Available online at http://scik.org
J. Math. Comput. Sci. 10 (2020), No. 4, 881-890
https://doi.org/10.28919/jmcs/4540
ISSN: 1927-5307

4-TOTAL DIFFERENCE CORDIAL LABELING OF CORONA OF SNAKE GRAPHS WITH K_{1}

R. PONRAJ ${ }^{1, *}$, S. YESU DOSS PHILIP ${ }^{2, \dagger}$, R. KALA ${ }^{2}$
${ }^{1}$ Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, Tamilnadu, India
${ }^{2}$ Department of Mathematics, Manonmaniam Sundarnar University, Abishekapatti, Tirunelveli, 627012, Tamilnadu, India

Copyright © 2020 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract. Let G be a graph. Let $f: V(G) \rightarrow\{0,1,2, \ldots, k-1\}$ be a map where $k \in \mathbb{N}$ and $k>1$. For each edge $u v$, assign the label $|f(u)-f(v)| . f$ is called k-total difference cordial labeling of G if $\left|t_{d f}(i)-t_{d f}(j)\right| \leq 1$, $i, j \in\{0,1,2, \ldots, k-1\}$ where $t_{d f}(x)$ denotes the total number of vertices and the edges labeled with x. A graph with admits a k-total difference cordial labeling is called k-total difference cordial graphs. In this paper we investigate the 4-total difference cordial labeling behaviour of corona of snake graphs with K_{1}.

Keywords: $T_{n} \odot K_{1} ; Q_{n} \odot K_{1} ; A\left(T_{n} \odot K_{1}\right)$.
2010 AMS Subject Classification: 05C78.

1. Introduction

All graphs in this paper are finite, simple and undirecte. The k-total difference cordial graph was introduced in [3]. In [3, 4], 3-total difference cordial labeling behaviour of path, complete graph, comb, armed crown, crown, wheel, star etc have been investigated . Also 4-total difference cordial labeling of path, star, bistar, comb, crown, $P_{n} \cup K_{1, n}, S\left(P_{n} \cup K_{1, n}\right), P_{n} \cup B_{n, n}$

[^0]etc.,have been invetigated [5]. In this paper we investigate 4-total difference of cordial labeling of Corona of triangular snake and quadrilateral snake graphs with K_{1}.

2. Preliminaries

Definition 2.1. Let G be a graph. Let $f: V(G) \rightarrow\{0,1,2, \ldots, k-1\}$ be a function where $k \in \mathbb{N}$ and $k>1$. For each edge $u v$, assign the label $|f(u)-f(v)| . f$ is called k-total difference cordial labeling of G if $\left|t_{d f}(i)-t_{d f}(j)\right| \leq 1, i, j \in\{0,1,2, \ldots, k-1\}$ where $t_{d f}(x)$ denotes the total number of vertices and the edges labelled with x. A graph with a k-total difference cordial labeling is called k-total difference cordial graph.

Definition 2.2. The Triangular snake T_{n} is obtained from the path $P_{n}: u_{1} u_{2} \ldots u_{n}$ with $V\left(T_{n}\right)=$ $V\left(P_{n}\right) \cup\left\{v_{i}: 1 \leq i \leq n-1\right\}$ and $E\left(T_{n}\right)=E\left(P_{n}\right) \cup\left\{u_{i} v_{i}, u_{i} v_{i+1}: 1 \leq i \leq n-1\right\}$.

Definition 2.3. The Quadrilateral snake Q_{n} is obtained from the path $P_{n}: u_{1} u_{2} \ldots u_{n}$ with $V\left(Q_{n}\right)=V\left(P_{n}\right) \cup\left\{v_{i}, w_{i}: 1 \leq i \leq n-1\right\}$ and $E\left(Q_{n}\right)=E\left(P_{n}\right) \cup\left\{u_{i} v_{i}, u_{i+1} w_{i}: 1 \leq i \leq n-1\right\}$.

Definition 2.4. The The Alternate triangular snake of $A\left(T_{n}\right)$ is obtained from the path P_{n} : $u_{1} u_{2} \ldots u_{n}$ by joining u_{i} and u_{i+1} (alternatively) to the vertex v_{i}. That is every alternate edge of a path is replaced by C_{3}.

