =
1
A


−κ 〈B,X〉− vκ

2 〈N×X , [T,X ]〉+ vκ

2 〈[N,X ] ,T ×X ,〉

+v2κ

4 〈[N,X ] , [T,X ]×X ,〉+ 1
2 〈[T, [T,X ]] ,T ×X〉

+ v
4 〈[T, [T,X ]] , [T,X ]×X〉


f =

1
2A
〈T ×X , [T,X ]〉 , g = 0.

where A = ‖ϕs×ϕv‖ . By using the equations (13) and (14), we easily find Gaussian and mean

curvatures .

Also with the equations (3) and (11), distribution parameter is obtained directly. �

Corollary 1: The ruled surface ϕ(s,v) = α(s)+ vX(s) in three dimensional Lie group G is

developable if and only if the vector fields T ×X and [T,X ] are orthogonal. The ruled surface

ϕ is minimal if and only if the following equation is satisfied;

−κ 〈B,X〉− vκ

2 〈N×X , [T,X ]〉+ vκ

2 〈[N,X ] ,T ×X ,〉

+v2κ

4 〈[N,X ] , [T,X ]×X ,〉+ 1
2 〈[T, [T,X ]] ,T ×X〉

+ v
4 〈[T, [T,X ]] , [T,X ]×X〉

= 〈T,X〉〈T ×X , [T,X ]〉

Proof. By using the definition (5) and the distribution parameter, the mean curvature which are

found in above theorem the results are apparent. �

Remark 2 : Notice that if Φ is a ruled surface in Euclidean space, then K ≤ 0 where K is the

Gaussian curvature of Φ. Altough K ≤ 0 for the ruled surface Φ in Euclidean space, it is not

always true for a ruled surface in three dimensional Lie group .

Theorem 3:Let ϕ(s,v) = α(s)+ vX(s) be a ruled surface in three dimensional Lie group G

with unit left-invariant vector field X , α : R−→G be the base curve and {T,N,B,κ,τ} be the

Frenet apparatus of α. The geodesic curvature, normal curvature and geodesic torsion of α with

respect to ruled surface ϕ are given respectively as;

κgϕ
=

κ

A
(〈X ,N〉+ vτG 〈X ,B〉)
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κnϕ
=

κ

A
(−〈X ,B〉+ v

2
〈[T,X ] ,X×N〉)

and

τgϕ
= 〈X ,N〉( κ

A2 (κ 〈X ,B〉+ v
2
〈T,L×X〉)

+
vκ

2A2 (κ 〈[T,X ] ,N×X〉+ v
2
〈[T,X ] ,L×X〉)

+
1

2A2 (
vκ

2
〈[[T,X ] ,T ] ,T ×X〉+ v2κ

4
〈[[T,X ] ,T ] , [T,X ]×X〉))

− vκτG

A2 〈[T,X ] ,T ×X〉〈X ,B〉

where A = ‖ϕs×ϕv‖ , τG = 1
2 〈[T,N] ,B〉 and L = κ [X ,N]+ 1

2 [T, [T,X ]] .

Proof. If the equation of ruled surface is ϕ(s,v) = α(s)+ vX(s), then the unit normal vector

field of ϕ is found as;

U =
1
A
(T ×X +

v
2
[T,X ]×X).

By using the equation (3), we have

DTU =
·

U +
1
2
[T,U ]

=

(
1
A

)′
(T ×X +

v
2
[T,X ]×X)+

1
A
(κ(N×X)+

1
2
(T × [T,X ])

+
v
2
((κ [N,X ]+

1
2
[T, [T,X ]])×X))

+
1

2A
([T,T ×X ]+

v
2
[T, [T,X ]×X ]).

If we use the equations (6), (15), (16) , (17) and make the appropriate calculations, the proof is

completed. �

Corollary 2:If the director vector field X and the binormal vector field B are ortogonal and

〈[T,X ] ,X×N〉= 0 then the base curve α of ϕ is a asymptotic line.

