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Abstract. Accessing quality water is of crucial importance to both society and the environment. Deterioration

in water quality through groundwater pollution presents a substantial risk to human health, plant and animal life,

and detrimental effects on the local economy. To ensure groundwater quality, there is need to identify locations

of unknown groundwater pollution sources. In this paper, the locations of groundwater contaminant sources have

been identified using inverse problem technique. The work in this paper concerns the inverse source problem in the

Advection Dispersion Reaction Equation (ADRE) with an emphasis on groundwater pollution source identification.

Mathematically, inverse source problem involves the reconstruction of the source function in the ADRE from the

boundary and interior measurements. An inverse source problem technique for identifying the unknown groundwater

pollution source utilizing only the boundary and interior measurements is developed. The finite volume discretization

∗Corresponding author

E-mail address: alpha@aims.ac.tz

Received January 31, 2020

833



834 ALPHA OMEGA SOKO, VERDIANA GRACE MASANJA, OKELO JECONIAH ABONYO

method is employed on the adjoint ADRE to provide the data. The data from the finite volume method results

into Volterra integral equation which after discretizing transforms into an ill-posed inverse problem. Tikhonov

regularization method is used to achieve stability on the ill-posed problem. The results indicates that our proposed

inverse problem is accurate with the data.

Keywords: Tikhonov regularization; advection dispersion reaction equation; Volterra integral equation; pollution;

inverse problem; groundwater.
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1. INTRODUCTION

The increasing rate of water resource usage results in their contamination by wastewater of

domestic, industrial and agricultural sectors. Due to the increased need for freshwater, humans

are opting for the groundwater reservoirs [14]. Thus there is a need to ensure quality groundwater

for the sustenance of human health. To manage and supervise efficiently the groundwater

quality in aquifers, accurate determination of the location and magnitude of pollution sources

is necessary. The identification of pollution is done by monitoring the Biochemical Oxygen

Demand (BOD) concentration which measures the amount of dissolved oxygen consumed by

the microorganisms during the oxidation process [2].

BOD transport through groundwater is governed by the ADRE [4]. Identifying the sources of

contamination from the spatial and temporal measurements of the BOD concentrations in the

aquifer is an inverse problem which requires solving the ADRE backwards in time. Several

approaches have been proposed in the last three decades to solve the ADRE backward in time

to identify the contaminant sources in the groundwater. Mazaheri et al. (2015) [28], provided

a comprehensive review of the available methodologies and classified them into three major

groups; Simulation-optimization approach, Probabilistic approach and Mathematical approach.

The simulation-optimization approach has been employed by Mahar and Datta (2000) [26], who

investigated pollution source locations in groundwater. Sequential unconstrained minimization

technique was employed to solve the optimization problem. Recently, Huang et al. (2018) [20]

used the simulation optimization approach by integrating numerical simulators MODFLOW and
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MT3DMS into the grids traversal and shuffled complex evolution optimization algorithms in

determining unknown pollution source from observed groundwater data. Despite the simplicity

of formulation in the simulation-optimization approach, the computational cost is relatively

high and the global optimum solution is not guaranteed and dealing with ill-posed conditions

encountered in the approach is much more complicated.

In the probabilistic approach, statistical distributions are employed in model development. The

most important feature of this approach is that the pollution source parameters are usually

treated as random variables and probability distribution functions are used to predict them. Zeng

et al. (2018)[23], used the backward probability method for characterizing the instantaneous

pollutant source location and releasing time within a ventilation system. The physical problem

was formulated in terms of a one-dimensional advection-diffusion model with branches and it

was verified by the results of a purposely designed experiment. The backward method requires

schemes which can stabilize the solution process and needs prior source information such as

location. The backward method also has the limitation as it requires a limited number of pollution

sources which has known locations. The information being required is usually difficult to obtain

in physical applications.

In the mathematical approach, initially, the governing mass transfer equation is solved for each

unit intensity pollution source independently. The final problem leads to a linear, ill-posed

algebraic system of equations in which the intensities and locations of the pollution sources

are unknown. The ill-posed condition is solved using regularization methods. Recently, Adel

(2018) [1] used the mathematical approach in establishing a non-iterative method for identifying

multiple unknown time-dependent sources compactly supported occurring in a 2D parabolic

equation. It is noteworthy that the mathematics and formulation used in this method are relatively

more complex with respect to the other methods but it is much less time-consuming.

The originality of the present study consists in addressing the linear inverse source problem

of identifying multiple unknown time-dependent point sources occurring in a 2D ADRE with

the solitary velocity profiles. Although the 2D mathematical model is subject to a lot of

interest, the identification of multiple unknown time-dependent point sources in 2D evolution
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transport equations remains an open problem. The paper is organized as follows: Section 2 is

devoted to stating the problem, assumptions and proving some technical results for later use.

In Section 3, we derive the adjoint differential equation which have been used in formulating

the inverse problem. In Section 4, we establish an inverse problem identification method that

uses the concentration records to compute the unknown source position and intensity function.

Some numerical experiments done on a variant of groundwater pollution BOD are presented in

Section 5.

2. GOVERNING EQUATION AND PROBLEM FORMULATION

The model concerns the measurement of pollutant concentration by the use of BOD5 values

denoted herein by C. Let Ω ∈ R2 be any connected and bounded open set with boundary ∂Ω.

The boundary ∂Ω is assumed to be of the form Equation (1).

∂Ω =
4⋃

i=1

Γi(1)

where Γ1 represent the inflow boundary, Γ4 represent the outflow boundary, Γ2 and Γ3 represents

the lateral boundaries. Let ΓL regroup the two lateral lower and upper boundaries as Equation (2):

ΓL = Γ2∪Γ3(2)

Figure 1 depicts such set Ω with its boundaries.