Definition 2.5. Let G_{1}, G_{2} respectively be $p_{1}, q_{1}, p_{2}, q_{2}$ graphs. The corona of G_{1} with $G_{2}, G_{1} \odot$ G_{2} is the graph is obtained by taking one copy of G_{1} and p_{1} copies of G_{2} and joining the $i^{t h}$ vertex of G_{1} with an edge to every vertex in the $i^{t h}$ copy of G_{2}.

3. Main Results

Theorem 3.1. The corona of triangular snake T_{n} with $K_{1}, T_{n} \odot K_{1}$ is 4-total difference cordial.

Proof. Take the vertex set and edge set of T_{n} as in definition 2.1. Let $x_{i}(1 \leq i \leq n-1)$ be the pendent vertices adjacent to $u_{i}(1 \leq i \leq n-1)$ and $y_{i}(1 \leq i \leq n)$ be the pendent vertices adjacent to $u_{i}(1 \leq i \leq n-1)$. Clearly $\left|V\left(T_{n}\right)\right|+\left|E\left(T_{n}\right)\right|=9 n-6$.
Case 1. $n>3$. Fix the labels $1,1,3,3,3,3,3,1,1$ and 1 to the vertices $x_{1}, x_{2}, v_{1}, v_{2}$, $u_{1}, u_{2}, u_{3}, y_{1}, y_{2}$ and y_{3}. Next assign the label 3 to the all path vertices $u_{1} u_{2} \ldots u_{n}$. Next assign the labels $1,2,1$ and 3 to the vertices v_{3}, v_{4}, v_{5} and v_{6}. Similarly assign the labels $1,2,1$ and 3 to
the next four vertices v_{7}, v_{8}, v_{9} and v_{10}. Continue in this pattern until we reach the vertex v_{n-1}. Clearly the vertex v_{n-1} receive the label 1 when $n \equiv 1,3(\bmod 4)$ and 2 or $3 \operatorname{according}$ as $n \equiv 0$ $(\bmod 4)$ or $n \equiv 2(\bmod 3)$.

Next assign the labels 2,3,2 and 1 to the vertices x_{3}, x_{4}, x_{5} and x_{6}. Assign the labels 2,3,2 and 1 to the next four vertices x_{7}, x_{8}, x_{9} and x_{10}. Proceeding in this way until we reach the vertex x_{n-1}. Clearly the vertex x_{n-1} receive the label 2 when $n \equiv 1,3(\bmod 4)$ and 3 or 1 according as $n \equiv 0(\bmod 4)$ or $n \equiv 2(\bmod 3)$.

Next assign the labels $1,3,3$ and 3 to the vertices y_{3}, y_{4}, y_{5} and y_{6}. Assign the labels $1,3,3$ and 3 to the next four vertices y_{7}, y_{8}, y_{9} and y_{10}. Proceeding like this until we reach the vertex y_{n}. Clearly the vertex y_{n} receive the label 3 or 1 when $n \equiv 0,1,2(\bmod 4)$ or $n \equiv 3(\bmod 4)$.

Case 2. $n \leq 3$.
Table 1 gives a 4-total difference cordial labeling for this case.

n	u_{1}	u_{2}	u_{3}	v_{1}	v_{2}	x_{1}	x_{2}	y_{1}	y_{2}	y_{3}
2	3	3		3		1		1	1	
2	3	3	3	3	3	1	1	1	1	1

The table 2 shows that this vertex labeling is a 4-total difference cordial labeling.

Values of n	$t_{d f}(0)$	$t_{d f}(1)$	$t_{d f}(2)$	$t_{d f}(3)$
$n \equiv 0(\bmod 4)$	$\frac{9 n-4}{4}$	$\frac{9 n-8}{4}$	$\frac{9 n-4}{4}$	$\frac{9 n-8}{4}$
$n \equiv 1(\bmod 4)$	$\frac{9 n-5}{4}$	$\frac{9 n-5}{4}$	$\frac{9 n-9}{4}$	$\frac{9 n-5}{4}$
$n \equiv 2(\bmod 4)$	$\frac{9 n-6}{4}$	$\frac{9 n-6}{4}$	$\frac{9 n-6}{4}$	$\frac{9 n-6}{4}$
$n \equiv 3(\bmod 4)$	$\frac{9 n-7}{3}$	$\frac{9 n-7}{4}$	$\frac{9 n-7}{4}$	$\frac{9 n-7}{4}$

Example 3.1. A 4-total difference cordial labeling of $T_{6} \odot K_{1}$ is shown in Figure 1

Figure 1
Theorem 3.2. The corona of quadrilateral snake Q_{n} with $K_{1}, Q_{n} \odot K_{1}$ is 4-total difference cordial.

