

COINCIDENCE POINTS AND COMMON FIXED POINTS IN CONE BANACH SPACES

RAHUL TIWARI ${ }^{1, *}$ AND D.P. SHUKLA ${ }^{2}$
${ }^{1}$ Department of Mathematical Sciences, A.P.S. University Rewa (M.P.) 486001, India
${ }^{2}$ Department of Mathematics, Govt. P.G. Science College Rewa (M.P.) 486001, India

Abstract

In this manuscript we obtain coincidence points and common fixed points in cone Banach spaces. Our result generalizes and extends the result of Thabet Ableljwal, Erdal Karapinar and KenanTas [3].

Keywords: Cone normed spaces, Coincidence points, Common fixed points.
2000 AMS Mathematics Subject Classification: 54H25, 47H10.

1. Introduction:

In 2007, Huang and Zhang [5] introduced the concept of cone metric space, replacing the set of real numbers by Banach space ordered by a cone and proved some fixed point theorems for function satisfying contractive conditions in these spaces. In this setting, Bogdan Rzepecki [11] generalized the fixed point theorems of Maia type [9] and Shy-Der Lin [8] considered some results of Khan and Imdad [7] Huang and Zhang [5] also discussed some properties of convergence of sequences and proved the fixed point theorems of contractive mapping for cone metric spaces: Any mapping T of a complete cone metric space X into itself that satisfies, for some $0 \leq k<1$, the inequality

$$
d(T x, T y) \leq k d(x, y)
$$

*Corresponding author

E-mail Addresses: tiwari.rahul.rewa@gmail.com (R. Tiwari), shukladpmp@gmail.com (D.P. Shukla)
Received June14, 2012
for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, has a unique fixed point.

Recently, Thabet Abdeljawad et. al. [3] proved some fixed point theorems for self maps satisfying some contraction principles on a cone Banach space. More precisely they proved that for a closed and convex subset C of a cone Banach space with the norm $\left\|\|_{\mathrm{p}}\right.$, and letting $\mathrm{d}: \mathrm{X} \mathrm{xX} \rightarrow \mathrm{E}$ with $\left.\mathrm{d}(\mathrm{x}, \mathrm{y})=\right\| \mathrm{x}-\mathrm{y} \|_{\mathrm{p}}$, if there exist $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{s}$ and T : $\mathrm{C} \rightarrow \mathrm{C}$ satisfies the conditions $0 \leq \frac{\mathrm{s}+\mathrm{a}-2 \mathrm{~b}-\mathrm{c}}{2(\mathrm{a}+\mathrm{b})}<1$ and $\quad \mathrm{ad}(\mathrm{Tx}, \mathrm{Ty})+\mathrm{b}(\mathrm{d}(\mathrm{x}, \mathrm{Tx})+\mathrm{d}(\mathrm{y}$, $T y)+c d(y, T x) \leq s d(x, y)$ for all $x, y \in C$, then T has at least one fixed point.

Here we will give some generalization of this theorem

2. Preliminaries:

Let E be a real Banach space. A subset P of E is said to be a cone if and only if
i. $\quad \mathrm{P}$ is closed, nonempty and $\mathrm{P} \neq\{0\}$.
ii. $\quad a x+b y \in P$ for all $x, y \in P$ and non-negative real numbers a, b.
iii. $\quad \mathrm{P} \cap(-\mathrm{P})=\{0\}$.

For a given cone $\mathrm{P} \subseteq \mathrm{E}$, me can define a partial ordering \leq with respect to P by $\mathrm{x} \leq$ y if and only if $y-x \in P . x<y$ will stand for $x \leq y$ and $x \neq y$, while $x \ll y$ will stand for $y-$ $x \in \operatorname{int} P$, where int P denotes the interior of P.

The cone P is called normal if there is a number $\mathrm{M}>0$ such that for all $\mathrm{x}, \mathrm{y} \in$ E,
$0 \leq \mathrm{x} \leq \mathrm{y}$ implies $\|\mathrm{x}\| \leq \mathrm{M}\|\mathrm{y}\|$.
The least positive number satisfying the above is called the normal constant of P .
The cone P is called regular if every increasing sequence which is bounded from above is convergent. That is, if $\left\{x_{n}\right\}$, is a sequence such that $x_{1} \leq x_{2} \leq \ldots \ldots \leq y$ for some $y \in E$, then there is $x \in E$ such that $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$. Equivalently the cone P is regular if and only if every decreasing sequence which is bounded from below is convergent.

