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Abstract. According to the Enestrom-Kakeya theorem “zeros of the polynomial whose coefficients are positive,

real and increasing along with the powers of the variable are lie in the unit circle” see [6, 10]. In [1], Aziz and

Mahammad, showed that zeros of f (z) satisfies |z| ≥ n
n+1 are simple, under the same conditions. This article

shows that the result of Gulzar, Zargar and Akthar in [8] is simplified in terms of real and imaginary parts of

complex coefficients of the polynomial, also it extends some generalizations by imposing conditions on hypothesis

in different ways.
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1. INTRODUCTION

Let f (z) be the nth degree polynomial with real coefficients. Let Dα f (z) denote the polar

derivative of f (z) w.r.t the point α and it is defined by Dα f (z) = n f (z)+(α− z) f
′
(z) . In this

case the degree of Dα f (z) is at most n− 1 and if α tends to ∞ then it generalize the ordinary
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derivative

i.e lim
α−→∞

Dα f (z)
α

= f
′
(z)

Regarding the distribution of zeros of f (z), Enestrom Kakeya proved the folowing result.

Theorem 1. Let f (z) = ∑
n
j=0 k jz j be the nth degree polynomial with real coefficients such that

for some 0<k0 ≤ k1 ≤ ...≤ kn−2 ≤ kn−1 ≤ kn then all zeros of f (z) lies in |z| ≤ 1.

Instead of taking only positive coefficients, A.Joyal, Labelle and Rahman[3] given the fol-

lowing result

Theorem 2. Let f (z) = ∑
n
j=0 k jz j be the nth degree polynomial with real coefficients such that

for some k0 ≤ k1 ≤ ...≤ kn−2 ≤ kn−1 ≤ kn then all zeros of f (z) lies in |z| ≤ kn−k0+|k0|
|kn| .

Regarding the multiplicity of zeros of f (z), Aziz and Mahammad [1] proved the folowing

result

Theorem 3. Let f (z) = ∑
n
j=0 k jz j be the nth degree polynomial with real coefficients such that

for some 0<k0 ≤ k1 ≤ ... ≤ kn then all zeros of f (z) of modulus greater than or equal to n
n+1

are simple.

Gulzar, Zargar and Akthar [8] result by substituting bt with (t−1)[tαkt +(n− (t−1))kt−1]

for t = 2,3,4, ..,n

Theorem 4. Let f (z) = ∑
n
j=0 k jz j be the nth degree polynomial with real coefficients, and α be

a real number, such that for some bn ≥ bn−1 ≥ ...≥ b4 ≥ b3 ≥ b2 then all zeros of Dα f (z) which

does not lie in |z| ≤ bn−b2+|b2|
|bn| are simple.

Theorem 5. If f (z) = ∑
n
j=0 k jz j is the nth degree polynomial with real coefficients, and α be a

real number such that for some bn ≤ bn−1 ≤ ...≤ b4 ≤ b3 ≤ b2 then all zeros of Dα f (z) which

does not lie in |z| ≤ b2+|b2|−bn
|bn| are simple.

M.H.Gulzar, Zargar and Akthar [8] have extended the above results to the polar derivatives,

there exist some generalizations and extentions of Enestrom and Kakeya theorem in [2, 4, 5, 7,

9]. This paper providing the region about the simple zeros of polar derivative in terms of real
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and imaginary parts by imposing some conditions on hypethesis in different ways by replacing

bt with (t−1)[tαkt +(n− (t−1))kt−1] for t = 2,3,4, ...,n

2. MAIN RESULTS

Theorem 6. Let f (z) = ∑
n
j=0 k jz j be the nth degree polynomial, Let α be the real or complex

number, such that for some

pn ≥ pn−1 ≥ ...≥ p4 ≥ p3 ≥ p2 and qn ≥ qn−1 ≥ ...≥ q4 ≥ q3 ≥ q2

then all zeros of Dα f (z) which does not lie in

|z| ≤ pn +qn− (p2 +q2)+ |p2|+ |q2|√
p2

n +q2
n

are simple, where Re(bt) = pt , Im(bt) = qt and bt = (t−1)[tαkt +(n−(t−1))kt−1] f or t =

2,3,4, ...,n

Corollary 1. If f (z) = ∑
n
j=0 k jz j is the nth degree polynomial, Let α be the real or complex

number, such that for some

pn ≥ pn−1 ≥ ...≥ p4 ≥ p3 ≥ p2 > 0 and qn ≥ qn−1 ≥ ...≥ q4 ≥ q3 ≥ q2 > 0

then all zeros of Dα f (z) which does not lie in

|z| ≤ pn +qn√
p2

n +q2
n

are simple, where Re(bt) = pt , Im(bt) = qt and bt = (t−1)[tαkt +(n−(t−1))kt−1] f or t =