Ω

Γ3

Γ2

Γ4Γ1

FIGURE 1. Boundary of the Polluted Aquifer

Let T > 0 be a final monitoring time. The BOD5 is monitored within the time interval (0, T ).

Thus the model is defined in the space Ω× (0, T ). The evolution of the BOD5 concentration in
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a porous medium is governed by the Equation (3) [31]:

∂C
∂ t
−∇ · (D∇C−V ·C)+RC = F(3)

where C is the pollutant concentration measured in mg/L, V is the flow velocity measured in

m/s, R is the reaction coefficient measured in s−1 , F represents the set of all occurring pollution

sources measured in mgL−1s−1 and D denotes the hydrodynamic dispersion tensor measured

in m2/s. Since Equation (3) is the equation for groundwater, it can be further simplified by

applying the following assumptions; firstly, the groundwater is incompressible that is its density

does not change when the pressure changes. Mathematically, this means that the density, ρ , of

the groundwater is constant and therefore the continuity equation implies the Equation (4):

∂ρ

∂ t
+∇ · (ρV) = 0 ⇐⇒ ∇ ·V = 0(4)

secondly, V satisfies the no-slip boundary condition which means that along the lateral boundaries,

the groundwater has zero velocity relative to the lateral boundary

V = 0 on ΓL× (0, T )(5)

Finally, the V satisfies the solitary vibrations of the Korteweg-de Vries equation (KdV) available

on the interaction between groundwater and surface water. Thus the velocity V = (ν1, ν2)
T is a

spatial-temporal varying field that satisfies the Equation (6):

∂ν1

∂ t
+6ν1

∂ν1

∂x
+

∂ 3ν1

∂x3 = 0

∂ν2

∂ t
+6ν2

∂ν2

∂y
+

∂ 3ν2

∂y3 = 0

 in Ω(6)

The Equation (6) is to model groundwater flow velocity which is independent of the pollution

concentrations. For detailed derivations for the velocity profile see [21, 30]. Simplifying

Equation (3) using the Equation (4) gives the Equation (7);

∂C
∂ t

+V ·∇C−∇ · (D∇C)+RC = F(x, t)(7)
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Hydrodynamic dispersion refers to the stretching of a solute band in the flow direction during

its transport by an advecting fluid [32]. It occurs as a consequence of two processes; molecular

diffusion which results from the random molecular motion and mechanical dispersion which

is caused by non-uniform velocities. With these two processes the hydrodynamic dispersion is

given by the Equation (8):

D =

Dxx Dxy

Dyx Dyy

(8)

where the spatially varying entries Dxx, Dyy, Dxy, Dyx satisfy the Equations (9) to (11) [4, 27]:

Dxx =
aLν2

1 +aT ν2
2

||V||2
(9)

Dyy =
aT ν2

1 +aLν2
2

||V||2
(10)

Dxy =
(aL−aT )ν1ν2

||V||2
= Dyx(11)

Where aT and aL are the transverse and longitudinal dispersion coefficients respectively and

|| · || is the usual Euclidean norm. For the reaction coefficient, R, we use the linear model

due to Dobbins (1964)[10], that combines groundwater de-oxygenation rate and groundwater

sedimentation rate as in the Equation (12);

R([BOD]) = (Kd +Ks) [BOD](12)

where Kd , Ks are the de-oxygenation and sedimentation rate respectively.

The major challenge for an inverse problem regarding the identification of a function source F

in the Equation (7) is the fact that F cannot be uniquely determined in its general form. For

instance, let f ∈ D(Ω) be an infinity differentiable function with compact support in Ω and

g =−∇2 f . Then ν(x,y, t) = t f (x,y) satisfies the Equations (13) to (15):

∂ν

∂ t
−∇

2
ν = f + tg in Ω× (0, T )(13)

ν(·, 0) = 0 in Ω(14)
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∇ν ·ν = 0 on ∂Ω× (0, T )(15)

Without having necessarily f + tg null [11]. Therefore, the same boundary records may lead

to the identification of different sources. This means that for a well-posed inverse source

problem a priori information on the sources should be available. Hamdi (2017) noted that

the information takes the form of some conditions on the admissible sources [18]. Yamamoto

(1993) considered sources of the form F(x, t) = α(t) f (x) where f ∈ L2 and the time-dependent

function α ∈C1([0, T ]) was assumed to be known and satisfying the condition α(0) 6= 0 [35].

Time-independent sources F(x, t) = f (x) are treated by Cannon (1968) using spectral theory [8].

In this paper, point sources of the Equation (16):

F(x, t) =
Ns

∑
i=1

wi(t)δ (x−Si)(16)

are considered. In Equation (16), wi is the ith source intensity function, δ is the Dirac delta

function, Si is the ith source location.