Lemma $2.1[4,10]$ (i) Every regular cone is normal.
(ii) For each $\mathrm{k}>1$, there is a normal cone with normal constant $K>k$

Definition 2.2 [5] Let X be a nonempty set. Then any map d: $\mathrm{X} x \mathrm{X} \rightarrow \mathrm{E}$ is said to be cone metric on X if for all $x, y, z \in X, d$ satisfies.
i. $\quad d(x, y) \geq 0$ and $d(x, y)=0$ if and only if $x=y$.
ii. $\quad d(x, y)=d(y, x)$
iii. $\quad \mathrm{d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(\mathrm{z}, \mathrm{y})$.

Pair (X, d) is called as cone metric space (CMS).
We denote set of all reals by R
Example 2.3 Let $\mathrm{E}=\mathrm{R}^{2}, \mathrm{P}=\{(\mathrm{x}, \mathrm{y}) \in \mathrm{E}: \mathrm{x}, \mathrm{y} \geq 0\}$ and $\mathrm{X}=\mathrm{R}$.
Define $d: X x X \rightarrow E$ by $d(x, y)=(\alpha|x-y|, \beta|x-y|)$,
where α, β are positive constants. Then (X, d) is a CMS.
It is quite natural to consider cone normed spaces (CNS).

Defintion2.4 $[1,16]$ Let X be a linear space over R and $\|.\|_{\mathrm{p}}: \mathrm{X} \rightarrow \mathrm{E}$ be a map which satisfies
i. $\quad\|\mathrm{x}\|_{\mathrm{p}}>0$ for all $\mathrm{x} \in \mathrm{X}$,
ii. $\quad\|x\|_{p}=0$ if and only if $x=0$,
iii. $\quad\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p}$ for all $x, y \in X$,
iv. $\quad\|k x\|_{p}=|k|\|x\|_{p}$ for all $k \in R$,

Then $\|.\|_{\mathrm{p}}$ is called cone norm on X , and pair $\left(\mathrm{X},\|\cdot\|_{\mathrm{p}}\right)$ is called cone normed space (CNS).

Note that each CNS is CMS. Indeed, $\mathrm{d}(\mathrm{x}, \mathrm{y})=\|\mathrm{x}-\mathrm{y}\|_{\mathrm{p}}$.

Definition 2.5 Let $\left\{x_{n}\right\}_{\mathrm{n} \geq 1}$ be a sequence in CNS $\left(X,\|.\| \|_{p}\right)$. Then
i. It is said to be a convergent sequence if for every $\mathrm{c} \in \mathrm{E}$ with $\mathrm{c} \geq 0$ there is a natural number N such that for all $\mathrm{n} \geq \mathrm{N},\left\|\mathrm{x}_{\mathrm{n}}-\mathrm{x}\right\|_{\mathrm{p}} \leq \mathrm{c}$ for some fixed $\mathrm{x} \in \mathrm{X}$.
ii. It is said to be a Cauchy sequence if for every $\mathrm{c} \in \mathrm{E}$ with $\mathrm{c} \geq 0$ there is a natural number N such that for all $\mathrm{n}, \mathrm{m} \geq \mathrm{N},\left\|\mathrm{x}_{\mathrm{n}}-\mathrm{x}_{\mathrm{m}}\right\|_{\mathrm{p}} \leq \mathrm{c}$.
iii. $\operatorname{CNS}\left(\mathrm{X},\|\cdot\|_{\mathrm{p}}\right)$ is said to be complete if every Cauchy sequence in X is convergent.

