Available online at http://scik.org
J. Math. Comput. Sci. 10 (2020), No. 4, 1004-1019
https://doi.org/10.28919/jmcs/4544
ISSN: 1927-5307

A NOTE ON THE ZEROS OF POLAR DERIVATIVE OF A POLYNOMIAL WITH COMPLEX COEFFICIENTS

K. PRAVEEN KUMAR ${ }^{1, *}$, B. KRISHNA REDDY ${ }^{2}$
${ }^{1}$ Lecturer in Mathematics, Gpt.Vikarabad, Department of Technical education, Telangana-501102, India
${ }^{2}$ Department of Mathematics, UCS, Osmania University, Hyderabad, Telangana-500007, India

Copyright © 2020 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

According to the Enestrom-Kakeya theorem "zeros of the polynomial whose coefficients are positive, real and increasing along with the powers of the variable are lie in the unit circle" see [6, 10]. In [1], Aziz and Mahammad, showed that zeros of $f(z)$ satisfies $|z| \geq \frac{n}{n+1}$ are simple, under the same conditions. This article shows that the result of Gulzar, Zargar and Akthar in [8] is simplified in terms of real and imaginary parts of complex coefficients of the polynomial, also it extends some generalizations by imposing conditions on hypothesis in different ways.

Keywords: zeros; polynomial; Eneström-Kakeya theorem; polar derivative.
2010 AMS Subject Classification: 30C10, 30C15.

1. Introduction

Let $f(z)$ be the $n^{\text {th }}$ degree polynomial with real coefficients. Let $D_{\alpha} f(z)$ denote the polar derivative of $f(z)$ w.r.t the point α and it is defined by $D_{\alpha} f(z)=n f(z)+(\alpha-z) f^{\prime}(z)$. In this case the degree of $D_{\alpha} f(z)$ is at most $n-1$ and if α tends to ∞ then it generalize the ordinary

[^0]derivative
$$
\text { i.e } \lim _{\alpha \longrightarrow \infty} \frac{D_{\alpha} f(z)}{\alpha}=f^{\prime}(z)
$$

Regarding the distribution of zeros of $f(z)$, Enestrom Kakeya proved the folowing result.

Theorem 1. Let $f(z)=\sum_{j=0}^{n} k_{j} z^{j}$ be the $n^{\text {th }}$ degree polynomial with real coefficients such that for some $0<k_{0} \leq k_{1} \leq \ldots \leq k_{n-2} \leq k_{n-1} \leq k_{n}$ then all zeros of $f(z)$ lies in $|z| \leq 1$.

Instead of taking only positive coefficients, A.Joyal, Labelle and Rahman[3] given the following result

Theorem 2. Let $f(z)=\sum_{j=0}^{n} k_{j} z^{j}$ be the $n^{\text {th }}$ degree polynomial with real coefficients such that for some $k_{0} \leq k_{1} \leq \ldots \leq k_{n-2} \leq k_{n-1} \leq k_{n}$ then all zeros of $f(z)$ lies in $|z| \leq \frac{k_{n}-k_{0}+\left|k_{0}\right|}{\left|k_{n}\right|}$.

Regarding the multiplicity of zeros of $f(z)$, Aziz and Mahammad [1] proved the folowing result

Theorem 3. Let $f(z)=\sum_{j=0}^{n} k_{j} z^{j}$ be the $n^{\text {th }}$ degree polynomial with real coefficients such that for some $0<k_{0} \leq k_{1} \leq \ldots \leq k_{n}$ then all zeros of $f(z)$ of modulus greater than or equal to $\frac{n}{n+1}$ are simple.

Gulzar, Zargar and Akthar [8] result by substituting b_{t} with $(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right]$ for $t=2,3,4, . ., n$

Theorem 4. Let $f(z)=\sum_{j=0}^{n} k_{j} z^{j}$ be the $n^{\text {th }}$ degree polynomial with real coefficients, and α be a real number, such that for some $b_{n} \geq b_{n-1} \geq \ldots \geq b_{4} \geq b_{3} \geq b_{2}$ then all zeros of $D_{\alpha} f(z)$ which does not lie in $|z| \leq \frac{b_{n}-b_{2}+\left|b_{2}\right|}{\left|b_{n}\right|}$ are simple.

Theorem 5. If $f(z)=\sum_{j=0}^{n} k_{j} z^{j}$ is the $n^{\text {th }}$ degree polynomial with real coefficients, and α be a real number such that for some $b_{n} \leq b_{n-1} \leq \ldots \leq b_{4} \leq b_{3} \leq b_{2}$ then all zeros of $D_{\alpha} f(z)$ which does not lie in $|z| \leq \frac{b_{2}+\left|b_{2}\right|-b_{n}}{\left|b_{n}\right|}$ are simple.
M.H.Gulzar, Zargar and Akthar [8] have extended the above results to the polar derivatives, there exist some generalizations and extentions of Enestrom and Kakeya theorem in [2, 4, 5, 7, 9]. This paper providing the region about the simple zeros of polar derivative in terms of real
and imaginary parts by imposing some conditions on hypethesis in different ways by replacing b_{t} with $(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right] \quad$ for $\quad t=2,3,4, \ldots, n$

2. Main Results

Theorem 6. Let $f(z)=\sum_{j=0}^{n} k_{j} z^{j}$ be the $n^{\text {th }}$ degree polynomial, Let α be the real or complex number, such that for some

$$
p_{n} \geq p_{n-1} \geq \ldots \geq p_{4} \geq p_{3} \geq p_{2} \quad \text { and } \quad q_{n} \geq q_{n-1} \geq \ldots \geq q_{4} \geq q_{3} \geq q_{2}
$$

then all zeros of $D_{\alpha} f(z)$ which does not lie in

$$
|z| \leq \frac{p_{n}+q_{n}-\left(p_{2}+q_{2}\right)+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

are simple, where $\operatorname{Re}\left(b_{t}\right)=p_{t}, \operatorname{Im}\left(b_{t}\right)=q_{t}$ and $b_{t}=(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right] \quad$ for $t=$ $2,3,4, \ldots, n$