Proof. If we consider the definition (8) and the normal curvature κnϕ
given in theorem the result

is clear. �

Corollary 3:If the director vector field X is orthogonal to both the principal normal vector

field N and the binormal vector field B, then the base curve α of ϕ is geodesic curve and

principal line.
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Proof. If the director vector field X is orthogonal to both the principal normal vector field N

and the binormal vector field B, then

〈X ,N〉= 0 and 〈X ,B〉= 0.

By using geodesic curvature and geodesic torsion given in the theorem, we get

κgϕ
= 0 and τgϕ

= 0.

These equations denotes that α of ϕ is geodesic curve and principal line, by the definition

(8). �

Example : Let a ruled surface which is a cylinder in three dimensional Lie group G, is given

with the equation

ϕ(t,v) = (cos t,sin t,0)+ v(0,0,1).

The Frenet vector fields of the base curve α(t) = (cos t,sin t,0) are T = (−sin t,cos t,0) , N =

(−cos t,−sin t,0) and B = (0,0,1).

Since the curve α(t) = (cos t,sin t,0) is also a circle in R3, we can compute τG =

1
2 〈[T,N] ,B〉 = 1

2 〈T ×N,B〉 = 1
2 . By the equations in (7), curvature and torsion of α are found

as κ =

∥∥∥∥ ·T∥∥∥∥= 1 and

τ =

∥∥∥∥dB
ds

∥∥∥∥+ τG

= ‖(0,0,0)‖+ 1
2

=
1
2
.

which also means DT B = 1
2 [T,B] with [T,B] = (cos t,sin t,0).

For the curvatures we find the following expressions

〈X ,N〉= 0 , 〈X ,B〉= 1 , 〈T,X〉= 0 , A = 1

[T,X ] = T ×X = (cos t,sin t,0) , [T, [T,X ]] = (0,0,1)

[N,X ] = (−sin t,cos t,0) , [T,X ]×X = (sin t,−cos t,0).
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Now by using the expressions above, the distribution parameter, Gaussian curvature and mean

curvature are obtained as follows;

λ = 2

K =− 1
v2 +4

H =−v2 +2
v2 +4

.

Also the geodesic curvature, normal curvature and geodesic torsion of α with respect to the

cylinder are

κgϕ
=

v
2

κnϕ
=−1

τgϕ
=−v

2
.

Remark 3 : Notice that a cylinder in in Euclidean space is developable but a cylinder in three

dimensional Lie group G is not developable.

4. SOME SPECIAL RULED SURFACES IN THREE DIMENSIONAL LIE GROUPS

In this section, we will identify some special ruled surfaces which are existed in Euclidean

space. For details of these surfaces see [7, 9, 10].

Definition 9: Let G be the three dimensional Lie group with bi-invariant metric and

α : R−→G be a parametrized curve with the Frenet apparatus {T,N,B,κ,τ} , the modified

Darboux vector field W = 1√
κ2+τ2 (τT +κB) , α ′ = T , κ 6= 0 and τG = 1

2 〈[T,N] ,B〉 . Some

types of ruled surfaces in three dimensional Lie group G are defined and given with their equa-

tions as follows;

1) Tangent developable surface ; ϕ(s,v) = α(s)+ vT (s)

2) Normal surface; ϕ(s,v) = α(s)+ vN(s)

3) Binormal surface; ϕ(s,v) = α(s)+ vB(s)

4) Darboux developable surface; ϕ(s,v) = B(s)+ vT (s)

5) Rectifying surface; ϕ(s,v) = α(s)+ vW (s).
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Remark 4 : If τG = τ , then the binormal vector field B is left-invariant. We will take τG 6= τ

in our calculations without loss of generality.