Lemma 2.6 [6] Let ($\mathrm{X},\|.\| \|_{\mathrm{p}}$) be a CNS and P be a normal cone with normal constant K. If $\left\{x_{n}\right\}$ is a sequence in X, then
i. $\quad\left\{x_{n}\right\}$ converges to x if and only if $\left\|x_{n}-x\right\|_{p} \rightarrow 0$, as $n \rightarrow \infty$
ii. $\quad\left\{x_{n}\right\}$ is a Cauchy sequence if and only if $\left\|x_{n}-x_{m}\right\|_{p} \rightarrow 0$ as $n, m \rightarrow \infty$.
iii. $\quad\left\{x_{n}\right\}$ converges to x and sequence $\left\{y_{n}\right\}$ converges to y, then $\left\|x_{n}-y_{n}\right\|_{p} \rightarrow \| x$ $y \|_{p}$.

Lemma $2.7[14,15,6] \quad$ Let $\left(X,\|.\| \|_{p}\right)$ be a CNS over a cone P in E. Then

i. $\quad \operatorname{Int}(\mathrm{P})+\operatorname{Int}(\mathrm{P}) \subseteq \operatorname{Int}(\mathrm{P})$ and $\lambda \operatorname{Int}(\mathrm{P}) \subseteq \operatorname{Int}(\mathrm{P}), \lambda>0$.
ii. If $\mathrm{c} \gg 0$ then there exists $\delta>0$ such that $\|\mathrm{b}\|<\delta$ implies $\mathrm{b} \ll \mathrm{c}$.
iii. For any given $\mathrm{c} \gg 0$ and $\mathrm{c}_{0} \gg 0$ there exists a natural number n_{o} such that $\mathrm{c}_{\mathrm{o}} / \mathrm{n}_{\mathrm{o}} \ll \mathrm{c}$.
iv. If a_{n}, b_{n} are sequences in E such that $a_{n} \rightarrow a, b_{n} \rightarrow b$ and $a_{n} \leq b_{n}$, for all n, then a $\leq \mathrm{b}$.

Definition2.8 [4] Cone P is called minihedral cone if $\sup \{x, y\}$ exists for all $x, y \in E$ and strongly minihedral if every subset of E which is bounded from above has a supremum.

Lemma 2.9 [2] Every strongly minihedral normal cone is regular
For $T: X \rightarrow X$, the set of fixed points of T is denoted by $F(T)=\{z \in X: T z=z\}$
Definition 2.10 [13] Let C be a closed and convex subset of a cone Banach space with the norm $\quad\|\mathrm{x}\|_{\mathrm{p}}=\mathrm{d}(\mathrm{x}, 0)$ and $\mathrm{T}: \mathrm{C} \rightarrow \mathrm{C}$ a map. Then T is called non expansive if

$$
\|\mathrm{Tx}-\mathrm{Tz}\|_{\mathrm{p}} \leq\|\mathrm{x}-\mathrm{z}\|_{\mathrm{p}} \text { for all } \mathrm{x}, \mathrm{z} \in \mathrm{C}
$$

and T is called quasi-nonexpansive if

$$
\|T \mathrm{x}-\mathrm{z}\|_{\mathrm{p}} \leq\|\mathrm{x}-\mathrm{z}\|_{\mathrm{p}} \text { for all } \mathrm{x} \in \mathrm{C}, \mathrm{z} \in \mathrm{~F}(\mathrm{~T})
$$

3. Main Results :

Theorem 3.1

Let C be a closed convex subset of a cone Banach space X with norm $\|\mathrm{x}\|_{\mathrm{p}}$. Suppose $\mathrm{E}=(\mathrm{E}\|\cdot\|)$ is a real Banach space and let $\mathrm{d}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{E}$ be a mapping such that $\mathrm{d}(\mathrm{x}, \mathrm{y})=\|\mathrm{x}-\mathrm{y}\|_{\mathrm{p}}$.