Corollary 1. If $f(z)=\sum_{j=0}^{n} k_{j} z^{j}$ is the $n^{\text {th }}$ degree polynomial, Let α be the real or complex number, such that for some

$$
p_{n} \geq p_{n-1} \geq \ldots \geq p_{4} \geq p_{3} \geq p_{2}>0 \quad \text { and } \quad q_{n} \geq q_{n-1} \geq \ldots \geq q_{4} \geq q_{3} \geq q_{2}>0
$$

then all zeros of $D_{\alpha} f(z)$ which does not lie in

$$
|z| \leq \frac{p_{n}+q_{n}}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

are simple, where $\operatorname{Re}\left(b_{t}\right)=p_{t}, \operatorname{Im}\left(b_{t}\right)=q_{t}$ and $b_{t}=(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right] \quad$ for $t=$ $2,3,4, \ldots, n$

Corollary 2. If $f(z)=\sum_{j=0}^{n} k_{j} z^{j}$ is the $n^{\text {th }}$ degree polynomial, Let α be the real or complex number, such that for some

$$
p_{n} \geq p_{n-1} \geq \ldots \geq p_{4} \geq p_{3} \geq p_{2}>0 \quad \text { and } \quad q_{n} \geq q_{n-1} \geq \ldots \geq q_{4} \geq q_{3} \geq q_{2}
$$

then all zeros of $D_{\alpha} f(z)$ which does not lie in

$$
|z| \leq \frac{p_{n}+q_{n}-q_{2}+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$ are simple, where $\operatorname{Re}\left(b_{t}\right)=p_{t}, \operatorname{Im}\left(b_{t}\right)=q_{t}$ and $b_{t}=(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right] \quad$ for $t=$ $2,3,4, \ldots, n$

Corollary 3. If $f(z)=\sum_{j=0}^{n} k_{j} z^{j}$ is the $n^{\text {th }}$ degree polynomial, Let α be the real or complex number, such that for some

$$
p_{n} \geq p_{n-1} \geq \ldots \geq p_{4} \geq p_{3} \geq p_{2} \quad \text { and } \quad q_{n} \geq q_{n-1} \geq \ldots \geq q_{4} \geq q_{3} \geq q_{2}>0
$$

then all zeros of $D_{\alpha} f(z)$ which does not lie in

$$
|z| \leq \frac{p_{n}+q_{n}-p_{2}+\left|p_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

are simple, where $\operatorname{Re}\left(b_{t}\right)=p_{t}, \operatorname{Im}\left(b_{t}\right)=q_{t}$ and $b_{t}=(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right] \quad$ for $t=$ $2,3,4, \ldots, n$

Remark 1. (1) Corollary 1 follows from theorem 6 by substituting $p_{t}>0, q_{t}>0$.
(2) Corollary 2 follows from theorem 6 by substituting $p_{t}>0$.
(3) Corollary 3 follows from theorem 6 by substituting $q_{t}>0$.

Theorem 7. Let $f(z)=\sum_{j=0}^{n} k_{j} z^{j}$ be the $n^{\text {th }}$ degree polynomial, Let α be the real or complex number, such that for some

$$
p_{n} \leq p_{n-1} \leq \ldots \leq p_{4} \leq p_{3} \leq p_{2} \quad \text { and } \quad q_{n} \leq q_{n-1} \leq \ldots \leq q_{4} \leq q_{3} \leq q_{2}
$$

then all zeros of $D_{\alpha} f(z)$ which does not lie in

$$
|z| \leq \frac{-p_{n}-q_{n}+p_{2}+q_{2}+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

are simple, where $\operatorname{Re}\left(b_{t}\right)=p_{t}, \operatorname{Im}\left(b_{t}\right)=q_{t}$ and $b_{t}=(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right] \quad$ for $t=$ $2,3,4, \ldots, n$

Corollary 4. If $f(z)=\sum_{j=0}^{n} k_{j} z^{j}$ is the $n^{\text {th }}$ degree polynomial, Let α be the real or complex number, such that for some

$$
0<p_{n} \leq p_{n-1} \leq \ldots \leq p_{4} \leq p_{3} \leq p_{2} \quad \text { and } \quad 0<q_{n} \leq q_{n-1} \leq \ldots \leq q_{4} \leq q_{3} \leq q_{2}
$$

then all zeros of $D_{\alpha} f(z)$ which does not lie in

$$
|z| \leq \frac{-p_{n}-q_{n}+2\left(p_{2}+q_{2}\right)}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

are simple, where $\operatorname{Re}\left(b_{t}\right)=p_{t}, \operatorname{Im}\left(b_{t}\right)=q_{t}$ and $b_{t}=(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right]$ for $t=$ $2,3,4, \ldots, n$

Corollary 5. If $f(z)=\sum_{j=0}^{n} k_{j} z^{j}$ is the $n^{\text {th }}$ degree polynomial, Let α be the real or complex number, such that for some

$$
0<p_{n} \leq p_{n-1} \leq \ldots \leq p_{4} \leq p_{3} \leq p_{2} \quad \text { and } \quad q_{n} \leq q_{n-1} \leq \ldots \leq q_{4} \leq q_{3} \leq q_{2}
$$

then all zeros of $D_{\alpha} f(z)$ which does not lie in

$$
|z| \leq \frac{-p_{n}-q_{n}+2 p_{2}+q_{2}+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

are simple, where $\operatorname{Re}\left(b_{t}\right)=p_{t}, \operatorname{Im}\left(b_{t}\right)=q_{t}$ and $b_{t}=(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right] \quad$ for $\quad t=$ $2,3,4, \ldots, n$

Corollary 6. If $f(z)=\sum_{j=0}^{n} k_{j} z^{j}$ is the $n^{\text {th }}$ degree polynomial, Let α be the real or complex number, such that for some

$$
p_{n} \leq p_{n-1} \leq \ldots \leq p_{4} \leq p_{3} \leq p_{2} \quad \text { and } \quad 0<q_{n} \leq q_{n-1} \leq \ldots \leq q_{4} \leq q_{3} \leq q_{2}
$$

then all zeros of $D_{\alpha} f(z)$ which does not lie in

$$
|z| \leq \frac{-p_{n}-q_{n}+p_{2}+2 q_{2}+\left|p_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

are simple, where $\operatorname{Re}\left(b_{t}\right)=p_{t}, \operatorname{Im}\left(b_{t}\right)=q_{t}$ and $b_{t}=(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right] \quad$ for $t=$ $2,3,4, \ldots, n$

Remark 2. (1) Corollary 4 follows from theorem 7 by substituting $p_{t}>0, q_{t}>0$.
(2) Corollary 5 follows from theorem 7 by substituting $p_{t}>0$.
(3) Corollary 6 follows from theorem 7 by substituting $q_{t}>0$.