Theorem 4: Let ϕ(s,v) =α(s)+vT (s) be a tangent developable surface in three dimensional

Lie group G . The distribution parameter, Gaussian curvature and mean curvature of the surface

ϕ are given by

λ = 0

K = 0

H =−τ− τG

2v2κ

and the geodesic curvature, the normal curvature, the geodesic torsion of α with respect to

tangent developable surface are

κgϕ
=−κ

κnϕ
= 0

τgϕ
= 0.

Proof. For the tangent developable surface , the following expressions are computed as; E =

1+ v2κ2 , F = 1 , G = 1 , e =−κ(τ− τG) , f = 0 , g = 0 and the normal vector field of

the surface by the equation (12) is U = −B. By using the equations (11), (13), (14), (15), (16)

and (17) the results are obtained clearly. �

Corollary 4: The tangent developable surface in three dimensional Lie group G is devel-

opable and it is not minimal. A point on this surface is parabolic. The base curve α on the

surface is asymptotic and principal line but it is not geodesic curve.

Proof. Since the distribution parameter of tangent developable surface is zero, then it is devel-

opable. If we pay attention to the equations in (6), the mean curvature can not be zero because

of τG 6= τ . Also by definition (6), a point on the surface is parabolic.

By thinking the definition (8) and since κ 6= 0 , the base curve α is asymptotic and principal

line and not geodesic curve. �
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Theorem 5:Let ϕ(s,v) = α(s)+ vN(s) be a normal surface in three dimensional Lie group

G . The distribution parameter, the Gaussian curvature and the mean curvature of the surface ϕ

are given by

λ =
τ− τG

κ2 +(τ− τG)2

K =−
(

τ− τG

A2

)2

H =−v(τ− τG)(1− vκ + vκ ′)

2A3

and the geodesic curvature, the normal curvature, the geodesic torsion of α with respect to

normal surface are

κgϕ
=

κ(1− vκ)

A

κnϕ
= 0

τgϕ
= κ

(
v(τ− τG)

A
.

(
1− vκ

A

)′
− 1− vκ

A
.

(
v(τ− τG)

A

)′)
where A =

√
v2(τ− τG)2 +(1− vκ)2.

Proof. For the normal surface , the following expressions are computed as; E = v2(τ− τG)
2 +

(1−vκ)2 , F = 0 , G = 1 , e = v(τ−τG)(1−vκ+vκ ′)
A , f = τ−τG

A , g = 0 and the normal vector

field of the surface by the equation (12) is found as;

U =
1
A
(−v(τ− τG)T +(1− vκ)B).

By using the equations (11), (13), (14), (15), (16) and (17) the results are obtained clearly. �

Corollary 5: The normal surface in three dimensional Lie group G is developable is not

developable. It is minimal if and only if the equation vκ− vκ ′ = 1 is satisfied. A point on this

surface is hyperbolic. The base curve α on the surface is asymptotic line. α is geodesic curve

if and only if vκ = 1 and it is principal line if and only if

v(τ− τG)

A
.

(
1− vκ

A

)′
=

1− vκ

A
.

(
v(τ− τG)

A

)′
.
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Proof. Since τG 6= τ , then the distribution parameter can not be zero, so the normal surface is

not developable. By the mean curvature found in theorem and the definition (5) and since v 6= 0,

τG 6= τ , the surface is minimal with the satisfied equation 1− vκ + vκ ′ = 0. Also by definition

(6), a point on the surface is hyperbolic.

By deciding the definition (8) and κ 6= 0, since κnϕ
= 0 , then α is asymptotic line. vκ = 1

if and only if κgϕ
= 0 ,so α is geodesic curve. τgϕ

= 0 if and only if

v(τ− τG)

A
.

(
1− vκ

A

)′
=

1− vκ

A
.

(
v(τ− τG)

A

)′
.