If there exist $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{e}$ and $\mathrm{T}: \mathrm{C} \rightarrow \mathrm{C}$ satisfying the conditions

$$
\begin{align*}
& 0 \leq \frac{\mathrm{e}+\mathrm{a}-2 \mathrm{~b}-\mathrm{c}}{2 \mathrm{a}+2 \mathrm{~b}+\mathrm{c}}<1, \mathrm{a}+\mathrm{b}+\mathrm{c} \neq 0, \mathrm{a}+\mathrm{b}+\mathrm{c}>0 \text { and } \mathrm{e} \geq 0 \tag{3.1}\\
& \mathrm{ad}(\mathrm{Tx}, \mathrm{Ty})+\mathrm{b}\{\mathrm{~d}(\mathrm{x}, \mathrm{Tx})+\mathrm{d}(\mathrm{y}, \mathrm{Ty})\}+\mathrm{c}\{\mathrm{~d}(\mathrm{y}, \mathrm{Tx})+\mathrm{d}(\mathrm{x}, \mathrm{Ty})\} \leq \mathrm{ed}(\mathrm{x}, \mathrm{y}) \tag{3.2}
\end{align*}
$$

hold for all $x, y \in C$. Then T has at least one fixed point.

Proof :

Pick $\mathrm{x}_{\mathrm{o}} \in \mathrm{C}$ and define a sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in the following way:

$$
\begin{equation*}
\mathrm{x}_{\mathrm{n}+1}=\frac{\mathrm{x}_{\mathrm{n}}+\mathrm{T} \mathrm{x}_{\mathrm{n}}}{2}, \mathrm{n}=0,1,2, \ldots \ldots \tag{3.3}
\end{equation*}
$$

Notice that
$\mathrm{x}_{\mathrm{n}}-\mathrm{Tx}_{\mathrm{n}}=2\left(\mathrm{x}_{\mathrm{n}}-\left(\frac{\mathrm{x}_{\mathrm{n}}+\mathrm{Tx}_{\mathrm{n}}}{2}\right)\right)=2\left(\mathrm{x}_{\mathrm{n}}-\mathrm{x}_{\mathrm{n}+1}\right)$
which yields that
$d\left(x_{n}, T x_{n}\right)=\left\|x_{n}-T x_{n}\right\|_{p}=2\left\|x_{n}-x_{n+1}\right\|_{p}=2 d\left(x_{n}, x_{n+1}\right)$
for $\mathrm{n}=0,1,2, \ldots$ Analogously, for $\mathrm{n}=0,1,2,3 \ldots$, one can get
$\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{Tx}_{\mathrm{n}-1}\right)=2 \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)$, and
$\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}-1}\right)=\frac{1}{2} \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{Tx}_{\mathrm{n}-1}\right)=\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)$,
and by the triangle inequality
$d\left(x_{n}, T x_{n}\right)-d\left(x_{n}, \operatorname{Tx}_{n-1}\right) \leq d\left(\operatorname{Tx}_{n-1}, \operatorname{Tx}_{n}\right)$.

We put $\mathrm{x}=\mathrm{x}_{\mathrm{n}-1}$ and $\mathrm{y}=\mathrm{x}_{\mathrm{n}}$ in inequality (3.2),
$\operatorname{ad}\left(\operatorname{Tx}_{n-1}, \operatorname{Tx}_{n}\right)+b\left[d\left(x_{n-1}, \operatorname{Tx}_{n-1}\right)+d\left(x_{n}, \operatorname{Tx}_{n}\right)\right]+c\left[d\left(x_{n}, \operatorname{Tx}_{n-1}\right)+d\left(x_{n-1}, \operatorname{Tx}_{n}\right)\right] \leq e$ $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)$.
for all $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{e}$ that satisfy (3.1). Taking into account (3.5) and (3.6) one can observe.
$\operatorname{ad}\left(\operatorname{Tx}_{n-1}, \operatorname{Tx}_{\mathrm{n}}\right)+\mathrm{b}\left[2 \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)+2 \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)\right]+\mathrm{c}\left[\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)\right] \leq \mathrm{e}$ $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)$.
which is equivalent to
$\operatorname{ad}\left(\mathrm{Tx}_{\mathrm{n}-1}, \mathrm{Tx}_{\mathrm{n}}\right) \leq \mathrm{ed}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)-2 \mathrm{~b}\left[\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)\right]-\mathrm{c}\left[\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}\right.\right.$, $\left.\mathrm{X}_{\mathrm{n}+1}\right)$].