Theorem 8. Let $f(z)=\sum_{j=0}^{n} k_{j} z^{j}$ be the $n^{\text {th }}$ degree polynomial, Let α be the real or complex number, such that for some

$$
p_{n} \geq p_{n-1} \geq \ldots \geq p_{4} \geq p_{3} \geq p_{2} \quad \text { and } \quad q_{n} \leq q_{n-1} \leq \ldots \leq q_{4} \leq q_{3} \leq q_{2}
$$

then all zeros of $D_{\alpha} f(z)$ which does not lie in

$$
|z| \leq \frac{p_{n}-q_{n}-p_{2}+q_{2}+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

are simple, where $\operatorname{Re}\left(b_{t}\right)=p_{t}, \operatorname{Im}\left(b_{t}\right)=q_{t}$ and $b_{t}=(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right] \quad$ for $t=$ $2,3,4, \ldots, n$

Corollary 7. If $f(z)=\sum_{j=0}^{n} k_{j} z^{j}$ is the $n^{\text {th }}$ degree polynomial, Let α be the real or complex number, such that for some

$$
p_{n} \geq p_{n-1} \geq \ldots \geq p_{4} \geq p_{3} \geq p_{2}>0 \quad \text { and } \quad 0<q_{n} \leq q_{n-1} \leq \ldots \leq q_{4} \leq q_{3} \leq q_{2}
$$

then all zeros of $D_{\alpha} f(z)$ which does not lie in

$$
|z| \leq \frac{p_{n}-q_{n}+2 q_{2}}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

are simple, where $\operatorname{Re}\left(b_{t}\right)=p_{t}, \operatorname{Im}\left(b_{t}\right)=q_{t}$ and $b_{t}=(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right] \quad$ for $t=$ $2,3,4, \ldots, n$

Corollary 8. If $f(z)=\sum_{j=0}^{n} k_{j} z^{j}$ is the $n^{\text {th }}$ degree polynomial, Let α be the real or complex number, such that for some

$$
p_{n} \geq p_{n-1} \geq \ldots \geq p_{4} \geq p_{3} \geq p_{2}>0 \quad \text { and } \quad q_{n} \leq q_{n-1} \leq \ldots \leq q_{4} \leq q_{3} \leq q_{2}
$$

then all zeros of $D_{\alpha} f(z)$ which does not lie in

$$
|z| \leq \frac{p_{n}-q_{n}+q_{2}+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

are simple, where $\operatorname{Re}\left(b_{t}\right)=p_{t}, \operatorname{Im}\left(b_{t}\right)=q_{t}$ and $b_{t}=(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right] \quad$ for $t=$ $2,3,4, \ldots, n$

Corollary 9. If $f(z)=\sum_{j=0}^{n} k_{j} z^{j}$ is the $n^{\text {th }}$ degree polynomial, Let α be the real or complex number, such that for some

$$
p_{n} \geq p_{n-1} \geq \ldots \geq p_{4} \geq p_{3} \geq p_{2} \quad \text { and } \quad 0<q_{n} \leq q_{n-1} \leq \ldots \leq q_{4} \leq q_{3} \leq q_{2}
$$

then all zeros of $D_{\alpha} f(z)$ which does not lie in

$$
|z| \leq \frac{p_{n}-q_{n}-p_{2}+2 q_{2}+\left|p_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

are simple, where $\operatorname{Re}\left(b_{t}\right)=p_{t}, \operatorname{Im}\left(b_{t}\right)=q_{t}$ and $b_{t}=(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right] \quad$ for $t=$ $2,3,4, \ldots, n$

Remark 3. (1) Corollary 7 follows from theorem 8 by substituting $p_{t}>0, q_{t}>0$.
(2) Corollary 8 follows from theorem 8 by substituting $p_{t}>0$.
(3) Corollary 9 follows from theorem 8 by substituting $q_{t}>0$.

Theorem 9. Let $f(z)=\sum_{j=0}^{n} k_{j} z^{j}$ be the $n^{\text {th }}$ degree polynomial, Let α be the real or complex number, such that for some

$$
p_{n} \leq p_{n-1} \leq \ldots \leq p_{4} \leq p_{3} \leq p_{2} \quad \text { and } \quad q_{n} \geq q_{n-1} \geq \ldots \geq q_{4} \geq q_{3} \geq q_{2}
$$

then all zeros of $D_{\alpha} f(z)$ which does not lie in

$$
|z| \leq \frac{-p_{n}+q_{n}+p_{2}-q_{2}+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

are simple, where $\operatorname{Re}\left(b_{t}\right)=p_{t}, \operatorname{Im}\left(b_{t}\right)=q_{t}$ and $b_{t}=(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right] \quad$ for $\quad t=$ $2,3,4, \ldots, n$

Corollary 10. Let $f(z)=\sum_{j=0}^{n} k_{j} z^{j}$ be the $n^{\text {th }}$ degree polynomial, Let α be the real or complex number, such that for some

$$
0<p_{n} \leq p_{n-1} \leq \ldots \leq p_{4} \leq p_{3} \leq p_{2} \quad \text { and } \quad q_{n} \geq q_{n-1} \geq \ldots \geq q_{4} \geq q_{3} \geq q_{2}>0
$$

then all zeros of $D_{\alpha} f(z)$ which does not lie in

$$
|z| \leq \frac{-p_{n}+q_{n}+2 p_{2}}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

are simple, where $\operatorname{Re}\left(b_{t}\right)=p_{t}, \operatorname{Im}\left(b_{t}\right)=q_{t}$ and $b_{t}=(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right] \quad$ for $t=$ $2,3,4, \ldots, n$

Corollary 11. Let $f(z)=\sum_{j=0}^{n} k_{j} z^{j}$ be the $n^{\text {th }}$ degree polynomial, Let α be the real or complex number, such that for some

$$
0<p_{n} \leq p_{n-1} \leq \ldots \leq p_{4} \leq p_{3} \leq p_{2} \quad \text { and } \quad q_{n} \geq q_{n-1} \geq \ldots \geq q_{4} \geq q_{3} \geq q_{2}
$$

then all zeros of $D_{\alpha} f(z)$ which does not lie in

$$
|z| \leq \frac{-p_{n}+q_{n}+2 p_{2}-q_{2}+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

are simple, where $\operatorname{Re}\left(b_{t}\right)=p_{t}, \operatorname{Im}\left(b_{t}\right)=q_{t}$ and $b_{t}=(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right] \quad$ for $t=$ $2,3,4, \ldots, n$