For the initial condition, without loss of generality, the assumption that no pollution occurs at

the initial monitoring time is reasonable since at this time the pollutant has yet to mix with

the water. Thus a null initial BOD concentration. Since the pollutants are introduced on

the boundaries and as the convective transport generally dominates the diffusion process,an

assumption that no pollution concentration on the inflow boundary is reasonable. Finally,

a null gradient concentration at the downstream boundary which represent no variation in

BOD concentration. Therefore, given the Equation (7), the BOD5 concentration C satisfies the

Equations (17) to (19):

∂C
∂ t

+V ·∇C−∇ · (D∇C)+RC =
Ns

∑
i=1

wi(t)δ (x−Si) ∀(x, t) ∈Ω× (0, T )(17)

C(x,y,0) = 0 in Ω(18)

C(x,y, t) = 0 on Γ1× (0, T )(19)

∇C(x,y, t) = 0 on (ΓL∪Γ4)× (0, T )(20)
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The problem in the Equations (17) to (19) admits a unique solution C that belongs to the

functional space in the Equation (21) [1, 25]:

L2 (0, T ;L2(Ω)
)
∩C (0, T ;H−1(Ω))(21)

As the source position Si is assumed to be in the interior of the domain Ω, the state C is smooth on

the boundary ∂Ω, which allows defining the boundary observation operator in the Equation (22):

M [F ] := {C(a, t), C(b, t) for 0 < t < T}(22)

where a and b are observation points satisfying 0 < a < b < l. This is called a direct

problem. The inverse problem the paper is dealing with is; assuming available the records

{da(t), db(t) for 0 < t < T} of the concentration C at the two observation points a and b, find

the source F satisfying the observation in the Equation (23):

M[F ] = {da(t),db(t) f or 0 < t < T}(23)

Before proceeding, we need to show that if two measured concentrations of BOD coincide on Γ4,

then they are generated by the same source. This allows us to know whether the inverse problem

is well-posed and whether the solution to the problem is indeed that of the inverse problem. This

result is given in Theorem 2.2. As part of the requirement for the proof of the Theorem 2.2,

we establish the unique continuation property. For a general differential operator, L and state

function u, the unique continuation property asserts that a solution of an equation Lu = 0 in a

domain which vanishes in an open subset vanishes identically.

Lemma 2.1. Let Ns ∈ N be an unknown number of sources. Assume that the source positions

Si for i = 1, 2, . . .Ns are distinct and the intensity functions wi(t) ∈ L2(0, T ) are all positive

functions. Consider the initial boundary value problem in the Equations (24) to (26):

∂C
∂ t

+V ·∇C−∇ · (D∇C)+RC =
Ns

∑
i=1

wi(t)δ (x−Si) ∀(x, t) ∈Ω× (0, T )(24)

C(x,y,0) = ψ1 in Ω(25)

C(x,y, t) = ψ2 on ΓL× (0, T )(26)
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where ψ1 ∈ H1(Ω), ψ2 ∈ Hs(ΓL) satisfying the compatibility condition ψ1 = ψ2 on ΓL. Then

C(x, y, t) = 0 on ΓL only if wi(t) are null.

Proof. We recall the unique continuation theorem of Mizohata [34]: If Ω is a connected open set

in R2, ω an open subset of Ω and if, C ∈ L2 (0, T ;H2
loc(Ω)

)
, verifies the Equations (27) and (28):

∂C
∂ t

+V ·∇C−∇ · (D∇C)+RC = 0 ∀(x, t) ∈Ω× (0, T )(27)

C(x,y, t) = 0 in ω× (0, T )(28)

then C(x, y, t) = 0 on Ω× (0, T ) �

Theorem 2.2. Let Ns ∈ N be an unknown number of sources. Assume that the source positions

Si for i = 1, 2, . . .Ns are distinct and the intensity functions wi(t) ∈ L2(0, T ) are all positive

functions. The source function in the Equations (17) to (19):

F(x, t) =
Ns

∑
i=1

wi(t)δ (x−Si)

is uniquely determined by the observation Equation (23).

Proof. Let C j for j = 1, 2 be the solutions to the Equations (17) to (19) with the time dependent

point source in the Equation (29):

Fj(x, t) =
Ns

∑
i=1

w j
i (t)δ (x−S j

i )(29)

and the same observation Equation (23). Assume that M(F1) = M(F2), we have to prove that

F1 = F2. Denote by ϕ the difference C2−C1. Clearly ϕ satisfies the system of Equations (30)

to (33):

∂ϕ

∂ t
+V ·∇ϕ−∇ · (D∇ϕ)+Rϕ = F2−F1 ∀(x, t) ∈Ω× (0, T )(30)

ϕ(x,y,0) = 0 in Ω(31)

ϕ(x,y, t) = 0 on Γ1× (0, T )(32)

∇ϕ(x,y, t) = 0 on (ΓL∪Γ4)× (0, T )(33)
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Let B ⊂ R2 be an open disk such that (B∩∂Ω) ⊂ Γ4. Since the points Si for i = 1, 2, . . .Ns

are in the interior of Ω, we choose B such that and S j
i /∈B for j = 1, 2. Therefore the open

Π1 = (B∩Ω)⊂Ω\{S j}. The condition C(x, y, t) = 0 on B∩ΓL permits to deduce that the

extension of ϕ by zero in Π2×(0, T ) where Π2 =B∩(R2\Ω), is a solution of the Equations (34)

and (35):

∂ϕ

∂ t
+V ·∇ϕ−∇ · (D∇ϕ)+Rϕ = 0 ∀(x, t) ∈B× (0, T )(34)

ϕ(x,y, t) = 0 on Π2× (0, T )(35)

Thus according to Lemma 2.1 ϕ = 0 in Π1× (0, T ). A second application of Lemma 2.1 in

(Ω\{S j})× (0, T ) instead of Ω× (0, T ) yields the Equation (36):

ϕ = 0 in (Ω\{S j})× (0, T )(36)

Then, since ϕ ∈ L2(Ω×(0, T )) it follows that ϕ = 0 in Ω×(0, T ). This implies that F1 =F2. �

3. GREENS FUNCTION METHOD TO SOLVE DIRECT PROBLEM

Let n̂ be an outward normal of unit length to the space Ω. The non-homogeneous Equation (17)

is equivalent to the Equation (37):

LC(x) = f (x),(37)

where x is a vector in more than one dimension, L is a linear partial differential operator in

more than one independent variables given by the Equation (38)