By using (3.7), the statement (3.10) turns into
$\mathrm{a}\left[\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}}\right)-\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}-1}\right)\right] \leq \mathrm{e} \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)-2 \mathrm{~b}\left[\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)\right]-$
$\mathrm{c}\left[\mathrm{d}\left(\mathrm{X}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{X}_{\mathrm{n}+1}\right)\right]$.

Regarding (3.5) and (3.6), in (3.11),
$2 \operatorname{ad}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)-\operatorname{ad}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right) \leq \mathrm{ed}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)-2 \mathrm{bd}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)-2 \mathrm{bd}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)-\mathrm{c}$ $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)-\mathrm{cd}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)$.
$\Rightarrow(2 a+2 b+c) d\left(x_{n}, x_{n+1}\right) \leq(e+a-2 b-c) d\left(x_{n-1}, x_{n}\right)$

Since $a+b+c \neq 0$, we get $d\left(x_{n}, x_{n+1}\right) \leq \frac{e+a-2 b-c}{2 a+2 b+c} d\left(x_{n-1}, x_{n}\right)$.
$\Rightarrow \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{Kd}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)$, where $\mathrm{K}=\frac{e+a-2 b-c}{2 a+2 b+c}$
Thus the sequence $\left\{x_{n}\right\}$ is a Cauchy sequence that converges to some element of C, say z. We claim that z is a fixed point of T. When we substitute $x=z$ and $y=x_{n}$ in (3.2).

$$
\mathrm{ad}\left(\mathrm{Tz}, \mathrm{Tx}_{\mathrm{n}}\right)+\mathrm{b}\left\{\mathrm{~d}(\mathrm{z}, \mathrm{Tz})+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}}\right)\right\}+\mathrm{c}\left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Tz}\right)+\mathrm{d}\left(\mathrm{z}, \mathrm{Tx}_{\mathrm{n}}\right)\right\} \leq \mathrm{ed}\left(\mathrm{z}, \mathrm{x}_{\mathrm{n}}\right)
$$

Due to the equation (3.3) and $\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{z}$, we have $\mathrm{Tx}_{\mathrm{n}} \rightarrow \mathrm{z}$

$$
\begin{aligned}
& \Rightarrow \mathrm{ad}(\mathrm{Tz}, \mathrm{z})+\mathrm{bd}(\mathrm{z}, \mathrm{Tz})+\mathrm{cd}(\mathrm{z}, \mathrm{Tz}) \leq 0 \text { as } \mathrm{n} \rightarrow \infty \\
& \Rightarrow(\mathrm{a}+\mathrm{b}+\mathrm{c}) \mathrm{d}(\mathrm{z}, \mathrm{Tz}) \leq 0 \\
& \Rightarrow \mathrm{Tz}=\mathrm{z} \text { as a }+\mathrm{b}+\mathrm{c}>0 .
\end{aligned}
$$

Definition 3.2 Let (X, d) be a complete metric space and S , T be self maps on X . A point $z \in X$ is said to be a coincidence point of S, T if $S z=T z$ and it is called common fixed point of S, T if $\quad \mathrm{Sz}=\mathrm{Tz}=\mathrm{z}$.

More over a pair (S,T) of self maps is called weakly compatible on X if they commute at their coincidence points i.e. $\mathrm{z} \in \mathrm{X}, \mathrm{Sz}=\mathrm{Tz}$ implies $\mathrm{STz}=\mathrm{TSz}$

Theorem 3.3 Let C be a closed convex subset of a cone Banach space X with norm $\left\|\|_{\mathrm{p}}\right.$ and let $\mathrm{d}: X \times X \rightarrow E$ with $\left.d(x, y)=\right\| x-y \|_{p}$. If T and S are self maps on C that satisfy the conditions.
(3.31) $T(C) \subseteq S(C)$
(3.32) $\mathrm{S}(\mathrm{C})$ is a complete subspace
(3.33) a d(Tx, Ty) $+\mathrm{b}\{\mathrm{d}(\mathrm{Sx}, \mathrm{Tx})+\mathrm{d}(\mathrm{Sy}, \mathrm{Ty})\}+\mathrm{c}\{\mathrm{d}(\mathrm{Sy}, \mathrm{Tx})+\mathrm{d}(\mathrm{Sx}, \mathrm{Ty})\} \leq$ r d(Sx, Sy).

$$
\text { for } a+b+c \neq 0,0 \leq r<a+2 b, r<b, a \neq r \text {. }
$$

hold for all $\mathrm{x}, \mathrm{y} \in \mathrm{C}$, then S and T have a common coincidence point. Moreover if S and T are weakly compatible, then they have a unique common fixed point in C .