So α is principal line with the satisfied equation above. �

Theorem 6: Let ϕ(s,v) = α(s)+vB(s) be a binormal surface in three dimensional Lie group

G . The distribution parameter, the Gaussian curvature and the mean curvature of the surface ϕ

are given by

λ =
1

τ− τG

K =−
(

τ− τG

A2

)2

H =−−v2κ(τ− τG)+ vτ ′−κ

2A3

and the geodesic curvature, the normal curvature, the geodesic torsion of α with respect to

binormal surface are

κgϕ
=

κ

A

κnϕ
=−κ

A

τgϕ
=

vκ(τ− τG)(A(τ− τG)+ τG)

A2

where A =
√

1+ v2(τ− τG)2.

Proof. For the binormal surface given, the following expressions are computed as; E = 1+

v2(τ − τG)
2 , F = 0 , G = 1 , e = −v2κ(τ−τG)+vτ ′−κ

A , f = τ−τG
A , g = 0 and the normal

vector field of the surface by the equation (12) is found as;

U =− 1
A
(v(τ− τG)T +N).
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By using the equations (11), (13), (14), (15), (16) and (17) the results are obtained clearly. �

Corollary 6: The binormal surface in three dimensional Lie group G is not developable. It is

minimal if and only if the equation v2κ(τ− τG) = vτ ′−κ is satisfied. A point on this surface

is hyperbolic. The base curve α on the surface is not geodesic curve and asymptotic line. α is

principal line if and only if

τ2
G− v2(τ− τG)

4

(τ− τG)2 = 1.

Proof. Since λ 6= 0 , the binormal surface is not developable. By using the definition (5), the

surface is minimal with the satisfied equation v2κ(τ − τG) = vτ ′−κ. Also by definition (6), a

point on the surface is hyperbolic.

Since κ 6= 0, then κgϕ
6= 0 and κnϕ

6= 0. Also since v 6= 0, κ 6= 0 and τG 6= τ , then

τgϕ
= 0 if and only if A(τ − τG) = −τG. If we make necessary calculations in the equation

A(τ− τG) =−τG, then we get τ2
G−v2(τ−τG)

4

(τ−τG)2 = 1. �

Theorem 7: Let ϕ(s,v) = B(s)+ vT (s) be a Darboux developable surface in three dimen-

sional Lie group G . The distribution parameter, the Gaussian curvature and the mean curvature

of the surface ϕ are given by

λ = 0

K = 0

H =
1

2(τ− τG− vκ)

and the geodesic curvature, the normal curvature, the geodesic torsion of α with respect to

Darboux developable surface are

κgϕ
= κ

κnϕ
= 0

τgϕ
= 0

Proof. For the Darboux developable surface, the following expressions are computed as; E =

(vκ− (τ−τG))
2 , F = 0 , G = 1 , e = vκ− (τ−τG) , f = 0 , g = 0 and the normal vector
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field of the surface by the equation (12) is found as;

U = B.

By using the equations (11), (13), (14), (15), (16) and (17) the results are obtained clearly. �

Corollary 7: The Darboux developable surface in three dimensional Lie group G is devel-

opable. It is not minimal . A point on this surface is parabolic. The base curve α on the surface

is asymptotic line and principal line but it is not geodesic curve.

Proof. By the definition (5) and since the distribution parameter λ = 0, the Darboux developable

surface is developable. Since the mean curvature cannot be zero, ,it is not minimal. Also by

definition (6), a point on the surface is parabolic.