LC(x) =
∂C(x)

∂ t
+V ·∇C(x)−∇ · (D∇C(x))+RC(x)(38)

f (x) is the right-hand side of Equation (17). The Green’s function for Equation (37) will be

obtained from using the Greens identity which gives the relationship between the operator, L ,

and its Adjoint Operator L ∗. For an arbitrary test function, g(x) and an independent number of

the variables N, the fundamental relation which defines the adjoint operator L ∗ is given by the
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Equation (39) [22];

g(x)LC(x)−C(x)L ∗g(x) =
N

∑
α=1

∂

∂xα

Mα(C, g)(39)

where function M(C, g) is a boundary term which involves the values of C(x), g(x), and some of

their partial derivatives on the boundary. Multiply the Equation (39) by the volume element dσ on

both sides then integrate over Ω and on the right side apply, the Gaussian integral transformation

in the Equation (40):

∫
Ω

N

∑
α=1

∂

∂xα

Mα(C, G) dσ =
∫

∂Ω

N

∑
α=1

∂

∂xα

Mα(C, g)n̂ dσ(40)

where n̂ is the outside normal of the boundary surface ∂Ω. After integration, the Equation (39)

gives the Equation (41):

T∫
0

∫
Ω

[g(x)LC(x)−C(x)L ∗g(x)] dσdη =

T∫
0

∫
∂Ω

N

∑
α=1

∂

∂xα

Mα(C, g)n̂ dσdη(41)

In the search for the Green’s function, the starting point in the solution of Equation (37) by

the method of Green’s function, is the Equation (41) with g substituted by G, which is the

Green’s function. Substituting the integration variables x by the dummy variables ξ , gives the

Equation (42):

T∫
0

∫
Ω

GLξC dσξ dη =

T∫
0

∫
∂Ω

N

∑
α=1

∂

∂ξα

Mα(C, G)n̂ dσξ dη +

T∫
0

∫
Ω

CL ∗G dσξ dη(42)

Where dσξ is the new volume element resulting from the variable change. The boundary terms

in Equation (42) and L ∗
ξ

are found by carrying out the integration by parts of the left-hand side

with the given operator Lξ . At the same time, LξC = f (ξ ), this gives the Equation (43);

L ∗G =−∂G
∂ t
−V ·∇G−∇ ·D∇G+RG(43)
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The boundary terms are given by the Equation (44):

T∫
0

∫
∂Ω

N

∑
α=1

∂

∂ξα

Mα(C, G) · n̂dσξ dη =

T∫
0

∫
∂Ω

CG · n̂dσξ dη +

T∫
0

∫
∂Ω

G(VC−D∇C) · n̂dσξ dη

+

T∫
0

∫
∂Ω

C (D∇G) · n̂dσξ dη(44)

Depending on the choice of G, Equation (42) provides the solution to the original problem.

Specifically, if, G, satisfies the Equation (45):

L ∗G = δ (x−ξ )δ (t− τ)(45)

Then the last term in Equation (42) is simply C(x). The boundary conditions of Equation (45)

are obtained also from Equation (44). Applying boundary conditions, Equations (18) to (20) on

the Equation (44) gives the Equation (46):

T∫
0

∫
∂Ω

N

∑
α=1

∂

∂ξα

Mα(C, G) · n̂dσξ dη =

T∫
0

∫
ΓL∪Γ4

C(G+D∇G+GV ) · n̂dσξ dη

−
T∫

0

∫
Γ1

GD∇C · n̂dσξ dη(46)

Since ∇C is non-zero on the boundary Γ1, it suffices that G = 0 on Γ1. Similarly, as C is non

zero on the boundary ΓL, then ∇G = 0 on ΓL. Finally, as C is non-zero on the boundary Γ4 then

G = 0 on Γ4. We summarize this in the Definition 3.1:

Definition 3.1. The Green’s function G(x, t; ξ , τ) of operator L is the unique solution of the

problem in the Equations (47) to (50):

L ∗G = δ (x−ξ )δ (t− τ)(47)

G(x,y,0;ξ ,τ) = 0 in Ω× (0, T )(48)

G(x,y, t;ξ ,τ) = 0 on (Γ1∪Γ4)× (0, T )(49)

∇G(x,y, t;ξ ,τ) = 0 on ΓL× (0, T )(50)
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The Greens function represents the effect at the point x of the Dirac delta function source at the

point (ξ ,τ). With the Green’s function satisfying Equations (47) to (50) the left-hand side of

Equation (42) is just the integral of the greens function multiplied by the function f . Thus the

solution of Equation (37) is given by the Equation (51):

C(x) =
T∫

0

∫
Ω

G(x, t; ξ , τ) f (ξ ,τ)dξ dτ(51)

The whole point of this method is that the Boundary Value Problem (BVP) governing G is

generally simpler than the original governing C.