Proof :Pick $x_{0} \in C$. By (3.31) we can find a point in C, say x_{1}, such that $T\left(x_{0}\right)=S x_{1}$. Since S, T are self maps, there exists $y_{0} \in C$ such that $y_{0}=T x_{0}=S x_{1}$.

Inductively we can define a sequence $\left\{y_{n}\right\}$ and sequence $\left\{x_{n}\right\}$ in C such that
$\mathrm{y}_{\mathrm{n}}=\mathrm{Sx}_{\mathrm{n}+1}=\mathrm{Tx} \mathrm{x}_{\mathrm{n}}, \mathrm{n}=0,1,2, \ldots$
We put $\mathrm{x}=\mathrm{x}_{\mathrm{n}}$ and $\mathrm{y}=\mathrm{x}_{\mathrm{n}+1}$ in inequality (3.33), it implies that
$a d\left(T x_{n}, T x_{n+1}\right)+b\left\{d\left(S x_{n}, T x_{n}\right)+d\left(S x_{n+1}, T x_{n+1}\right)\right\}+c\left\{d\left(S x_{n+1}, T x_{n}\right)+d\left(S x_{n}\right.\right.$, $\left.\left.\mathrm{Tx}_{\mathrm{n}+1}\right)\right\} \leq \mathrm{rd}\left(\mathrm{Sx}_{\mathrm{n}}, \mathrm{Sx}_{\mathrm{n}+1}\right)$
$\Rightarrow a d\left(y_{n}, y_{n+1}\right)+b\left\{d\left(y_{n-1}, y_{n}\right)+d\left(y_{n}, y_{n+1}\right)\right\}+c\left\{d\left(y_{n}, y_{n}\right)+d\left(y_{n-1}, y_{n+1}\right)\right\} \leq r$ $d\left(y_{n-1}, y_{n}\right)$

By using triangle inequality and suitable choices of a,b,c, it implies,
$(a+b) d\left(y_{n}, y_{n+1}\right)+b d\left(y_{n-1}, y_{n}\right)+c d\left(y_{n-1}, y_{n}\right)+c d\left(y_{n}, y_{n+1}\right) \leq r d\left(y_{n-1}, y_{n}\right)$
$\Rightarrow d\left(y_{n}, y_{n+1}\right) \leq \frac{r-b-c}{a+b+c} d\left(y_{n-1}, y_{n}\right)=k d\left(y_{n-1}, y_{n}\right)$
where $\mathrm{k}=\frac{r-b-c}{a+b+c}$. Similarly $\mathrm{d}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}}\right) \leq \mathrm{kd}\left(\mathrm{y}_{\mathrm{n}-2}, \mathrm{y}_{\mathrm{n}-1}\right)$
Since $0 \leq \mathrm{r}<\mathrm{a}+2 \mathrm{~b}, \mathrm{r}<\mathrm{b}$, then $0 \leq \mathrm{k}<1$.
By routine calculations,
(3.35) $d\left(y_{n}, y_{n+1}\right) \leq k^{n} d\left(y_{0}, y_{1}\right)$.