If we use the definition (8) and since κ 6= 0, κgϕ
6= 0, then the base curve α is not geodesic

curve. Also α is asymptotic line and principal line because of κnϕ
= 0 and τgϕ

= 0. �

Theorem 8: Let ϕ(s,v) = α(s) + vW (s) be a rectifying surface in three dimensional Lie

group G . The distribution parameter, the Gaussian curvature and the mean curvature of the

surface ϕ are given by

λ =− c2κ2τG

((cτ)′)2 +((cκ)′)2 + c2κ2τ2
G

K =− 1
A2 ·

(
c2κ2τG(1+ v((cκ)′− (cτ)′)

)
)2

(1+ v(cκ)′)2 + v2(cκ)′2 +(vcκτG)2− (1+ vc(cκ)′(κ + τ)

H =
1
A
·

v2c2κτG(cκ)′′(κ + τ)− v2c(κ− τ)2(cκ)′2 +2v2cτG(cκ)′2(κ + τ)

+2vcκ(cκ)′(τ−κ + τG)− cκ2 + v2c3κ2τ2
G(τ

2−κ2− ττG)

−2(cτ + vc(cκ)′(κ + τ))(vc2κ2τG(−(cκ)′+(cτ)′)− c2κ2τG)

2((1+ v(cκ)′)2 +(v(cκ)′)2 + v2c2κ2τ2
G− (cτ + vc(cκ)′(κ + τ))2)

and the geodesic curvature, the normal curvature, the geodesic torsion of α with respect to

rectifying surface are
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κgϕ
=−vc2κ2ττG

A

κnϕ
=

κ(vc(cκ)′(τ−κ)− cκ)

A

τgϕ
=

κ

A
.

 vc2κττG

(
−
(

vc2κ2τG
A

)′
+ vcκ(cκ)′(τ−κ)−cκ2

A

)
+vc2κ2τG

(
(vc(cκ)′(τ−κ)−cκ)(τ−2τG)

A −
(

vc2κττG
A

)′)


where c = 1√
κ2+τ2 and A =

√
v2c4κ2τ2

G(κ
2 + τ2)+(vc(cκ)′(τ−κ)− cκ)2.

Proof. For the rectifying surface, the following expressions are computed as;

E = (1+ v(cκ)′)2 +(v(cκ)′)2 +(vcκτG)
2

F = cτ + vc(cκ)′(κ + τ)

G = 1

and

e =
v2c2κτG(cκ)′′(κ + τ)− v2c(κ− τ)2(cκ)′2 +2v2cτG(cκ)′2(κ + τ)

+2vcκ(cκ)′(τ−κ + τG)− cκ2 + v2c3κ2τ2
G(τ

2−κ2− ττG)

f = −c2
κ

2
τG(1+ v((cκ)′− (cτ)′))

g = 0.

The normal vector field of the surface by the equation (12) is found as;

U =
1
A

 vc2κ2τGT − (vc(cκ)′(τ−κ)− cκ)N

−vc2κττGB

 .

By using the equations (11), (13), (14), (15), (16), (17) and making necessary calculations and

simplifications ,the results are obtained clearly. �

Corollary 8: If G is Abelian, then the rectifying surface in three dimensional Lie group G is

developable and a point on this surface is parabolic. If G is Abelian or the base curve α on the
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surface is plane curve , then α is geodesic curve. α is asymptotic line and principal line if and

only if the following equations are satisfied respectively;

vc(cκ)′(τ−κ) = cκ

and

vc2κττG

(
−
(

vc2κ2τG
A

)′
+ vcκ(cκ)′(τ−κ)−cκ2

A

)
+vc2κ2τG

(
(vc(cκ)′(τ−κ)−cκ)(τ−2τG)

A −
(

vc2κττG
A

)′) = 0.

Proof. If G is Abelian, then τG = 0(see[4]). Since τG = 0, c 6= 0 and κ 6= 0, the distribution

parameter is zero. So the surface is developable. Also if τG = 0, then the Gaussian curvature is

zero, this means that a point on this surface is parabolic.

If G is Abelian or τ = 0, and v 6= 0,c 6= 0 and κ 6= 0 ,then geodesic curvature is zero.

The normal curvature and geodesic torsion are zero if and only if the equations in corollary are

satisfied. �

Remark 5: Altough a rectifying surface with the equation ϕ(s,v) = α(s)+ vW (s) in three

dimensional Lie group G is not developable, it is developable in Euclidean space.
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