4. METHOD FOR SOLVING THE INVERSE PROBLEM

4.1. Identification of the unknown source intensity function. The greens function in Equa-

tion (51) is obtained by solving Equation (47) in conjunction with the initial and boundary

conditions in Equations (48) to (50) by the Finite Volume Method (FVM) (central spatial dis-

cretization and Crank-Nicolson time integration scheme). Making substitution of f (ξ ,τ) in

Equation (51), the solution is given by the Equation (52):

C(x) =
T∫

0

∫
Ω

G(x, t; ξ , τ)
Ns

∑
i=1

wi(τ)δ (ξ −Si)dξ dτ(52)

Simplifying Equation (52) by taking the summation out of the integral sign and applying the

shifting property of the delta function gives the Equation (53):

C(x) =
Ns

∑
i=1

T∫
0

wi(τ)G(x, t; ξ , τ)dτ(53)

The greens function in Equation (53) must be computed for each point source on the various

sources Ns using the FVM method. Using Equation (53), the concentration of the ith source

point located at xs, is given by the Equation (54):

C(x) =
T∫

0

w(τ)G(x, t;xs,τ)dτ(54)
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where w(τ) is the intensity function of the source. Equation (54) represents the linear Volterra

Integral Equation of the First Kind (VIEFK). To solve Equation (54) in an interval [0, b], divide

the interval into smaller intervals of width h. Denote by xi, the point of subdivision such

that xi = ih, for i = 0, 1, 2, . . . ,m and mh = b. The left hand-side of Equation (54), C(x),

is known from FVM of the Equations (17) to (19) and is calculated at the finite number of

points x1, x2, . . . , xm. The Greens function is calculated from Equation (47) on the points

xs = x1, x2, . . . , xm. Furthermore, w(τ) is the only unknown that should be calculated to identify

the pollution source. In-order to discretize Equation (54), the rectangular method is employed

[24, 3]. On this method, an assumption that the averages of the intensities of the source for the

points xs = x1, x2, . . . , xm are given by w1, w2, . . . , wm respectively, changes Equation (54) into

the Equation (55):

C(x j) =

T∫
0

wi(τ)G(x j, t;xs,τ)dτ(55)

The integral in the Equation (55) is then approximated by Equation (56):

C(x j) = h
m

∑
i=1

G(x j, ti;xs,τ)wi for j = 1, 2, . . . , m(56)

Equation (56) introduces the relationship between the measured concentration C(x1) in the

groundwater and the pollution source at x = xs. Similarly, if the concentrations corresponding

to times t2, t3, . . . , tn are C(x)2,C(x3), . . .C(xn) respectively, then the system of linear algebraic

equations in the Equation (57) is obtained:

Gw = C(57)

where:

G =



G11 G12 . . . G1m

G21 G22 . . . G2m
...

... . . .
...

...
... . . .

...

Gn1 Gn2 . . . Gnm


, w =



w1

w2
...
...

wm


, C =



c1

c2
...
...

cm


(58)
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The system in Equation (57) is extended to Ns sources occurring in multiple locations, Np

concentration-time measurements in the groundwater to produce the Equation (59):

Q11 Q12 . . . Q1m

Q21 Q22 . . . Q2m
...

... . . .
...

...
... . . .

...

Qn1 Qn2 . . . Qnm





R1

R2
...
...

Rm


=



U1

U2
...
...

Um


(59)

The System in the Equation (59) is a block system in which every element of the matrix is a

matrix and every element of the vectors is a vector, that is, Qi j for 1≤ i≤ Ns and 1≤ j ≤ Np,

is the coefficients matrix associated with the jth measurement point and the ith source, Ri for

1≤ i≤ Ns, is the vector of unknown average intensities of the ith source and U j for 1≤ j ≤ Np

is the vector that represents concentration versus time at the jth measurement point.

The number of equations in Equation (59) should be equal to or greater than the number of

unknowns to be able to find a solution. In the latter case, the system of equations is over-

determined and can be solved using the linear least-squares method; however, the problem of

source identification, encountered in this problem is ill-posed as it does not satisfy the well-

posedness conditions of Hadamard [17]. According to [17] an ill-posed problem is the one that

at least has one of these conditions: (i) nonexistence of answer, (ii) non-uniqueness of answer

and (iii) no continuous relationship between input and output. In this case conditions (i) and

(ii) are satisfied but not condition (iii) because of lack of stability of the system. To solve the

ill-posed system, Tikhonov Regularization Method (TRM) is used to convert the ill-posed system

to well-posed system. This is described in Section 4.2.

4.2. Tikhonov Regularization of the Inverse Problem. This section examines the solution of

the linear system of equations from Equation (57) using the TRM. For convenience, Equation (57)

is rewritten into Equation (60);

Gw = C, G ∈ Rm×n, w, C ∈ Rm(60)
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Since the entries of C are obtained through observation, they typically are contaminated by

measurement errors and discretization errors. Let e∈Rm be the sum of all the errors. Decompose

the BOD concentration data, C, into the sum of error-free data, c0 ∈ Rm, and the errors due to

measurements and discretization in the Equation (61):

C = c0 + e(61)

Let, w0, be the solution to the error-free linear system in the Equation (62). Since the vector c0

contains no perturbations and the matrix G is not ill-conditioned, it follows that the linear system

Equation (62);

Gw0 = c0, G ∈ Rm×n, w0, c0 ∈ R2(62)

is consistent. Let, G−1, denote the inverse matrix of G. We are interested in computing an

approximation of the solution, w0 = G−1c0, of the error-free linear system, Equation (62), by

determining an approximate solution of the error-contaminated linear system, Equation (60).