2,3,4, ...,n

Corollary 2. If f (z) = ∑
n
j=0 k jz j is the nth degree polynomial, Let α be the real or complex

number, such that for some

pn ≥ pn−1 ≥ ...≥ p4 ≥ p3 ≥ p2 > 0 and qn ≥ qn−1 ≥ ...≥ q4 ≥ q3 ≥ q2

then all zeros of Dα f (z) which does not lie in

|z| ≤ pn +qn−q2 + |q2|√
p2

n +q2
n
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are simple, where Re(bt) = pt , Im(bt) = qt and bt = (t−1)[tαkt +(n−(t−1))kt−1] f or t =

2,3,4, ...,n

Corollary 3. If f (z) = ∑
n
j=0 k jz j is the nth degree polynomial, Let α be the real or complex

number, such that for some

pn ≥ pn−1 ≥ ...≥ p4 ≥ p3 ≥ p2 and qn ≥ qn−1 ≥ ...≥ q4 ≥ q3 ≥ q2 > 0

then all zeros of Dα f (z) which does not lie in

|z| ≤ pn +qn− p2 + |p2|√
p2

n +q2
n

are simple, where Re(bt) = pt , Im(bt) = qt and bt = (t−1)[tαkt +(n−(t−1))kt−1] f or t =

2,3,4, ...,n

Remark 1. (1) Corollary 1 follows from theorem 6 by substituting pt > 0, qt > 0.

(2) Corollary 2 follows from theorem 6 by substituting pt > 0.

(3) Corollary 3 follows from theorem 6 by substituting qt > 0.

Theorem 7. Let f (z) = ∑
n
j=0 k jz j be the nth degree polynomial, Let α be the real or complex

number, such that for some

pn ≤ pn−1 ≤ ...≤ p4 ≤ p3 ≤ p2 and qn ≤ qn−1 ≤ ...≤ q4 ≤ q3 ≤ q2

then all zeros of Dα f (z) which does not lie in

|z| ≤ −pn−qn + p2 +q2 + |p2|+ |q2|√
p2

n +q2
n

are simple, where Re(bt) = pt , Im(bt) = qt and bt = (t−1)[tαkt +(n−(t−1))kt−1] f or t =

2,3,4, ...,n

Corollary 4. If f (z) = ∑
n
j=0 k jz j is the nth degree polynomial, Let α be the real or complex

number, such that for some

0<pn ≤ pn−1 ≤ ...≤ p4 ≤ p3 ≤ p2 and 0<qn ≤ qn−1 ≤ ...≤ q4 ≤ q3 ≤ q2
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then all zeros of Dα f (z) which does not lie in

|z| ≤ −pn−qn +2(p2 +q2)√
p2

n +q2
n

are simple, where Re(bt) = pt , Im(bt) = qt and bt = (t−1)[tαkt +(n−(t−1))kt−1] f or t =

2,3,4, ...,n

Corollary 5. If f (z) = ∑
n
j=0 k jz j is the nth degree polynomial, Let α be the real or complex

number, such that for some

0<pn ≤ pn−1 ≤ ...≤ p4 ≤ p3 ≤ p2 and qn ≤ qn−1 ≤ ...≤ q4 ≤ q3 ≤ q2

then all zeros of Dα f (z) which does not lie in

|z| ≤ −pn−qn +2p2 +q2 + |q2|√
p2

n +q2
n

are simple, where Re(bt) = pt , Im(bt) = qt and bt = (t−1)[tαkt +(n−(t−1))kt−1] f or t =

2,3,4, ...,n

Corollary 6. If f (z) = ∑
n
j=0 k jz j is the nth degree polynomial, Let α be the real or complex

number, such that for some

pn ≤ pn−1 ≤ ...≤ p4 ≤ p3 ≤ p2 and 0<qn ≤ qn−1 ≤ ...≤ q4 ≤ q3 ≤ q2

then all zeros of Dα f (z) which does not lie in

|z| ≤ −pn−qn + p2 +2q2 + |p2|√
p2

n +q2
n

are simple, where Re(bt) = pt , Im(bt) = qt and bt = (t−1)[tαkt +(n−(t−1))kt−1] f or t =

2,3,4, ...,n

Remark 2. (1) Corollary 4 follows from theorem 7 by substituting pt > 0, qt > 0.

(2) Corollary 5 follows from theorem 7 by substituting pt > 0.

(3) Corollary 6 follows from theorem 7 by substituting qt > 0.