Corollary 12. Let $f(z)=\sum_{j=0}^{n} k_{j} z^{j}$ be the $n^{\text {th }}$ degree polynomial, Let α be the real or complex number, such that for some

$$
p_{n} \leq p_{n-1} \leq \ldots \leq p_{4} \leq p_{3} \leq p_{2} \quad \text { and } \quad q_{n} \geq q_{n-1} \geq \ldots \geq q_{4} \geq q_{3} \geq q_{2}>0
$$

then all zeros of $D_{\alpha} f(z)$ which does not lie in

$$
|z| \leq \frac{-p_{n}+q_{n}+p_{2}+\left|p_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

are simple, where $\operatorname{Re}\left(b_{t}\right)=p_{t}, \operatorname{Im}\left(b_{t}\right)=q_{t}$ and $b_{t}=(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right] \quad$ for $\quad t=$ $2,3,4, \ldots, n$

Remark 4. (1) Corollary 10 follows from theorem 9 by substituting $p_{t}>0, q_{t}>0$.
(2) Corollary 11 follows from theorem 9 by substituting $p_{t}>0$.
(3) Corollary 12 follows from theorem 9 by substituting $q_{t}>0$.

3. Proof of the Theorems

Proof of the Theorem 6.

Let $f(z)=k_{n} z^{n}+k_{n-1} z^{n-1}+\ldots+k_{1} z+k_{0}$ be the $n^{\text {th }}$ degree polynomial with real coefficients.
Then by the definition of polar derivative, we have $D_{\alpha} f(z)=n f(z)+\alpha f^{\prime}(z)-z f^{\prime}(z)$
$D_{\alpha} f(z)=n\left(k_{n} z^{n}+k_{n-1} z^{n-1}+\ldots+k_{1} z+k_{0}\right)+\alpha\left(n k_{n} z^{n-1}+(n-1) k_{n-1} z^{n-2}+\ldots+k_{1}\right)$
$-z\left(n k_{n} z^{n-1}+(n-1) k_{n-1} z^{n-2}+\ldots+k_{1}\right)$
$D_{\alpha} f(z)=\left[n \alpha k_{n}+(n-(n-1)) k_{n-1}\right] z^{n-1}+\left[(n-1) \alpha k_{n-1}+(n-(n-2)) k_{n-2}\right] z^{n-2}+\ldots$
$\left.+\left[2 \alpha k_{2}+(n-1)\right) k_{1}\right] z+\left[\alpha k_{1}+n k_{0}\right]$
Now,
$D_{\alpha}^{\prime} f(z)=b_{n} z^{n-2}+b_{n-1} z^{n-3}+b_{n-2} z^{n-4}+\ldots+b_{4} z^{2}+b_{3} z+b_{2}$
where $b_{t}=(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right] \quad$ for $t=2,3,4, \ldots, n$

Now Consider $g(z)=(1-z) D_{\alpha}^{\prime} f(z)$, so that

$$
\begin{aligned}
& g(z)=(1-z)\left[b_{n} z^{n-2}+b_{n-1} z^{n-3}+b_{n-2} z^{n-4}+\ldots+b_{4} z^{2}+b_{3} z+b_{2}\right] \\
& g(z)=-b_{n} z^{n-1}+\left(b_{n}-b_{n-1}\right) z^{n-2}+\left(b_{n-1}-b_{n-2}\right) z^{n-3}+\left(b_{n-2}-b_{n-3}\right) z^{n-4}+\ldots \\
& +\left(b_{m+1}-b_{m}\right) z^{m-1}+\left(b_{m}-b_{m-1}\right) z^{m-2} \ldots+\left(b_{4}-b_{3}\right) z^{2}+\left(b_{3}-b_{2}\right) z+b_{2} \\
& |g(z)| \geq\left|b_{n}\right||z|^{n-2}\left[|z|-\frac{1}{\left|b_{n}\right|}\left\{\left|p_{n}-p_{n-1}\right|+\frac{\left|p_{n-1}-p_{n-2}\right|}{|z|}+\frac{\left|p_{n-2}-p_{n-3}\right|}{|z|^{2}}+\ldots+\frac{\left|p_{4}-p_{3}\right|}{|z|^{n-4}}+\frac{\left|p_{3}-p_{2}\right|}{|z|^{n-3}}+\right.\right. \\
& \left.\left.\frac{\left|p_{2}\right|}{|z|^{n-2}}+\left|q_{n}-q_{n-1}\right|+\frac{\left|q_{n-1}-q_{n-2}\right|}{|z|}+\frac{\left|q_{n-2}-q_{n-3}\right|}{|z|^{2}}+\ldots+\frac{\left|q_{4}-q_{3}\right|}{|z|^{n-4}}+\frac{\left|q_{3}-q_{2}\right|}{|z|^{n-3}}+\frac{\left|q_{2}\right|}{|z|^{n-2}}\right\}\right]
\end{aligned}
$$

Also, if $|z|>1$ then $\frac{1}{|z|}<1$
then
$\geq\left|b_{n}\right||z|^{n-2}\left[|z|-\frac{1}{\left|b_{n}\right|}\left\{\left|p_{n}-p_{n-1}\right|+\left|p_{n-1}-p_{n-2}\right|+\ldots+\left|p_{m+1}-p_{m}\right|+\left|p_{m}-p_{m-1}\right|+\ldots+\right.\right.$ $\left|p_{4}-p_{3}\right|+\left|p_{3}-p_{2}\right|+\left|p_{2}\right|+\left|q_{n}-q_{n-1}\right|+\left|q_{n-1}-q_{n-2}\right|+\ldots+\left|q_{m+1}-q_{m}\right|+\left|q_{m}-q_{m-1}\right|+$ $\left.\left.\ldots+\left|q_{4}-q_{3}\right|+\left|q_{3}-q_{2}\right|+\left|q_{2}\right|\right\}\right]$
$\geq\left|b_{n}\right||z|^{n-2}\left[|z|-\frac{1}{\left|b_{n}\right|}\left\{p_{n}-p_{n-1}+p_{n-1}-p_{n-2}+\ldots+p_{m+1}-p_{m}+p_{m}-p_{m-1}+\ldots+p_{4}-p_{3}+\right.\right.$ $p_{3}-p_{2}+\left|p_{2}\right|+q_{n}-q_{n-1}+q_{n-1}-q_{n-2}+\ldots+q_{m+1}-q_{m}+q_{m}-q_{m-1}+\ldots+q_{4}-q_{3}+$ $\left.\left.q_{3}-q_{2}+\left|q_{2}\right|\right\}\right]$
$\geq\left|b_{n}\right||z|^{n-2}\left[|z|-\frac{1}{\left|b_{n}\right|}\left\{p_{n}-p_{2}+\left|p_{2}\right|+q_{n}-q_{2}+\left|q_{2}\right|\right\}\right]$
Hence $|g(z)|>0$, provided

$$
|z|>\frac{p_{n}+q_{n}-\left(p_{2}+q_{2}\right)+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}} .
$$