Direct computation of the solution of the Equation (60), gives the Equation (63):

w = G−1 (c0 + e) = w0 +G−1e(63)

which is meaningless as it is dominated by the propagated error. Tikhonov regularization seeks

to determine an approximation of w0 by minimizing the quadratic functional in Equation (64)

[5, 6, 7, 13]:

min
w∈R2

{
||Gw−C ||2 +λ

2 ||Γw ||2
}

(64)

where λ is a constant chosen to control the size of the solution vector, and Γ ∈ Rk×n, k ≤ n,

is the regularization matrix. The operator || · ||2 represents the Euclidean norm. Since the

desired solution, w0, has known properties, then according to [5], Γ has to be chosen as a scaled

finite difference approximation of order equal to the order of the equation [29, 33]. Thus the

regularization matrix is the tri-diagonal second-order finite difference approximation in the
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Equation (65)

Γ =



−2 1

1 −2 1

1 . . . . . .
. . . . . . 1

1 −2


(65)

It is well known that the solution wλ to the Equation (64) solves the Equation (66) [16]:

(
GT G+λΓ

T
Γ
)

w = GTC(66)

From Equation (66), note that if λ is close to zero, then due to the ill-conditioning, w is badly

computed. On the other hand, if λ is far away from zero, w is well computed but the error w−w0

is quite large. Thus, the choice of a good value for λ is a difficult problem. Several methods

have been proposed to obtain an effective choice of λ . For instance, if the norm of the error e on

C is known, numerical results suggest that the optimal value of λ is given in Equation (67):

λ =
||e ||2

||Γw ||2
(67)

Equation (67) expresses the fact that the error on C must be close to the error introduced by the

regularizing term [6]. If the norm of the error is not known, the most well-known methods to

approximate λ are the L− curve method [19, 6] and the Generalized Cross-Validation (GCV)

[9, 15]. The GCV method searches for the minimum of a function of λ which is an estimate of

the norm of the residual. However, this method fails when the function if flat near the minimum.

Because of this challenge, the L-curve method was used to estimate λ . L-curve methods consist

of plotting in log-log scale the values of ||Γw|| versus ||C−Gw||. The resulting curve is an

L-shaped curve and the selected value of λ is the one corresponding to the corner of the L.

4.3. Localization of the source position. To locate the source position Si, we introduce the

vector V⊥ = (−ν2, ν1)
T and the two dispersion current functions ψ(x,y) and ψ⊥(x,y) defined
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in an open subset O of R2 such that Ω̄⊂ O by the Equations (68) and (69):

D∇ψ +V = 0(68)

∇ψ
⊥+V⊥ = 0(69)

As the matrix D is invertible, setting ψ(0,0) = ψ⊥(0,0) = 0 it follows that the two dispersion

functions are given by the Equation (70):

ψ(x, y) = αx+βy and ψ
⊥(x,y) = ν2x−ν1y(70)

where the constants α and β are given by the Equation (71):

α =
Dxyν2−Dyyν1

det(D)
, β =

Dxyν1−Dxxν2

det(D)
(71)

The following two functions in the Equation (72):

z(x,y, t) = eRtu(x, y) for u(x, y) = {eψ , ψ
⊥}(72)

solves the adjoint Equations (73) to (76):

−∂ z
∂ t
−V ·∇z−∇ ·D∇z+Rz = 0 in Ω× (0, T )(73)

z(x,y,0) = 0 in Ω× (0, T )(74)

z(x,y, t) = 0 on (Γ1∪Γ4)× (0, T )(75)

∇z(x,y, t) = 0 on ΓL× (0, T )(76)

Multiply the Equation (17) by z(x,y, t) and integrate by parts over Ω× (0, T ) with the boundary

conditions Equations (18) to (20) gives the Equation (77):

T∫
0

Ns

∑
n=1

wn(t)z(Sn, t)dt =
∫
Ω

c(x,y,T )z(x,y,T ) dx dy

+

T∫
0

∫
Γ4

c[zV+D∇z] · dΓ dt+
T∫

0

∫
ΓL

cD∇z · dΓ dt
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−
T∫

0

∫
Γ1

zD∇c · dΓ dt(77)

where on the lateral boundary, the no-slip condition, V = 0, have been used. By substituting

z(x,y, t) = eRtu(x, y) in Equation (77) and considering one point source gives the Equation (78):

u(Sn)

T∫
0

w(t)eRt dt = eRT
∫
Ω

c(x,y,T )u(x,y) dx dy

+

T∫
0

∫
Γ4

ceRt [uV+D∇u] · dΓ dt+
T∫

0

∫
ΓL

ceRtD∇u · dΓ dt

−
T∫

0

∫
Γ1

eRtuD∇c · dΓ dt(78)

The time-dependent intensity function wn(t) is known from the previous section and to locate

the source position, an assumption that the integral in Equation (79) is non-zero was made.

T∫
0

w(t)eRt 6= 0(79)

By substituting u(x, y) = {eψ , ψ⊥} in the Equation (78) and using the Equations (68) and (69),

gives the linear system of Equation (80):
αS1 +βS2 = ln

(
Peψ

P0

)
ν2S1−ν1S2 =

P
ψ⊥

P0

⇐⇒

α β

ν2 −ν1

S1

S2

=

ln
(

Peψ

P0

)
P

ψ⊥

P0

(80)

where the coefficients, Peψ , P0 and P
ψ⊥ in the Equation (80) are given by the Equations (81)

to (83):

P0 =

T∫
0

w(t)eRt dt(81)

Peψ = eRT
∫
Ω

eψ(x,y)c(x,y,T ) dx dy−
T∫

0

∫
Γ1

eRt+ψD∇c · dΓ dt(82)
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P
ψ⊥ = eRT

∫
Ω

ψ
⊥(x,y)c(x,y,T ) dx dy+

T∫
0

∫
Γ4

ceRt [ψ⊥V−DV⊥] · dΓ dt(83)

−
T∫

0

∫
ΓL

ceRtDV⊥ · dΓ dt−
T∫

0

∫
Γ1

eRt
ψ
⊥D∇c · dΓ dt

Since D is invertible, the system of Equation (80) has a solution given by the Equation (84):

S1

S2

=
1

−αν1−βν2

−ν1 −β

−ν2 α


ln

(
Peψ

P0

)
P

ψ⊥

P0

(84)

In the following sections we implement the source identification procedure outlined so far.