We claim that $\left\{y_{n}\right\}$ is a Cauchy sequence. Let $n>m$,
Then by (3.35) and the triangle inequality.

$$
d\left(y_{n}, y_{m}\right) \leq d\left(y_{n}, y_{n-1}\right)+d\left(y_{n-1}, y_{n-2}\right)+\ldots \ldots . .+d\left(y_{m+1}, y_{m}\right)
$$

$$
\begin{aligned}
& \leq k^{n-1} d\left(y_{0}, y_{1}\right)+k^{n-2} d\left(y_{0}, y_{1}\right)+\ldots . . .+k^{m} d\left(y_{0}, y_{1}\right) . \\
& \leq k^{m} d\left(y_{0}, y_{1}\right)
\end{aligned}
$$

$\overline{(1-k)}$

Therefore $\left\{y_{n}\right\}$ is a Cauchy sequence. Since $S(C)$ is complete, then $\left\{y_{n}=S x_{n+1}\right.$ $\left.=T x_{n}\right\}$ converges to some point in $\mathrm{S}(\mathrm{C})$, say z

Now by replacing x with p and y with $\mathrm{x}_{\mathrm{n}+1}$ in (3.33), we get

$$
\begin{aligned}
& \left.\operatorname{ad}\left(T p, \mathrm{Tx}_{\mathrm{n}+1}\right)+\mathrm{b}\{\mathrm{Sp}, \mathrm{Tp})+\mathrm{d}\left(\mathrm{Sx}_{\mathrm{n}+1}, \mathrm{Tx}_{\mathrm{n}+1}\right)\right\}+\mathrm{c}\left\{\mathrm{~d}\left(\mathrm{Sx} \mathrm{n}_{\mathrm{n}+1}, \mathrm{Tp}\right)+\mathrm{d}\left(\mathrm{Sp}, \mathrm{Tx}_{\mathrm{n}+1}\right)\right\} \\
& \leq \mathrm{rd}\left(\mathrm{Sp}, \mathrm{Sx}_{\mathrm{n}+1}\right) . \\
\Rightarrow & \operatorname{ad}\left(\mathrm{Tp}, \mathrm{y}_{\mathrm{n}+1}\right)+\mathrm{b}\left\{\mathrm{~d}(\mathrm{z}, \mathrm{Tp})+\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)\right\}+\mathrm{c}\left\{\mathrm{~d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{Tp}\right)+\mathrm{d}\left(\mathrm{z}, \mathrm{y}_{\mathrm{n}+1}\right)\right\} \leq \mathrm{rd}\left(\mathrm{z}, \mathrm{y}_{\mathrm{n}}\right) \\
& \text { As } \mathrm{n} \rightarrow \infty, \text { it becomes }
\end{aligned}
$$

$a d(T p, z)+b d(z, T p)+c d(z, T p) \leq 0$.

Since $\mathrm{a}+\mathrm{b}+\mathrm{c} \neq 0$, then $\mathrm{Tp}=\mathrm{z}$. Hence $\mathrm{Tp}=\mathrm{z}=\mathrm{Sp}$.
i.e. p is a coincidence point of S and T .

If S and T are weakly compatible, then they commute at a coincidence point. Therefore, $\mathrm{Tp}=\mathrm{z}=\mathrm{Sp}==>\mathrm{STp}=\mathrm{TSp}$ for some $\mathrm{p} \in \mathrm{C}$, which implies $\mathrm{Tz}=\mathrm{Sz}$. We claim that z is a common fixed point of S and T .

Substitute $x=p$ and $y=T p=z$ in (3.33), to give
$\mathrm{ad}(\mathrm{Tp}, \mathrm{TTp})+\mathrm{b}\{\mathrm{d}(\mathrm{Sp}, \mathrm{Tp})+\mathrm{d}(\mathrm{STp}, \mathrm{TTp})\}+\mathrm{c}\{\mathrm{d}(\mathrm{STp}, \mathrm{Tp})+\mathrm{d}(\mathrm{Sp}, \mathrm{TTp})\} \leq$ r d(Sp, STp).
which is equivalent to
$\mathrm{ad}(\mathrm{z}, \mathrm{Tz})+\mathrm{b}\{\mathrm{d}(\mathrm{z}, \mathrm{z})+\mathrm{d}(\mathrm{Sz}, \mathrm{Tz})\}+\mathrm{c}\{\mathrm{d}(\mathrm{Sz}, \mathrm{z})+\mathrm{d}(\mathrm{z}, \mathrm{Tz})\} \leq \mathrm{rd}(\mathrm{z}, \mathrm{Sz})$.
$\Rightarrow(\mathrm{a}+2 \mathrm{c}-\mathrm{r}) \mathrm{d}(\mathrm{z}, \mathrm{Tz}) \leq 0$.
Since $a+2 c-r \neq 0$, then $z=T z=S z$.