Proof. Take the vertex set and edge set of Q_{n} as in definition 2.2. Let x_{i} be the pendent vertices adjacent to v_{i} and z_{i} be the pendent vertices adjacent to $w_{i}(1 \leq i \leq n-1)$. Let $y_{i}(1 \leq i \leq n)$ be the pendent vertices adjacent to $u_{i}(1 \leq i \leq n)$. It is easy to verify that $\left|V\left(Q_{n}\right)\right|+\left|E\left(Q_{n}\right)\right|=13 n-10$.

Assign the label 3 to the all the path vertices $u_{1} u_{2} \ldots u_{n}$. Next assign the labels 3,3,1 and 1 to the vertices v_{1}, v_{2}, v_{3} and v_{4}. Assign the labels $3,3,1$ and 1 to the vertices v_{5}, v_{6}, v_{7} and v_{8}. Continue in this pattern until we reach the vertex v_{n-1}. Clearly the vertex v_{n-1} receive the label 3 or 1 according as $n \equiv 1,2(\bmod 4)$ or $n \equiv 0,3(\bmod 4)$.

We now consider the vertices w_{i}. Assign the labels $3,3,1$ and 2 to the vertices w_{1}, w_{2}, w_{3} and w_{4}. Next assign the labels $3,3,1$ and 2 to the vertices w_{5}, w_{6}, w_{7} and w_{8}. Proceeding like this until we reach the vertex w_{n-1}. Clearly the vertex w_{n-1} receive the label 3 when $n \equiv 1,2$ $(\bmod 4)$ and 1 or 2 when $n \equiv 0,3(\bmod 4)$.

Now we consider the vertices x_{i}. Assign the labels $1,1,2$ and 3 to the vertices x_{1}, x_{2}, x_{3} and x_{4}. Next assign the labels $1,1,2$ and 3 to the vertices x_{5}, x_{6}, x_{7} and x_{8}. Proceeding like this until we reach the vertex x_{n-1}. Clearly the vertex x_{n-1} receive the label 1 when $n \equiv 1,2(\bmod 4)$ and 2 or 3 when $n \equiv 3,0(\bmod 4)$.

We now move to the vertices z_{i}. Assign the labels $1,1,3$ and 3 to the vertices z_{1}, z_{2}, z_{3} and z_{4}. Next assign the labels $1,1,3$ and 3 to the vertices z_{5}, z_{6}, z_{7} and z_{8}. Proceeding like this until
we reach the vertex z_{n-1}. Clearly the vertex z_{n-1} receive the labels 1 or 3 according as $n \equiv 1,2$ $(\bmod 4)$ or $n \equiv 3,0(\bmod 4)$.

Next we move to the pendent vertices of path. Fix the label 1 to the vertex y_{i}. Assign the labels $1,1,3$ and 3 to the vertices y_{2}, y_{3}, y_{4} and y_{5}. Next assign the labels $1,1,3$ and 3 to the vertices y_{6}, y_{7}, y_{8} and y_{9}. Proceeding like this until we reach the vertex y_{n}. Clearly the vertex y_{n} receive the label 1 or 3 according as $n \equiv 2,3(\bmod 4)$ or $n \equiv 0,1(\bmod 4)$.

The table 3 shows that this vertex labeling is a 4 -total difference cordial labeling.

