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Abstract: This work presents an application of the Picard Iterative Method (PIM) to a class of Stochastic 

Differential Equations where the randomness in the equation is considered in terms of the Karhunen-Loéve 

Expansion finite series. Two applicable numerical examples are considered to illustrate the convergence of the 

approximate solutions to the exact solutions and also to check the efficiency of the method. The results obtained 

show clearly that accuracy will be more visible by increasing the number of terms in the iteration. Thus, it is 

recommended for nonlinear financial models of different classes of Stochastic Differential Equations.  
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1. INTRODUCTION 

Stochastic Differential Equations (SDEs) are used to model random phenomena. Recently, SDEs 

have become a typical model for quantifying financial products like options, stocks, interest rates, 
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and some other underlying assets [1]. Merton’s work brought phenomena advancement in the 

application of SDEs to financial problems [2]. Several other areas, such as population dynamic, 

option pricing, and so on have been discussed in [3]. The methods for solving different classes of 

stochastic differential equations are presented in [4, 5], but the explicit solutions are limited for 

such equations [6]. Picard Iteration Method (PIM) is one of the effective numerical methods that 

can be used for solving differential equations. It transforms a differential equation into an 

integral equation. This method can be used to get the approximate analytical solutions of linear 

and nonlinear class of differential equations. Youssef, in [7] used Picard’s Iterative Method with 

Gauss-Seidel Method to solve some IVP. Xiaohui et al., in [8] applied PIM to singular fractional 

differential equation. In [9], Edeki et al., used PIM and Differential Transforms Method to obtain 

the solutions of linear and nonlinear differential equations. Rach, in his research work, used 

Adomian Decomposition Method (ADM) and PIM [10]. ADM and PIM were compared by 

Bellomo and Sarafyan [11], Antonis et al., used Picard’s for the approximation of stochastic 

differential equations by applying it to Libor models [12]. Little research has been done on the 

application of PIM to stochastic differential models. Therefore, in this paper, our concern is to 

modify this numerical method by considering the Stratonovich linear stochastic differential 

models where the random path of the SDEs are being taken care of by the Karhunen-Loeve 

expansion of Brownian Motion. 

The rest of the work is organized as follows. In section 2, linear SDEs are discussed, the method 

of solution is discussed in section 3, two numerical examples are given in section 4, and lastly, a 

concluding remark is presented in section 5. 

 

2. LINEAR STOCHASTIC DIFFERENTIAL MODEL 

Considering the Stratonovich SDE of the form: 

( ) ( )

( )

1

0

, , ( )

0 ,

d
j

j

dX f X t dt X t dw t

X X


=


= +


 =


                         (2.1) 



1714 

O.P. OGUNDILE, S.O. EDEKI 

where, f  and    are the drift and volatility coefficients respectively, ( ) nX t X=   

represents the stochastic process and ( )W t  is the standard Brownian motion (Wiener process), 

also the dimension of the Brownian Motion is denoted with d . We remark as follows that 

( ) ,0W W t t T=    is a 1-dimensional Brownian motion [13]. 

Basically, the SDE in (2.1) can be written in Itô form as: 

1

0

( , ) ( , ) ( )

(0) .

d
j

j

dX f t X dt t X dW t

X X


=


= +


 =


                              (2.2) 

In integral form, the SDE in (2.1) is written as: 

0

0 0

( ) ( , ( )) ( , ( )) ( ).

t t

X t X f s X s ds s Y s dW s= + +                               (2.3) 

The first integral and second integral in (2.3) are known as the Riemann-Stiltjes and stochastic 

integral, respectively.  

 

3. METHODS OF SOLUTION 

This section presents the concepts of the Picard Iterative Method (PIM) and Karhunen-Loeve 

Expansion (K-LE). 

3.1 Picard Iterative Method (PIM) 

Let us consider the differential equation of this form: 

( )

0

, ,

(0) .

x f t x

x x

 =


=
                                             (3.1)

 

First order differential equations fall under this type of equation, and PIM is one of the suitable 

methods for handling this type of differential equation. Now, by integrating both sides of (3.1), 

we get: 

( ) ( )( )
0 0

, ,

t t

x s ds f s x s ds =                                  (3.2) 

therefore, following the basic concept of calculus (3.2) becomes: 
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( )( )
0

( ) (0) , ,

t

x t x f s x s ds− =           

( )( )
0

 ( ) (0) , .

t

x t x f s x s ds = +                              (3.3)  

Since ( )x t  is appearing on both sides of equation (3.3) for arbitrary t , we therefore adopt this 

iterative process by choosing an initial condition:  

( ) 00 ,    1,  : x x for n n +=     

( )( )1 0

0

 , .

t

n nx x f s x s ds+ = +                                 (3.4) 

In what follows, the approximation of (3.1) is: 

 ( ) ( )1lim ,   .nx t x t as n+= →   

The existence and uniqueness of this method have been studied by [9, 14]. 