Theorem 8. Let f (z) = ∑
n
j=0 k jz j be the nth degree polynomial, Let α be the real or complex

number, such that for some

pn ≥ pn−1 ≥ ...≥ p4 ≥ p3 ≥ p2 and qn ≤ qn−1 ≤ ...≤ q4 ≤ q3 ≤ q2
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then all zeros of Dα f (z) which does not lie in

|z| ≤ pn−qn− p2 +q2 + |p2|+ |q2|√
p2

n +q2
n

are simple, where Re(bt) = pt , Im(bt) = qt and bt = (t−1)[tαkt +(n−(t−1))kt−1] f or t =

2,3,4, ...,n

Corollary 7. If f (z) = ∑
n
j=0 k jz j is the nth degree polynomial, Let α be the real or complex

number, such that for some

pn ≥ pn−1 ≥ ...≥ p4 ≥ p3 ≥ p2 > 0 and 0<qn ≤ qn−1 ≤ ...≤ q4 ≤ q3 ≤ q2

then all zeros of Dα f (z) which does not lie in

|z| ≤ pn−qn +2q2√
p2

n +q2
n

are simple, where Re(bt) = pt , Im(bt) = qt and bt = (t−1)[tαkt +(n−(t−1))kt−1] f or t =

2,3,4, ...,n

Corollary 8. If f (z) = ∑
n
j=0 k jz j is the nth degree polynomial, Let α be the real or complex

number, such that for some

pn ≥ pn−1 ≥ ...≥ p4 ≥ p3 ≥ p2 > 0 and qn ≤ qn−1 ≤ ...≤ q4 ≤ q3 ≤ q2

then all zeros of Dα f (z) which does not lie in

|z| ≤ pn−qn +q2 + |q2|√
p2

n +q2
n

are simple, where Re(bt) = pt , Im(bt) = qt and bt = (t−1)[tαkt +(n−(t−1))kt−1] f or t =

2,3,4, ...,n

Corollary 9. If f (z) = ∑
n
j=0 k jz j is the nth degree polynomial, Let α be the real or complex

number, such that for some

pn ≥ pn−1 ≥ ...≥ p4 ≥ p3 ≥ p2 and 0<qn ≤ qn−1 ≤ ...≤ q4 ≤ q3 ≤ q2

then all zeros of Dα f (z) which does not lie in

|z| ≤ pn−qn− p2 +2q2 + |p2|√
p2

n +q2
n
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are simple, where Re(bt) = pt , Im(bt) = qt and bt = (t−1)[tαkt +(n−(t−1))kt−1] f or t =

2,3,4, ...,n

Remark 3. (1) Corollary 7 follows from theorem 8 by substituting pt > 0, qt > 0.

(2) Corollary 8 follows from theorem 8 by substituting pt > 0.

(3) Corollary 9 follows from theorem 8 by substituting qt > 0.

Theorem 9. Let f (z) = ∑
n
j=0 k jz j be the nth degree polynomial, Let α be the real or complex

number, such that for some

pn ≤ pn−1 ≤ ...≤ p4 ≤ p3 ≤ p2 and qn ≥ qn−1 ≥ ...≥ q4 ≥ q3 ≥ q2

then all zeros of Dα f (z) which does not lie in

|z| ≤ −pn +qn + p2−q2 + |p2|+ |q2|√
p2

n +q2
n

are simple, where Re(bt) = pt , Im(bt) = qt and bt = (t−1)[tαkt +(n−(t−1))kt−1] f or t =

2,3,4, ...,n

Corollary 10. Let f (z) = ∑
n
j=0 k jz j be the nth degree polynomial, Let α be the real or complex

number, such that for some

0<pn ≤ pn−1 ≤ ...≤ p4 ≤ p3 ≤ p2 and qn ≥ qn−1 ≥ ...≥ q4 ≥ q3 ≥ q2 > 0

then all zeros of Dα f (z) which does not lie in

|z| ≤ −pn +qn +2p2√
p2

n +q2
n

are simple, where Re(bt) = pt , Im(bt) = qt and bt = (t−1)[tαkt +(n−(t−1))kt−1] f or t =

2,3,4, ...,n

Corollary 11. Let f (z) = ∑
n
j=0 k jz j be the nth degree polynomial, Let α be the real or complex

number, such that for some

0<pn ≤ pn−1 ≤ ...≤ p4 ≤ p3 ≤ p2 and qn ≥ qn−1 ≥ ...≥ q4 ≥ q3 ≥ q2
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then all zeros of Dα f (z) which does not lie in

|z| ≤ −pn +qn +2p2−q2 + |q2|√
p2

n +q2
n

are simple, where Re(bt) = pt , Im(bt) = qt and bt = (t−1)[tαkt +(n−(t−1))kt−1] f or t =

2,3,4, ...,n

Corollary 12. Let f (z) = ∑
n
j=0 k jz j be the nth degree polynomial, Let α be the real or complex

number, such that for some

pn ≤ pn−1 ≤ ...≤ p4 ≤ p3 ≤ p2 and qn ≥ qn−1 ≥ ...≥ q4 ≥ q3 ≥ q2 > 0

then all zeros of Dα f (z) which does not lie in

|z| ≤ −pn +qn + p2 + |p2|√
p2

n +q2
n

are simple, where Re(bt) = pt , Im(bt) = qt and bt = (t−1)[tαkt +(n−(t−1))kt−1] f or t =

2,3,4, ...,n

Remark 4. (1) Corollary 10 follows from theorem 9 by substituting pt > 0, qt > 0.