Values of n	$t_{d f}(0)$	$t_{d f}(1)$	$t_{d f}(2)$	$t_{d f}(3)$
$n \equiv 0(\bmod 4)$	$\frac{13 n-8}{4}$	$\frac{13 n-12}{4}$	$\frac{13 n-8}{4}$	$\frac{13 n-12}{4}$
$n \equiv 1(\bmod 4)$	$\frac{13 n-13}{4}$	$\frac{13 n-9}{4}$	$\frac{13 n-9}{4}$	$\frac{13 n-9}{4}$
$n \equiv 2(\bmod 4)$	$\frac{13 n-10}{4}$	$\frac{13 n-10}{4}$	$\frac{13 n-10}{4}$	$\frac{13 n-10}{4}$
$n \equiv 3(\bmod 4)$	$\frac{13 n-7}{3}$	$\frac{13 n-11}{4}$	$\frac{13 n-11}{4}$	$\frac{13 n-11}{4}$
TABLE 3				

Example 3.2. A 4-total difference cordial labeling of $Q_{5} \odot K_{1}$ is shown in Figure 2

Figure 2

Theorem 3.3. The corona of alternate triangular snake $A\left(T_{n}\right)$ with $K_{1}, A\left(T_{n}\right) \odot K_{1}$ is 4-total difference cordial.

Proof. Take the vertex set and edge set of $A\left(T_{n}\right)$ as in definition 2.3.
Case 1. The edge $u_{1} u_{2}$ lies in a triangle and the edge $u_{n-1} u_{n}$ lies in a triangle.
Let $x_{i}(1 \leq i \leq n-1)$ be the pendent vertices adjacent to $v_{i}(1 \leq i \leq n-1)$ and $y_{i}(1 \leq i \leq n)$ be the pendent vertices adjacent to $u_{i} 1 \leq i \leq n-1$. Clearly n is even. In this case $\left|V\left(A\left(T_{n}\right)\right) \odot K_{1}\right|+$ $\left|E\left(A\left(T_{n}\right)\right)\right|=\frac{13 n-2}{2}$.

Assign the label 3 to the path vertices $u_{1} u_{2} \ldots u_{n}$. Next fix the label 3 and 3 to the vertices v_{1} and v_{2}. Fix the label 1 to the vertices x_{1}, x_{2}, y_{1} and y_{2}. Next assign the labels $2,3,2$ and 1 to the vertices x_{3}, x_{4}, x_{5} and x_{6}. Assign the labels 2,3,2 and 1 to the next four vertices x_{7}, x_{8}, x_{9} and x_{10}. Continue in this pattern until we reach the vertex $x_{\frac{n}{2}}$. Clearly the vertex $x_{\frac{n}{2}}$ receive the label 2 when $n \equiv 1,3(\bmod 4)$ and 3 or 1 according as $n \equiv 0(\bmod 4)$ or $n \equiv 2(\bmod 3)$.

We now consider the vertices v_{i}. Assign the labels $1,2,1$ and 3 to the vertices v_{3}, v_{4}, v_{5} and v_{6} . Similarly assign the labels $1,2,1$ and 3 to the next four vertices v_{7}, v_{8}, v_{9} and v_{10}. Continue in this pattern until we reach the vertex $v_{\frac{n}{2}}$. Clearly the vertex $v_{\frac{n}{2}}$ receive the label 1 when $n \equiv 1,3$ $(\bmod 4)$ and 2 or 3 according as $n \equiv 2(\bmod 4)$ or $n \equiv 0(\bmod 3)$.

Consider the vertices y_{i}. Assign the labels $1,1,1,3,1,3,1$ and 3 to the vertices $y_{3}, y_{4}, y_{5}, y_{6}, y_{7}$, y_{8}, y_{9} and y_{10}. Next assign the labels $1,1,1,3,1,3,1$ and 3 to the vertices $y_{11}, y_{12}, y_{13}, y_{14}, y_{15}, y_{16}, y_{17}$ and y_{18}. Continue in this pattern until we reach the vertex y_{n}. Clearly the vertex y_{n} receive the label 1 or 3 according as $n \equiv 1,3,4,5,7(\bmod 8)$ or $n \equiv 0,2,6$ $(\bmod 4)$.

The table 4 shows that this vertex labeling is a 4-total difference cordial labeling.