5. NUMERICAL RESULTS AND DISCUSSION

In this section, we carry out numerical experiments in the case of a rectangular domain defined

by the Equation (85):

Ω = {(x, y) such that 0 < x < L and 0 < y < H}(85)

For the numerical computation, the domain Ω× (0, T ) is scaled up according to the non-

dimensional variables in the Equation (86):
x̃ =

x
L
, t̃ =

t
tc
, ỹ =

y
L
, S̃i =

ai

L
, Ṽ =

V
v
,

D̃ =
D
Dc

, C̃ =
C
Cc

, R̃ = Rtc, F̃ = fc ∑
N
i=1 w̃(t)δ (x̃− S̃i)

(86)

Substituting the variables in Equation (86) in the Equations (17) to (19) gives the Equations (87),

(89) and (90).

Cc

tc

∂C̃
∂ t̃

+
VCc

L
Ṽ · ∇̃C̃−CcDc

L2 ∇̃ · (D̃∇̃C̃)+
R̃Cc

tc
C̃ = fc

N

∑
i=1

w̃(t)δ (x̃− S̃i)(87)

C̃(x̃, ỹ,0) = 0 in Ω(88)

C̃(x̃, ỹ, t̃) = 0 on ∂Ω(89)

∇̃C̃(`, ỹ, t̃) = 0 on ∂Ω(90)
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Multiply the Equation (87) by tc/Cc gives the Equation (91):

∂C̃
∂ t̃

+
Vtc
L

Ṽ · ∇̃C̃− tcDc

L2 ∇̃ · (D̃∇̃C̃)+ R̃C̃ =
fctc
Cc

N

∑
i=1

w̃(t)δ (x̃− S̃i)(91)

The choice of the coefficient tc is based on the convective transport, that is, tc = L/V , which is

the characteristic time it takes to transport a signal by convection through the domain. Also as the

convection term dominates over the diffusion term. Meanwhile, Cc is carefully chosen to make

the coefficient in the source term unity, that is, Cc = tc fc = L fc/V . This gives the Equation (92);

∂C̃
∂ t̃

+ Ṽ · ∇̃C̃− 1
Pe

∇̃ · (D̃∇̃C̃)+ R̃C̃ =
N

∑
i=1

w̃(t)δ (x̃− S̃i)(92)

where Pe is the Peclet number. The Peclet number measures the ratio of the convection and the

diffusion terms, that is, the Equation (93).

Pe = Pe =
convection
diffusion

=
V L
Dc

(93)

5.1. Numerical tests and discussion. In this subsection, we use the established identification

method to carry out some numerical experiments. To this end, we employ in Equation (92) the

coefficients in the Equation (94) :

L = 2500m, aT = 10m, aL = 0.2, R = 10−5s−1(94)

To identify the elements S and w(t) defining the source occurring in the controlled portion of a

an aquifer represented by the segment (0,L). We assume controlling this portion of a aquifer

for T = 4h. To generate the records C(a, t) and C(b, t) at the two observation points a and b,

we solve the problem Equation (92) using the finite volume method with the source located at

(900m,10m) loading the following time-dependent intensity function in the Equation (95):

w(t) =
3

∑
i=1

bie−ui(t−qi)
2

(95)

where b1 = 1.2, b2 = 0.4, b3 = 0.6, u1 = 10−6, u2 = 5×10−5, u3 = 10−6, q1 = 4.5×103,q2 =

6.5×103,q3 = 9×103.
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Over the whole control time T , we employ 100 measures of C at each of the two observation

points a and b. Those measures have been taken at the regularly distributed discrete times

with equal time steps. As far as the source position S = (Sx, Sy) is concerned, we employ the

approximation of the Dirac mass in the Equation (96) [12];

δ (x−Sx, y−Sy)≈
(

1+ cos(π(x−Sx))
2ε

)(
1+ cos(π(y−Sy))

2ε

)
(96)

We set the parameter, ε = 10−5 in Equation (96). Then, to apply the identification method

established in the previous section, we start by computing the intensity function as outlined in

Section 4.1 after which we apply the Tikhonov Regularization method as outlined in Section 4.2.

For the L-curve method, we use λ = {e−4,e−5, e−3}. After the identification of the intensity,

we compute the three integrals in Equations (81) to (83) involving the unknown data C(x,y,T ).

We end by using the computed integrals to solve the system of Equation (84). We present the

recovered solution with the three values of the regularization parameter in Figures 2, 4 and 6

alongside the forward solutions in Figures 3, 5 and 7 respectively:

FIGURE 2. Recovered Solu-
tion State with the regulariza-
tion parameter λ = e−4

FIGURE 3. The Forward Problem

Table 1 gives the percentage error obtained on obtaining the intensity function with the regular-

ization parameter of λ = e−4.
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TABLE 1. Percentage Error on the Recovered Solution with Regularization
Parameter λ = e−4

Forward Solver Recovered Data Percentage Error

1.0 9.028393e-08 1.017928e-07 0.000001
2.0 1.393656e-07 1.571341e-07 0.000002
3.0 2.639602e-07 2.976115e-07 0.000003
4.0 5.316652e-07 5.994507e-07 0.000007
5.0 1.087668e-06 1.226304e-06 0.000014
6.0 2.233487e-06 2.518223e-06 0.000028
7.0 4.590483e-06 5.175916e-06 0.000059
8.0 9.436815e-06 1.063969e-05 0.000120
9.0 1.940056e-05 2.187378e-05 0.000247
10.0 3.988490e-05 4.496968e-05 0.000508
11.0 8.199811e-05 9.245257e-05 0.001045
12.0 1.685775e-04 1.900759e-04 0.002150
13.0 3.465734e-04 3.907368e-04 0.004416
14.0 7.125100e-04 8.033370e-04 0.009083
15.0 1.464828e-03 1.651617e-03 0.018679

As from Table 1, the percentage error is very small so we conclude the method with λ = e−4 has

worked perfectly.