To prove uniqueness, suppose the contrary, that w is another common fixed point of S and T. Put x by z and y by w in the inequality (3.33), one can get.

$$
\mathrm{ad}(\mathrm{Tz}, \mathrm{Tw})+\mathrm{b}\{\mathrm{~d}(\mathrm{Sz}, \mathrm{Tz})+\mathrm{d}(\mathrm{Sw}, \mathrm{Tw})\}+\mathrm{c}\{\mathrm{~d}(\mathrm{Sw}, \mathrm{Tz})+\mathrm{d}(\mathrm{Sz}, \mathrm{Tw})\} \leq \mathrm{rd}(\mathrm{Sz},
$$ Sw).

$\Rightarrow a \mathrm{~d}(\mathrm{z}, \mathrm{w})+2 \mathrm{~cd}(\mathrm{z}, \mathrm{w}) \leq \mathrm{rd}(\mathrm{z}, \mathrm{w})$
$\Leftrightarrow(a+2 c-r) d(z, w) \leq 0$.
which is a contradiction since $\mathrm{a}+2 \mathrm{c}-\mathrm{r} \neq 0$. Hence the common fixed point of S and T is unique.

Acknowledgment :

The authors express their gratitude to the referees for constructive and useful remarks and suggestions.

REFERENCES

[1] Abdeljawad, T. Completion of cone metric spaces, Hacettepe J. Math. Stat. 39 (1), 67-74, 2010
[2] Abdeljawad, T. and Karapinar, E. Quasi-cone metric spaces and generalizations of Caristi Kirk's theorem, Fixed Point Theory Appl., 2009 doi: 10.1155/2009/574387.
[3] Abdeljawad, T. and Karapinar, E. and Tas, K. Common Fixed Point theorems in cone Banach spaces, Hacettepe J. Math. Stat. Vol. 40 (2) (2011), 211 - 217.
[4] Deimling, K. Nonlinear Functional Analysis (Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985).
[5] Huang, L. -G. and Zhang, X. Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal.Appl. 332, 1468 - 1476, 2007.
[6] Karapinar, E. Fixed point theorems in cone Banach spaces, Fixed Point Theory Appl. 2009 Article ID 609281, 9 pages, 2009,doi: 10.115/2009/609281.
[7] Khan, M.S. and Imdad, M.A. A common fixed point theorem for a class of mappings, Indian J. Pure Appl. Math. 14, 1220-1227, 1983.
[8] Lin, S. -D. A common fixed point theorem in abstract spaces, Indian J. Pure Appl. Math. 18 (8), 685-690, 1987.
[9] Maia, M.G. Un’ Osservazione sulle contrazioni metriche, Ren. Sem. Mat. Univ. Padova 40, 139-143, 1968.
[10] Rezapour, Sh. And Hamlbarani, R. Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings", J. Math. Anal.Appl. 347, 719-724, 2008.
[11] Rzepecki, B. On fixed point theorems of Maia type, Publications De L'institut Mathematique 28, 179-186, 1980.
[12] Sahin, I. and Telci, M. Fixed points of contractive mappings on complete cone metric spaces, Hacettepe J. Math. Stat. 38(1), 59-67, 2009.
[13] Suzuki, T. , Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, Journal of Mathematical Analysis and Applications Vol. 340, no. 2, 1088-1095, 2008.
[14] Turkoglu, D. and Abuloha, M. Cone metric spaces and fixed point theorems in diametrically contractive mappings, Acta Mathematica Sinica, English Series 26 (3), 489-496. 2010.
[15] Turkoglu, D., Abuloha, M. and Abdeljawad, T. KKM mappings in cone metric spaces and some fixed point theorems, Nonlinear Analysis: Theory, Methods and Applications 72 (1), 348-353, 2010.
[16] Turkoglu, D., Abuloha, M. and Abdeljawad, T. Some theorems and examples of cone Banach spaces, J. Comput. Anal.Appl. 12 (4), 739-753, 2010.