Values of n	$t_{d f}(0)$	$t_{d f}(1)$	$t_{d f}(2)$	$t_{d f}(3)$	
$n \equiv 0(\bmod 8)$	$\frac{13 n}{8}$	$\frac{13 n}{8}$	$\frac{13 n-8}{8}$	$\frac{13 n}{8}$	
$n \equiv 2(\bmod 8)$	$\frac{13 n-2}{8}$	$\frac{13 n-2}{8}$	$\frac{13 n-2}{8}$	$\frac{13 n-2}{8}$	
$n \equiv 4(\bmod 8)$	$\frac{13 n+4}{8}$	$\frac{13 n-4}{8}$	$\frac{13 n-4}{8}$	$\frac{13 n-4}{8}$	
$n \equiv 6(\bmod 8)$	$\frac{13 n+2}{8}$	$\frac{13 n-6}{8}$	$\frac{13 n+2}{8}$	$\frac{13 n-6}{8}$	
TABLE 4					

Case 2. The edge $u_{1} u_{2}$ lies in a triangle and the edge $u_{n-2} u_{n-1}$ lies in a triangle.In this case n is odd.

Clearly removal of the edge $u_{n-1} u_{n}$ is the graph as in case(i). Assign the label to the vertices $u_{i}(1 \leq i \leq n-1)$ and $v_{i}\left(1 \leq i \leq \frac{n-1}{2}\right)$ as in case (i). Finally assign the labels 3 and 1 respect to the vertices u_{n} and v_{n}.

The table 5 shows that this vertex labeling is a 4-total difference cordial labeling.

Values of n	$t_{d f}(0)$	$t_{d f}(1)$	$t_{d f}(2)$	$t_{d f}(3)$
$n \equiv 1(\bmod 8)$	$\frac{13 n-5}{8}$	$\frac{13 n-5}{8}$	$\frac{13 n-13}{8}$	$\frac{13 n-5}{8}$
$n \equiv 3(\bmod 8)$	$\frac{13 n-7}{8}$	$\frac{13 n-7}{8}$	$\frac{13 n-7}{8}$	$\frac{13 n-7}{8}$
$n \equiv 5(\bmod 8)$	$\frac{13 n-9}{8}$	$\frac{13 n-17}{8}$	$\frac{13 n-17}{8}$	$\frac{13 n-17}{8}$
$n \equiv 7(\bmod 8)$	$\frac{13 n-11}{8}$	$\frac{13 n-19}{8}$	$\frac{13 n-11}{8}$	$\frac{13 n-19}{8}$
TABLE 5				

Case 3. The edge $u_{2} u_{3}$ lies in a triangle and the edge $u_{n-2} u_{n-1}$ lies in a triangle.
Obviously removal of the edge $u_{1} u_{2}$ as in case(ii). Assign the label to the vertices $u_{i}(2 \leq i \leq n)$ and $v_{i}\left(2 \leq i \leq \frac{n-2}{2}\right)$ as in case (i). Next assign the labels 3 and 1 respect to the vertices u_{1} and v_{1}.

The table 6 shows that this vertex labeling is a 4-total difference cordial labeling.

Values of n	$t_{d f}(0)$	$t_{d f}(1)$	$t_{d f}(2)$	$t_{d f}(3)$
$n \equiv 0(\bmod 8)$	$\frac{13 n-8}{8}$	$\frac{13 n-16}{8}$	$\frac{13 n-8}{8}$	$\frac{13 n-16}{8}$
$n \equiv 2(\bmod 8)$	$\frac{13 n-10}{8}$	$\frac{13 n-10}{8}$	$\frac{13 n-18}{8}$	$\frac{13 n-10}{8}$
$n \equiv 4(\bmod 8)$	$\frac{13 n-12}{8}$	$\frac{13 n-12}{8}$	$\frac{13 n-12}{8}$	$\frac{13-12}{8}$
$n \equiv 6(\bmod 8)$	$\frac{13 n-6}{8}$	$\frac{13 n-14}{8}$	$\frac{13 n-14}{8}$	$\frac{13 n-14}{8}$

TABLE 6

Theorem 3.4. The corona of alternate quadrilateral snake $A\left(Q_{n}\right)$ with $K_{1}, A\left(Q_{n}\right) \odot K_{1}$ is 4-total difference cordial.