3.2 Karhunen-Loeve Expansion (K-LE) finite series of Brownian Motion 

The K-L expansion is an extension of the Fourier Transform (FT).  Its analysis is from 

deterministic functions to probabilistic form. It is also referred to as a bi-orthogonal stochastic 

process expansion [15]. Stefano [16], in his work, used the K-L expansion to characterize the 

Brownian Motion (Wiener process). In this expansion [16], ( ) , ,  X t w t T  represents a 

stochastic process in terms of sequence of identically and independent sample variables

 ,iz i N . 

The Wiener process, ( )W t
 
has a trajectory belonging to  ( )2 0,L T  for almost all 'W s .  

Therefore, The K-L expansion for Brownian Motion can be represented as: 

( )

( )

0

( ) ( , ) ( ) ,  0 ,

2 2 (2 1)
sin ,

(2 1) 2

j j

i

j

W t W t z w t t T

T j t
t

j T







=


= =   




+  =   +  


                          (3.5) 

where ( )j t  form a basis of orthogonal function [6, 16]. 
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So, simplifying (3.5) with 1T =  gives: 

( )

( )0

sin 0.5
( ) 2

0.5
j

j

j t
W t z

j







=

 +  =  
+  

  .                               (3.6) 

Thus, 

( )( )
0

( ) 2 cos 0.5 j

j

dW t j t z


=

= +    .                                    (3.7) 

Replacing the random path of SDE (2.1) with (3.7), we obtain: 

 

( ) ( )
5

0

0

, ( , ) ( ) ,   

(0) .

j j

j

dX t f X t dt X t d z t

X X


=

  
= +   

  


=


                                 (3.8) 

For the purpose of this research work, 
jz  is generated using a mathematical computer software. 

 

4. NUMERICAL EXAMPLES 

Example 4a: Consider the Linear Stratonovich Stochastic Differential Equation [12]: 

( ) ( ) ( ) ,

(0) 1.

dX t X t dW t

X

=


=
                                     (4.1) 

The exact solution of (4.1) is 

( ) ( )( )  0 exp ,  0,exactX X W t t T=  . 

Next, we re-express (4.1) in an integral form of (3.4): 

( )( )1 0
0

,
t

n nX X f s X s dt+ = +                                             (4.2) 

0 1X =   

( )

( )( )

1 0
0

0

00

1 ,

    =1+ , =1,

    =1+ 2 cos 0.5 .

t

s

t

s

t

j

j

X X dW ds

dW ds

j t z ds








=

= +

+  






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( )( )

( )

( ) ( )( )

2 1
0

1

0

1

00

1

    = 1+ ,

    = 1+ 2 cos 0.5

t

s

t

s

t

j

j

X X dW ds

X dW ds

X j t z ds






=

= +

+  







  

( )( )

( )

( ) ( )( )

3 2
0

2

0

2

00

1

    = 1+ ,

    = 1+ 2 cos 0.5

t

s

t

s

t

j

j

X X dW ds

X dW ds

X j t z ds






=

= +

+  







 

( )( )

( )

( ) ( )( )

4 3
0

3

0

3

00

1

      =1+ ,

      =1+ 2 cos 0.5

t

s

t

s

t

j

j

X X dW ds

X dW ds

X j t z ds






=

= +

+  







  

( )( )

( )

( ) ( )( )

5 4
0

4

0

4

00

1

    = 1+ ,

    = 1+ 2 cos 0.5

    

t

s

t

s

t

j

j

X X dW ds

X dW ds

X j t z ds






=

= +

+  







 

( ) ( )( )1
0

0 .+ = + 
t

n n sX X X dW ds  

Example 4b: Consider the Linear Stochastic Differential Equation [18]: 

1
( ) ( ) ( ) ( ),

2

(0) 1.

dX t X t dt X t dW t

X


= +


 =

                                         (4.3) 

The Stratonovich exact solution of (4.3) is given as 

( )exp
2

exact

t
X B t

 
= + 

 
.                                     (4.4) 
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Next, we re-express (4.3) in an integral form as in (3.4): 

( )( )1 0
0

, .
t

n nX X f s X s dt+ = +                                             (4.5) 

Thus, the following are obtained: 

0 1X = ,  

 

( )

( ) ( )( )

1 0 0
0

0

0 0

00 0

1
1 ,

2

1
     = 1+  2 cos 0.5 .