FIGURE 4. Recovered Solu-
tion State with the regulariza-
tion parameter λ = e−5

FIGURE 5. Forward Solution

Table 2 gives the percentage error obtained on obtaining the intensity function with the regular-

ization parameter of λ = e−5.
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TABLE 2. Percentage Error on the Recovered Solution with Regularization
Parameter λ = e−5

Forward Solver Recovered Data Percentage Error

1.0 9.028393e-08 3.899311e-08 0.000005
2.0 1.393656e-07 6.019122e-08 0.000008
3.0 2.639602e-07 1.140029e-07 0.000015
4.0 5.316652e-07 2.296231e-07 0.000030
5.0 1.087668e-06 4.697574e-07 0.000062
6.0 2.233487e-06 9.646299e-07 0.000127
7.0 4.590483e-06 1.982603e-06 0.000261
8.0 9.436815e-06 4.075705e-06 0.000536
9.0 1.940056e-05 8.378993e-06 0.001102
10.0 3.988490e-05 1.722605e-05 0.002266
11.0 8.199811e-05 3.541452e-05 0.004658
12.0 1.685775e-04 7.280767e-05 0.009577
13.0 3.465734e-04 1.496830e-04 0.019689
14.0 7.125100e-04 3.077289e-04 0.040478
15.0 1.464828e-03 6.326509e-04 0.083218

As from Table 2, the percentage error is very small but the recovered intensity function is not

very close to the initial intensity this is due to stability of the method. For practical purposes, the

value of the regularization parameter to use would be λ = e−4. we test λ = e−3 on Figure 6.

FIGURE 6. Recovered Solu-
tion State with the regulariza-
tion parameter λ = e−3

FIGURE 7. Forward Solution
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The Table 2 gives the percentage error obtained on obtaining the intensity function with the

regularization parameter of λ = e−3.

TABLE 3. Percentage Error on the Recovered Solution with Regularization
Parameter λ = e−3

Forward Solver Recovered Data Percentage Error

1.0 9.028393e-08 4.295685e-08 0.000005
2.0 1.393656e-07 6.633736e-08 0.000007
3.0 2.639602e-07 1.256901e-07 0.000014
4.0 5.316652e-07 2.530473e-07 0.000028
5.0 1.087668e-06 5.179344e-07 0.000057
6.0 2.233487e-06 1.062585e-06 0.000117
7.0 4.590483e-06 2.185058e-06 0.000241
8.0 9.436815e-06 4.489853e-06 0.000495
9.0 1.940056e-05 9.233444e-06 0.001017
10.0 3.988490e-05 1.898277e-05 0.002090
11.0 8.199811e-05 3.904438e-05 0.004295
12.0 1.685775e-04 8.020278e-05 0.008837
13.0 3.465734e-04 1.649876e-04 0.018159
14.0 7.125100e-04 3.392491e-04 0.037326
15.0 1.464828e-03 6.972958e-04 0.076753

According to Tables 1 to 3 clearly, the optimal value of the regularization parameter we to use

in determining source position is λ = e−4 since the other values bring instabilities. To locate

the source position, we use the values of C to compute the integrals in Equations (81) to (83)

and use the result to solve the system Equation (80). Table 4, presents some numerical results

obtained from the localization of a source
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TABLE 4. Recovered Source Positions

x position y position recovered x recovered y

1.0 10.0 150.0 11.803534 197.805191
2.0 20.0 140.0 18.815498 143.311173
3.0 30.0 130.0 36.827462 138.817155
4.0 40.0 120.0 42.839426 114.323136
5.0 50.0 110.0 54.851390 119.829118
6.0 60.0 100.0 58.038751 99.422799
7.0 70.0 90.0 76.360121 103.583484
8.0 80.0 80.0 68.681490 69.744169
9.0 90.0 70.0 94.002860 81.904853
10.0 100.0 60.0 133.324229 70.065538
11.0 110.0 50.0 145.645599 58.226223
12.0 120.0 40.0 137.966968 49.386908
13.0 130.0 30.0 132.288338 34.547592
14.0 140.0 20.0 122.609707 23.708277

The numerical results presented in Table 4 show that the source localization procedure established

enables us to identify the source position with relatively good accuracy. The observed error

on the localized source position is due to the boundary records are not generated by a point

source that is the Dirac mass but rather by its approximation given in Equation (96) and an

approximation of the integrals Equations (81) to (83) introduces errors.

6. CONCLUSION

In this study, a solution for an inverse source problem of identifying multiple unknown time-

dependent point sources occurring in the two-dimensional ADRE was developed. Validation of

the model was demonstrated by using hypothetical examples as there was no groundwater data in

the literature. To generate the hypothetical data FVM was used to solve the forward problem and

approximation made at discreet points. Numerical experiments on the BOD data were carried

out. The obtained numerical results show that the developed identification method is accurate.

In this paper, we only considered the transport of the pollutant in the groundwater without

considering groundwater flow. An outlook for the results established in the present study is

their extension towards at least the following directions: Firstly, incorporating groundwater flow

equations for the transport of groundwater, ADRE for the transport of the pollutants and solitary
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vibrations available on the interaction between groundwater and surface water. Secondly, apply

the developed identification method using other reference geometries and real-life measurements

taken on a flow crossing a monitored domain of arbitrary geometric shape. Thirdly, treat the

three-dimensional case for the ADRE. Finally, apply the developed methodology into other

applications.
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