This implies that all zeros of $g(z)$ whose modulus is greater than 1 are lie in

$$
|z| \leq \frac{p_{n}+q_{n}-\left(p_{2}+q_{2}\right)+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

Since the zeros of $g(z)$ whose modulus is less than or equal to 1 are already lie in

$$
|z| \leq \frac{p_{n}+q_{n}-\left(p_{2}+q_{2}\right)+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

it follows that all the zeros of $g(z)$ lie in

$$
|z| \leq \frac{p_{n}+q_{n}-\left(p_{2}+q_{2}\right)+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}} .
$$

Since all the zeros of $g(z)$ are also the zeros of $D_{\alpha}^{\prime} f(z)$ lie in

$$
|z| \leq \frac{p_{n}+q_{n}-\left(p_{2}+q_{2}\right)+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

Thus all the zeros of $D_{\alpha}^{\prime} f(z)$ lie in

$$
|z| \leq \frac{p_{n}+q_{n}-\left(p_{2}+q_{2}\right)+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

In other words all zeros of $D_{\alpha} f(z)$ which does not lie in

$$
|z| \leq \frac{p_{n}+q_{n}-\left(p_{2}+q_{2}\right)+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

are simple, where $\operatorname{Re}\left(b_{t}\right)=p_{t}, \operatorname{Im}\left(b_{t}\right)=q_{t}$ and $b_{t}=(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right] \quad$ for $\quad t=$ $2,3,4, \ldots, n$

Proof of the Theorem 7.

Let $f(z)=k_{n} z^{n}+k_{n-1} z^{n-1}+\ldots+k_{1} z+k_{0}$ be the $n^{\text {th }}$ degree polynomial with real coefficients.
Then by the definition of polar derivative, we have
$D_{\alpha} f(z)=n f(z)+\alpha f^{\prime}(z)-z f^{\prime}(z)$
$D_{\alpha} f(z)=n\left(k_{n} z^{n}+k_{n-1} z^{n-1}+\ldots+k_{1} z+k_{0}\right)+\alpha\left(n k_{n} z^{n-1}+(n-1) k_{n-1} z^{n-2}+\ldots+k_{1}\right)$
$-z\left(n k_{n} z^{n-1}+(n-1) k_{n-1} z^{n-2}+\ldots+k_{1}\right)$
$D_{\alpha} f(z)=\left[n \alpha k_{n}+(n-(n-1)) k_{n-1}\right] z^{n-1}+\left[(n-1) \alpha k_{n-1}+(n-(n-2)) k_{n-2}\right] z^{n-2}+\ldots$
$\left.+\left[2 \alpha k_{2}+(n-1)\right) k_{1}\right] z+\left[\alpha k_{1}+n k_{0}\right]$
Now,
$D_{\alpha}^{\prime} f(z)=b_{n} z^{n-2}+b_{n-1} z^{n-3}+b_{n-2} z^{n-4}+\ldots+b_{4} z^{2}+b_{3} z+b_{2}$
where $b_{t}=(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right] \quad$ for $t=2,3,4, \ldots, n$
Now Consider $g(z)=(1-z) D_{\alpha}^{\prime} f(z)$, so that
$g(z)=(1-z)\left[b_{n} z^{n-2}+b_{n-1} z^{n-3}+b_{n-2} z^{n-4}+\ldots+b_{4} z^{2}+b_{3} z+b_{2}\right]$
$g(z)=-b_{n} z^{n-1}+\left(b_{n}-b_{n-1}\right) z^{n-2}+\left(b_{n-1}-b_{n-2}\right) z^{n-3}+\left(b_{n-2}-b_{n-3}\right) z^{n-4}+\ldots$
$+\left(b_{m+1}-b_{m}\right) z^{m-1}+\left(b_{m}-b_{m-1}\right) z^{m-2}+\ldots+\left(b_{4}-b_{3}\right) z^{2}+\left(b_{3}-b_{2}\right) z+b_{2}$
$|g(z)| \geq\left|b_{n}\right||z|^{n-2}\left[|z|-\frac{1}{\left|b_{n}\right|}\left\{\left|p_{n}-p_{n-1}\right|+\frac{\left|p_{n-1}-p_{n-2}\right|}{|z|}+\frac{\left|p_{n-2}-p_{n-3}\right|}{|z|^{2}}+\ldots+\frac{\left|p_{4}-p_{3}\right|}{|z|^{n-4}}+\frac{\left|p_{3}-p_{2}\right|}{|z|^{n-3}}+\right.\right.$
$\left.\left.\frac{\left|p_{2}\right|}{|z|^{n-2}}+\left|q_{n}-q_{n-1}\right|+\frac{\left|q_{n-1}-q_{n-2}\right|}{|z|^{2}}+\frac{\left|q_{n-2}-q_{n-3}\right|}{|z|^{2}}+\ldots+\frac{\left|q_{4}-q_{3}\right|}{|z|^{n-4}}+\frac{\left|q_{3}-q_{2}\right|}{|z|^{n-3}}+\frac{\left|q_{2}\right|}{|z|^{n-2}}\right\}\right]$
Also, if $|z|>1$ then $\frac{1}{|z|}<1$
then