2

t
t

s

t t

j

j

X X X dW ds

X X j t z ds


=

= + +

 
+ +   

 

 

 

  

( )

( ) ( )( )

2 1 1
0

0

1 1

00 0

1
1 ,

2

1
    = 1+  2 cos 0.5 .

2

t
t

s

t t

j

j

X X X dW ds

X X j t z ds


=

= + +

 
+ +   

 

 

 

  

( )

( ) ( )( )

3 2 2
0

0

2 2

00 0

1
1 ,

2

1
       =1+  2 cos 0.5 .

2



=

= + +

 
+ +   

 

 

 

t
t

s

t t

j

j

X X X dW ds

X X j t z ds

 

( )

( ) ( )( )

4 3 3
0

0

3 3

00 0

1
1 ,

2

1
     = 1+  2 cos 0.5 .

2

t
t

s

t t

j

j

X X X dW ds

X X j t z ds


=

= + +

 
+ +   

 

 

 

 

 

( )

( ) ( )( )

5 4 4
0

0

4 4

00 0

1
1 ,

2

1
     = 1+  2 cos 0.5 .

2

t
t

s

t t

j

j

X X X dW ds

X X j t z ds


=

= + +

 
+ +   

 

 

 

 

( )

( ) ( )( )

( ) ( )( )

6 5 5
0

0

5 5

00 0

1
0

1
 1 ,

2

1
      = 1+  2 cos 0.5 ,

2

      

0 .

t
t

s

t t

j

j

t

n n s

X X X dW ds

X X j t z ds

X X X dW ds




=

+

= + +

 
+ +   

 

= +

 

 



 

The numerical results and error analysis are given in Tables 1-2. Also, a graph is plotted for each 
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example, respectively. Other solution methods for linear and or nonlinear differential models 

(ordinary or partial), including SDEs are referred [19-31]. 

 

Table 1: Error analysis of example 4a 

t  
exactX  ( )5X t  5exactX X−  

0.0 1.0000 1.0000 0.0000 

0.1 1.5981 1.5981 0.0000 

0.2 2.2045 2.2041 0.0004 

0.3 2.2390 2.2385 0.0005 

0.4 2.1791 2.1787 0.0004 

0.5 3.0838 3.0804 0.0034 

0.6 4.9279 4.8986 0.0293 

0.7 5.1487 5.1139 0.0348 

0.8 4.1756 4.1608 0.0148 

0.9 4.2626 4.2464 0.0162 

1.0 4.7210 4.6963 0.0247 

 

Fig. 1:  Showing the graph of example 4a 
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Table 2: Error analysis of example 4b 

t  
exactX  ( )6X t  6exactX X−  

0.0 1.0000 1.0000 0.0000 

0.1 1.6801 1.6801 0.0000 

0.2 2.4363 2.4362 0.0001 

0.3 2.6013 2.6011 0.0002 

0.4 2.6615 2.6613 0.0002 

0.5 3.9596 3.9574 0.0022 

0.6 6.6520 6.6294 0.0226 

0.7 7.3064 7.2742 0.0322 

0.8 6.2292 6.2118 0.0174 

0.9 6.6850 6.6620 0.0230 

1.0 7.7837 7.7433 0.0404 

 

 

Fig. 2:  Showing the graph of example 4b 
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4. CONCLUDING REMARKS 

In this research paper, we have considered a procedure for obtaining an approximate analytical 

solution of a class of SDEs. The approach is by Picard Iterative Method (PIM), which transforms 

the differential equation into an equivalent integral equation, provided that the Lipchitz condition 

is satisfied and also, by converting the entire random sample into piecewise-continuous 

polynomials. In comparing the results obtained, it showed that more accuracy would be attained 

with an increasing number of terms. So based on these, further investigation can be carried out 

on the higher order of different classes of SDEs. 
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