Proof. Take the vertex set and edge set of $A\left(Q_{n}\right)$ as in definition 2.3.
Case 1. The edge $u_{1} u_{2}$ lies in a Quadrilateral and the edge $u_{n-1} u_{n}$ lies in a Quadrilateral.
Let $x_{i}(1 \leq i \leq n)$ be the pendent vertices adjacent to $v_{i}(1 \leq i \leq n)$ and $z_{i}\left(1 \leq i \leq \frac{n}{2}\right)$ be the pendent vertices adjacent to $w_{i}(1 \leq i \leq n)$ and $y_{i}(1 \leq i \leq n)$ be the pendent vertices adjacent to $u_{i} 1 \leq i \leq n$. Clearly n is even. In this case $\left|V\left(A\left(Q_{n}\right)\right) \odot K_{1}\right|+\left|E\left(A\left(Q_{n}\right)\right)\right|=\frac{17 n-11}{2}$.

Assign the label 3 to the path vertices $u_{1} u_{2} \ldots u_{n}$. Next fix the label 3 to the vertices v_{1} and w_{1}. Fix the label 1 to the vertices x_{1}, z_{1} and $y_{i}(1 \leq i \leq n)$. Next assign the labels $1,3,3$ and 3 to the vertices x_{2}, x_{3}, x_{4} and x_{5}. Assign the labels $1,3,3$ and 3 to the next four vertices x_{6}, x_{7}, x_{8} and x_{9}. Continue in this pattern until we reach the vertex $x_{\frac{n}{2}}$. Clearly the vertex $x_{\frac{n}{2}}$ receive the label 1 when $n \equiv 2(\bmod 4)$ and 3 when $n \equiv 0,1,3(\bmod 4)$.

We now consider the vertices $z_{i}\left(1 \leq i \leq \frac{n}{2}\right)$. Assign the labels $1,2,3$ and 2 to the vertices z_{2}, z_{3}, z_{4} and z_{5}. Similarly assign the labels $1,2,3$ and 2 to the next four vertices z_{6}, z_{7}, z_{8} and z9. Continue in this pattern until we reach the vertex $z_{\frac{n}{2}}$. Clearly the vertex $z_{\frac{n}{2}}$ receive the label 2 when $n \equiv 1,3(\bmod 4)$ and 1 or $3 \operatorname{according}$ as $n \equiv 0,2(\bmod 4)$.

Consider the vertices $v_{i}\left(1 \leq i \leq \frac{n}{2}\right)$. Assign the label 3 to the vertices $v_{1}, v_{2}, v_{\frac{n}{2}}$. Next assign the labels $3,1,2$ and 1 to the vertices w_{2}, w_{3}, w_{4} and w_{5}. Assign the labels $3,1,2$ and 1 to the next four vertices w_{6}, w_{7}, w_{8} and w_{9}. Continue in this way until we reach the vertex $w_{\frac{n}{2}}$. Clearly the vertex $w_{\frac{n}{2}}$ receive the label 1 when $n \equiv 1,3(\bmod 4)$ and 3 or 2 when $n \equiv 0,2(\bmod 4)$.

The table 7 shows that this vertex labeling is a 4-total difference cordial labeling.

Case 2. The edge $u_{1} u_{2}$ lies in a quadrilateral and the edge $u_{n-2} u_{n-1}$ lies in a quadrilateral. In this case n is odd.

Clearly removal of the edge $u_{n-1} u_{n}$ is the graph as in case(i). Assign the label to the vertices

Values of n	$t_{d f}(0)$	$t_{d f}(1)$	$t_{d f}(2)$	$t_{d f}(3)$
$n \equiv 0(\bmod 8)$	$\frac{17 n}{8}$	$\frac{17 n}{8}$	$\frac{17 n-8}{8}$	$\frac{17 n}{8}$
$n \equiv 2(\bmod 8)$	$\frac{17 n-2}{8}$	$\frac{17 n-2}{8}$	$\frac{17 n-2}{8}$	$\frac{17 n-2}{8}$
$n \equiv 4(\bmod 8)$	$\frac{17 n+4}{8}$	$\frac{17 n-4}{8}$	$\frac{17 n-4}{8}$	$\frac{17 n-4}{8}$
$n \equiv 6(\bmod 8)$	$\frac{17 n+2}{8}$	$\frac{17 n-6}{8}$	$\frac{17 n+2}{8}$	$\frac{17 n-6}{8}$