$$
\begin{aligned}
& \geq\left|b_{n}\right||z|^{n-2}\left[|z|-\frac{1}{\left|b_{n}\right|}\left\{\left|p_{n}-p_{n-1}\right|+\left|p_{n-1}-p_{n-2}\right|+\ldots+\left|p_{m+1}-p_{m}\right|+\left|p_{m}-p_{m-1}\right|+\ldots+\right.\right. \\
& \left|p_{4}-p_{3}\right|+\left|p_{3}-p_{2}\right|+\left|p_{2}\right|+\left|q_{n}-q_{n-1}\right|+\left|q_{n-1}-q_{n-2}\right|+\ldots+\left|q_{m+1}-q_{m}\right|+\left|q_{m}-q_{m-1}\right|+ \\
& \left.\left.\ldots+\left|q_{4}-q_{3}\right|+\left|q_{3}-q_{2}\right|+\left|q_{2}\right|\right\}\right] \\
& \geq\left|b_{n}\right||z|^{n-2}\left[|z|-\frac{1}{\left|b_{n}\right|}\left\{p_{n-1}-p_{n}+p_{n-2}-p_{n-1}+\ldots+p_{m}-p_{m+1}+p_{m+1}-p_{m+2}+\ldots+\right.\right. \\
& p_{3}-p_{4}+p_{2}-p_{3}+\left|p_{2}\right|+q_{n-1}-q_{n}+q_{n-2}-q_{n-1}+\ldots+q_{m}-q_{m+1}+q_{m+1}-q_{m+2}+\ldots+ \\
& \left.\left.q_{3}-q_{4}+q_{2}-q_{3}+\left|q_{2}\right|\right\}\right] \\
& \geq\left|b_{n}\right||z|^{n-2}\left[|z|-\frac{1}{\left|b_{n}\right|}\left\{-p_{n}+p_{2}+\left|p_{2}\right|+-q_{n}+q_{2}+\left|q_{2}\right|\right\}\right]
\end{aligned}
$$

Hence $|g(z)|>0$, provided

$$
|z|>\frac{-p_{n}-q_{n}+p_{2}+q_{2}+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

This implies that all zeros of $g(z)$ whose modulus is greater than 1 are lie in

$$
|z| \leq \frac{-p_{n}-q_{n}+p_{2}+q_{2}+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

Since the zeros of $g(z)$ whose modulus is less than or equal to 1 are already lie in

$$
|z| \leq \frac{-p_{n}-q_{n}+p_{2}+q_{2}+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

it follows that all the zeros of $g(z)$ lie in

$$
|z| \leq \frac{-p_{n}-q_{n}+p_{2}+q_{2}+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

Since all the zeros of $g(z)$ are also the zero of $D_{\alpha}^{\prime} f(z)$ lie in

$$
|z| \leq \frac{-p_{n}-q_{n}+p_{2}+q_{2}+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

Thus all the zeros of $D_{\alpha}^{\prime} f(z)$ lie in

$$
|z| \leq \frac{-p_{n}-q_{n}+p_{2}+q_{2}+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

In other words all zeros of $D_{\alpha} f(z)$ which does not lie in

$$
|z| \leq \frac{-p_{n}-q_{n}+p_{2}+q_{2}+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

are simple, where $\operatorname{Re}\left(b_{t}\right)=p_{t}, \operatorname{Im}\left(b_{t}\right)=q_{t}$ and $b_{t}=(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right] \quad$ for $\quad t=$ $2,3,4, \ldots, n$

Proof of the Theorem 8.

Let $f(z)=k_{n} z^{n}+k_{n-1} z^{n-1}+\ldots+k_{1} z+k_{0}$ be the $n^{t h}$ degree polynomial with real coefficients.
Then by the definition of polar derivative, we have $D_{\alpha} f(z)=n f(z)+\alpha f^{\prime}(z)-z f^{\prime}(z)$
$D_{\alpha} f(z)=n\left(k_{n} z^{n}+k_{n-1} z^{n-1}+\ldots+k_{1} z+k_{0}\right)+\alpha\left(n k_{n} z^{n-1}+(n-1) k_{n-1} z^{n-2}+\ldots+k_{1}\right)$
$-z\left(n k_{n} z^{n-1}+(n-1) k_{n-1} z^{n-2}+\ldots+k_{1}\right)$
$D_{\alpha} f(z)=\left[n \alpha k_{n}+(n-(n-1)) k_{n-1}\right] z^{n-1}+\left[(n-1) \alpha k_{n-1}+(n-(n-2)) k_{n-2}\right] z^{n-2}+\ldots$
$\left.+\left[2 \alpha k_{2}+(n-1)\right) k_{1}\right] z+\left[\alpha k_{1}+n k_{0}\right]$
Now,
$D_{\alpha}^{\prime} f(z)=b_{n} z^{n-2}+b_{n-1} z^{n-3}+b_{n-2} z^{n-4}+\ldots+b_{4} z^{2}+b_{3} z+b_{2}$
where $b_{t}=(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right] \quad$ for $t=2,3,4, \ldots, n$
Now Consider $g(z)=(1-z) D_{\alpha}^{\prime} f(z)$, so that
$g(z)=(1-z)\left[b_{n} z^{n-2}+b_{n-1} z^{n-3}+b_{n-2} z^{n-4}+\ldots+b_{4} z^{2}+b_{3} z+b_{2}\right]$
$g(z)=-b_{n} z^{n-1}+\left(b_{n}-b_{n-1}\right) z^{n-2}+\left(b_{n-1}-b_{n-2}\right) z^{n-3}+\left(b_{n-2}-b_{n-3}\right) z^{n-4}+\ldots$
$+\left(b_{m+1}-b_{m}\right) z^{m-1}+\left(b_{m}-b_{m-1}\right) z^{m-2}+\ldots+\left(b_{4}-b_{3}\right) z^{2}+\left(b_{3}-b_{2}\right) z+b_{2}$
$|g(z)| \geq\left|b_{n}\right||z|^{n-2}\left[|z|-\frac{1}{\left|b_{n}\right|}\left\{\left|p_{n}-p_{n-1}\right|+\frac{\left|p_{n-1}-p_{n-2}\right|}{|z|}+\frac{\left|p_{n-2}-p_{n-3}\right|}{|z|^{2}}+\ldots+\frac{\left|p_{4}-p_{3}\right|}{|z|^{n-4}}+\frac{\left|p_{3}-p_{2}\right|}{|z|^{n-3}}+\right.\right.$ $\left.\left.\frac{\left|p_{2}\right|}{|z|^{n-2}}+\left|q_{n}-q_{n-1}\right|+\frac{\left|q_{n-1}-q_{n-2}\right|}{|z|^{2}}+\frac{\left|q_{n-2}-q_{n-3}\right|}{|z|^{2}}+\ldots+\frac{\left|q_{4}-q_{3}\right|}{|z|^{n-4}}+\frac{\left|q_{3}-q_{2}\right|}{|z|^{n-3}}+\frac{\left|q_{2}\right|}{|z|^{n-2}}\right\}\right]$
Also, if $|z|>1$ then $\frac{1}{|z|}<1$
then
$\geq\left|b_{n}\right||z|^{n-2}\left[|z|-\frac{1}{\left|b_{n}\right|}\left\{\left|p_{n}-p_{n-1}\right|+\left|p_{n-1}-p_{n-2}\right|+\ldots+\left|p_{m+1}-p_{m}\right|+\left|p_{m}-p_{m-1}\right|+\ldots+\right.\right.$ $\left|p_{4}-p_{3}\right|+\left|p_{3}-p_{2}\right|+\left|p_{2}\right|+\left|q_{n}-q_{n-1}\right|+\left|q_{n-1}-q_{n-2}\right|+\ldots+\left|q_{m+1}-q_{m}\right|+\left|q_{m}-q_{m-1}\right|+$ $\left.\left.\ldots+\left|q_{4}-q_{3}\right|+\left|q_{3}-q_{2}\right|+\left|q_{2}\right|\right\}\right]$
$\geq\left|b_{n}\right||z|^{n-2}\left[|z|-\frac{1}{\left|b_{n}\right|}\left\{p_{n}-p_{n-1}+p_{n-1}-p_{n-2}+\ldots+p_{m+1}-p_{m}+p_{m}-p_{m-1}+\ldots+p_{4}-p_{3}+\right.\right.$ $p_{3}-p_{2}+\left|p_{2}\right|+q_{n-1}-q_{n}+q_{n-2}-q_{n-1}+\ldots+q_{m}-q_{m+1}+q_{m+1}-q_{m+2}+\ldots+q_{3}-q_{4}+$
$\left.\left.q_{2}-q_{3}+\left|q_{2}\right|\right\}\right]$
$\geq\left|b_{n}\right||z|^{n-2}\left[|z|-\frac{1}{\left|b_{n}\right|}\left\{p_{n}-p_{2}+\left|p_{2}\right|-q_{n}+q_{2}+\left|q_{2}\right|\right\}\right]$
Hence $|g(z)|>0$, provided

$$
|z|>\frac{p_{n}-q_{n}-p_{2}+q_{2}+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}} .
$$

This implies that all zeros of $g(z)$ whose modulus is greater than 1 are lie in

$$
|z| \leq \frac{p_{n}-q_{n}-p_{2}+q_{2}+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

Since the zeros of $g(z)$ whose modulus is less than or equal to 1 are already lie in

$$
|z| \leq \frac{p_{n}-q_{n}-p_{2}+q_{2}+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

it follows that all the zeros of $g(z)$ lie in

$$
|z| \leq \frac{p_{n}-q_{n}-p_{2}+q_{2}+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

Since all the zeros of $g(z)$ are also the zeros of $D_{\alpha}^{\prime} f(z)$ lie in

$$
|z| \leq \frac{p_{n}-q_{n}-p_{2}+q_{2}+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

Thus all the zeros of $D_{\alpha}^{\prime} f(z)$ lie in

$$
|z| \leq \frac{p_{n}-q_{n}-p_{2}+q_{2}+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

In other words all zeros of $D_{\alpha} f(z)$ which does not lie in

$$
|z| \leq \frac{p_{n}-q_{n}-p_{2}+q_{2}+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

are simple. where $\operatorname{Re}\left(b_{t}\right)=p_{t}, \operatorname{Im}\left(b_{t}\right)=q_{t}$ and $b_{t}=(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right] \quad$ for $t=$ $2,3,4, \ldots, n$

Proof of the Theorem 9.

Let $f(z)=k_{n} z^{n}+k_{n-1} z^{n-1}+\ldots+k_{1} z+k_{0}$ be the $n^{t h}$ degree polynomial with real coefficients. Then by the definition of polar derivative, we have
$D_{\alpha} f(z)=n f(z)+\alpha f^{\prime}(z)-z f^{\prime}(z)$
$D_{\alpha} f(z)=n\left(k_{n} z^{n}+k_{n-1} z^{n-1}+\ldots+k_{1} z+k_{0}\right)+\alpha\left(n k_{n} z^{n-1}+(n-1) k_{n-1} z^{n-2}+\ldots+k_{1}\right)$
$-z\left(n k_{n} z^{n-1}+(n-1) k_{n-1} z^{n-2}+\ldots+k_{1}\right)$
$D_{\alpha} f(z)=\left[n \alpha k_{n}+(n-(n-1)) k_{n-1}\right] z^{n-1}+\left[(n-1) \alpha k_{n-1}+(n-(n-2)) k_{n-2}\right] z^{n-2}+\ldots$
$\left.+\left[2 \alpha k_{2}+(n-1)\right) k_{1}\right] z+\left[\alpha k_{1}+n k_{0}\right]$
Now,
$D_{\alpha}^{\prime} f(z)=b_{n} z^{n-2}+b_{n-1} z^{n-3}+b_{n-2} z^{n-4}+\ldots$
$+b_{4} z^{2}+b_{3} z+b_{2}$
where $b_{t}=(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right] \quad$ for $t=2,3,4, \ldots, n$
Now Consider $g(z)=(1-z) D_{\alpha}^{\prime} f(z)$, so that

$$
\begin{aligned}
& g(z)=(1-z)\left[b_{n} z^{n-2}+b_{n-1} z^{n-3}+b_{n-2} z^{n-4}+\ldots+b_{4} z^{2}+b_{3} z+b_{2}\right] \\
& g(z)=-b_{n} z^{n-1}+\left(b_{n}-b_{n-1}\right) z^{n-2}+\left(b_{n-1}-b_{n-2}\right) z^{n-3}+\left(b_{n-2}-b_{n-3}\right) z^{n-4}+\ldots \\
& +\left(b_{m+1}-b_{m}\right) z^{m-1}+\left(b_{m}-b_{m-1}\right) z^{m-2}+\ldots+\left(b_{4}-b_{3}\right) z^{2}+\left(b_{3}-b_{2}\right) z+b_{2} \\
& |g(z)| \geq\left|b_{n}\right||z|^{n-2}\left[|z|-\frac{1}{\left|b_{n}\right|}\left\{\left|p_{n}-p_{n-1}\right|+\frac{\left|p_{n-1}-p_{n-2}\right|}{|z|}+\frac{\left|p_{n-2}-p_{n-3}\right|}{|z|^{2}}+\ldots+\frac{\left|p_{4}-p_{3}\right|}{|z|^{n-4}}+\frac{\left|p_{3}-p_{2}\right|}{|z|^{n-3}}+\right.\right. \\
& \left.\left.\frac{\left|p_{2}\right|}{\mid z n^{n-2}}+\left|q_{n}-q_{n-1}\right|+\frac{\left|q_{n-1}-q_{n-2}\right|}{|z|}+\frac{\left|q_{n-2}-q_{n-3}\right|}{|z|^{2}}+\ldots+\frac{\left|q_{4}-q_{3}\right|}{\mid z n^{n-4}}+\frac{\left|q_{3}-q_{2}\right|}{|z|^{n-3}}+\frac{\left|q_{2}\right|}{|z|^{n-2}}\right\}\right]
\end{aligned}
$$