TABLE 7
$u_{i}(1 \leq i \leq n-1)$ and $v_{i}\left(1 \leq i \leq \frac{n}{2}\right)$ and $w_{i}\left(1 \leq i \leq \frac{n}{2}\right)$ as in case (i). Finally assign the labels 3 and 1 respect to the vertices u_{n} and $v_{\frac{n}{2}}$.
The table 8 shows that this vertex labeling is a 4-total difference cordial labeling.

Values of n	$t_{d f}(0)$	$t_{d f}(1)$	$t_{d f}(2)$	$t_{d f}(3)$
$n \equiv 1(\bmod 8)$	$\frac{17 n-9}{8}$	$\frac{17 n-9}{8}$	$\frac{17 n-17}{8}$	$\frac{17 n-9}{8}$
$n \equiv 3(\bmod 8)$	$\frac{17 n-11}{8}$	$\frac{17 n-11}{8}$	$\frac{17 n-11}{8}$	$\frac{17 n-11}{8}$
$n \equiv 5(\bmod 8)$	$\frac{17 n-5}{8}$	$\frac{17 n-13}{8}$	$\frac{17 n-13}{8}$	$\frac{17 n-13}{8}$
$n \equiv 7(\bmod 8)$	$\frac{17 n-7}{8}$	$\frac{17 n-15}{8}$	$\frac{17 n-7}{8}$	$\frac{17 n-15}{8}$

Case 3. The edge $u_{2} u_{3}$ lies in a Quadrilatral and the edge $u_{n-2} u_{n-1}$ lies in a Quadrilatral. Obviously removal of the edge $u_{1} u_{2}$ as in case(ii). Assign the label to the vertices $u_{i}(2 \leq i \leq n)$ and $v_{i}(2 \leq i \leq n-1)$ and $w_{i}\left(1 \leq i \leq \frac{n}{2}\right)$ as in case (i). Next assign the labels 3 and 1 respect to the vertices u_{1} and v_{1}.

The table 9 shows that this vertex labeling is a 4 -total difference cordial labeling.

Values of n	$t_{d f}(0)$	$t_{d f}(1)$	$t_{d f}(2)$	$t_{d f}(3)$
$n \equiv 0(\bmod 8)$	$\frac{17 n-32}{8}$	$\frac{17 n-40}{8}$	$\frac{17 n-32}{8}$	$\frac{17 n-40}{8}$
$n \equiv 2(\bmod 8)$	$\frac{17 n-34}{8}$	$\frac{17 n-34}{8}$	$\frac{17 n-42}{8}$	$\frac{17 n-34}{8}$
$n \equiv 4(\bmod 8)$	$\frac{17 n-20}{8}$	$\frac{17 n-20}{8}$	$\frac{17 n-20}{8}$	$\frac{17 n-20}{8}$
$n \equiv 6(\bmod 8)$	$\frac{17 n-30}{8}$	$\frac{17 n-38}{8}$	$\frac{17 n-38}{8}$	$\frac{17 n-38}{8}$
TABLE 9				

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

References

[1] J.A. Gallian, A Dynamic survey of graph labeling, Electron. J. Comb. 19 (2017), \#Ds6.
[2] F. Harary, Graph theory, Addision wesley, New Delhi, 1969.
[3] R. Ponraj, S. Yesu Doss Philip and R. Kala, k-total difference cordial graphs, J. Algorithms Combut. 51(2019), 121-128.
[4] R. Ponraj, S. Yesu Doss Philip and R. Kala, 3-total difference cordial graphs, Glob. Eng. Sci. Res. 6 (2019), 46-51.
[5] R. Ponraj, S. Yesu Doss Philip and R. Kala, Some families of 4-total difference cordial graphs J. Math. Comput. Sci. 10 (2020), 150-156.

[^0]: *Corresponding author
 ${ }^{\dagger}$ Research scholar, Register number 182240120910010
 E-mail address: ponrajmaths@gmail.com
 Received February 24, 2020