Also, if $|z|>1$ then $\frac{1}{|z|}<1$
then

$$
\begin{aligned}
& \geq\left|b_{n}\right||z|^{n-2}\left[|z|-\frac{1}{\left|b_{n}\right|}\left\{\left|p_{n}-p_{n-1}\right|+\left|p_{n-1}-p_{n-2}\right|+\ldots+\left|p_{m+1}-p_{m}\right|+\left|p_{m}-p_{m-1}\right|+\ldots+\right.\right. \\
& \left|p_{4}-p_{3}\right|+\left|p_{3}-p_{2}\right|+\left|p_{2}\right|+\left|q_{n}-q_{n-1}\right|+\left|q_{n-1}-q_{n-2}\right|+\ldots+\left|q_{m+1}-q_{m}\right|+\left|q_{m}-q_{m-1}\right|+ \\
& \left.\left.\ldots+\left|q_{4}-q_{3}\right|+\left|q_{3}-q_{2}\right|+\left|q_{2}\right|\right\}\right] \\
& \geq\left|b_{n}\right||z|^{n-2}\left[|z|-\frac{1}{\left|b_{n}\right|}\left\{p_{n-1}-p_{n}+p_{n-2}-p_{n-1}+\ldots+p_{m}-p_{m+1}+p_{m+1}-p_{m+2}+\ldots+\right.\right. \\
& p_{3}-p_{4}+p_{2}-p_{3}+\left|p_{2}\right|+q_{n}-q_{n-1}+q_{n-1}-q_{n-2}+\ldots+q_{m+1}-q_{m}+q_{m}-q_{m-1}+\ldots+ \\
& \left.\left.q_{4}-q_{3}+q_{3}-q_{2}+\left|q_{2}\right|\right\}\right] \\
& \geq\left|b_{n}\right||z|^{n-2}\left[|z|-\frac{1}{\left|b_{n}\right|}\left\{-p_{n}+p_{2}+\left|p_{2}\right|+q_{n}-q_{2}+\left|q_{2}\right|\right\}\right]
\end{aligned}
$$

Hence $|g(z)|>0$, provided

$$
|z| \leq \frac{-p_{n}+q_{n}+p_{2}-q_{2}+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

This implies that all zeros of $g(z)$ whose modulus is greater than 1 are lie in

$$
|z| \leq \frac{-p_{n}+q_{n}+p_{2}-q_{2}+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}} .
$$

Since the zeros of $g(z)$ whose modulus is less than or equal to 1 are already lie in

$$
|z| \leq \frac{-p_{n}+q_{n}+p_{2}-q_{2}+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

it follows that all the zeros of $g(z)$ lie in

$$
|z| \leq \frac{-p_{n}+q_{n}+p_{2}-q_{2}+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

Since all the zeros of $g(z)$ are also the zeros of $D_{\alpha}^{\prime} f(z)$ lie in

$$
|z| \leq \frac{-p_{n}+q_{n}+p_{2}-q_{2}+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

Thus all the zeros of $D_{\alpha}^{\prime} f(z)$ lie in

$$
|z| \leq \frac{-p_{n}+q_{n}+p_{2}-q_{2}+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

In other words all zeros of $D_{\alpha} f(z)$ which does not lie in

$$
|z| \leq \frac{-p_{n}+q_{n}+p_{2}-q_{2}+\left|p_{2}\right|+\left|q_{2}\right|}{\sqrt{p_{n}^{2}+q_{n}^{2}}}
$$

are simple, where $\operatorname{Re}\left(b_{t}\right)=p_{t}, \operatorname{Im}\left(b_{t}\right)=q_{t}$ and $b_{t}=(t-1)\left[t \alpha k_{t}+(n-(t-1)) k_{t-1}\right] \quad$ for $\quad t=$ $2,3,4, \ldots, n$.

Conflict of Interests

The author(s) declare that there is no conflict of interests.

References

[1] Abdul Aziz, Q.G. Mahammad, On the zeros of certain class of polynomials and related analytic functions, J. Math. Anal. Appl. 75 (1980), 495-502.
[2] Abdul Aziz, Q.G. Mahammad, Zero free regions for polynomials and some generalizations of Enestrom Kakeya theorem, Can. Math. Bull. 27 (3) (1984), 265-272.
[3] A. Joyal, G. Labelle and Q. I. Rahman, On the location of zeros of polynomials, Can. Math. Bull. 10 (1967), 53-63.
[4] Bairagi, Vinay Kumar, Saha, T.K. Mishra, On the location of zeros of certain polynomials, Publ. Inst. Math., Nouv. Sér. tome 99 (113) (2016), 287-294.
[5] C. Gangadhar, P. Ramulu and G.L. Reddy, Zero-free regions for polar derivative of polynomials with restricted coefficients, Int. J. Pure Engg. Math. 4 (2016), 67-74.
[6] G.Eneström, Remarquee sur un théorème relatif aux racines de l'equation $a_{n}+\ldots+a_{0}=0$ oü tous les coefficient sont et positifs, Tôhoku Math. J. 18 (1920), 34-36.
[7] G.L Reddy, P.Ramulu and C.Gangadhar, On the zeros of polar derivatives of polynomial, J. Res. Appl. Math. 2 (4) (2015), 7-10.
[8] M.H.Gulzar, B.A.Zargar, R.Akhter, On the zeros of the polar derivative of polynomial, Commun. Nonlinear Anal. 6 (1) (2019), 32-39.
[9] P.Ramulu and G.L Reddy, On the zeros of polar derivatives, Int. J. Recent Res. Math. Comput. Sci. Inform. Technol. 2 (1) (2015), 143-145.
[10] S.KAKEYA, On the limits of the roots of an algebraic equation with positive coefficients, Tôhoku Math. J. 2 (1912), 140-142.

[^0]: *Corresponding author
 E-mail address: k.praveen1729@gmail.com
 Received February 26, 2020