(2) Corollary 11 follows from theorem 9 by substituting pt > 0.

(3) Corollary 12 follows from theorem 9 by substituting qt > 0.

3. PROOF OF THE THEOREMS

Proof of the Theorem 6.

Let f (z) = knzn + kn−1zn−1 + ...+ k1z+ k0 be the nth degree polynomial with real coefficients.

Then by the definition of polar derivative, we have Dα f (z) = n f (z)+α f
′
(z)− z f

′
(z)

Dα f (z) = n(knzn + kn−1zn−1 + ...+ k1z+ k0)+α(nknzn−1 +(n−1)kn−1zn−2 + ...+ k1)

− z(nknzn−1 +(n−1)kn−1zn−2 + ...+ k1)

Dα f (z) = [nαkn +(n− (n−1))kn−1]zn−1 +[(n−1)αkn−1 +(n− (n−2))kn−2]zn−2 + ...

+[2αk2 +(n−1))k1]z+[αk1 +nk0]

Now,

D
′
α f (z) = bnzn−2 +bn−1zn−3 +bn−2zn−4 + ...+b4z2 +b3z+b2

where bt = (t−1)[tαkt +(n− (t−1))kt−1] f or t = 2,3,4, ...,n
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Now Consider g(z) = (1− z)D
′
α f (z), so that

g(z) = (1− z)[bnzn−2 +bn−1zn−3 +bn−2zn−4 + ...+b4z2 +b3z+b2]

g(z) =−bnzn−1 +(bn−bn−1)zn−2 +(bn−1−bn−2)zn−3 +(bn−2−bn−3)zn−4 + ...

+(bm+1−bm)zm−1 +(bm−bm−1)zm−2...+(b4−b3)z2 +(b3−b2)z+b2

|g(z)| ≥ |bn||z|n−2
[
|z| − 1

|bn|
{
|pn− pn−1|+ |pn−1−pn−2|

|z| + |pn−2−pn−3|
|z|2 + ...+ |p4−p3|

|z|n−4 + |p3−p2|
|z|n−3 +

|p2|
|z|n−2 + |qn−qn−1|+ |qn−1−qn−2|

|z| + |qn−2−qn−3|
|z|2 + ...+ |q4−q3|

|z|n−4 + |q3−q2|
|z|n−3 + |q2|

|z|n−2

}]
Also, if |z|>1 then 1

|z|<1

then

≥ |bn||z|n−2
[
|z| − 1

|bn|
{
|pn− pn−1|+ |pn−1− pn−2|+ ...+ |pm+1− pm|+ |pm− pm−1|+ ...+

|p4− p3|+ |p3− p2|+ |p2|+ |qn− qn−1|+ |qn−1− qn−2|+ ...+ |qm+1− qm|+ |qm− qm−1|+

...+ |q4−q3|+ |q3−q2|+ |q2|
}]

≥ |bn||z|n−2
[
|z|− 1

|bn|
{

pn− pn−1+ pn−1− pn−2+ ...+ pm+1− pm+ pm− pm−1+ ...+ p4− p3+

p3− p2 + |p2| + qn − qn−1 + qn−1 − qn−2 + ... + qm+1 − qm + qm − qm−1 + ... + q4−q3 +

q3−q2 + |q2|
}]

≥ |bn||z|n−2
[
|z|− 1

|bn|
{

pn− p2 + |p2|+qn−q2 + |q2|
}]

Hence |g(z)|> 0, provided

|z|> pn +qn− (p2 +q2)+ |p2|+ |q2|√
p2

n +q2
n

.

This implies that all zeros of g(z) whose modulus is greater than 1 are lie in

|z| ≤ pn +qn− (p2 +q2)+ |p2|+ |q2|√
p2

n +q2
n

.

Since the zeros of g(z) whose modulus is less than or equal to 1 are already lie in

|z| ≤ pn +qn− (p2 +q2)+ |p2|+ |q2|√
p2

n +q2
n

,

it follows that all the zeros of g(z) lie in

|z| ≤ pn +qn− (p2 +q2)+ |p2|+ |q2|√
p2

n +q2
n

.
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Since all the zeros of g(z) are also the zeros of D
′
α f (z) lie in

|z| ≤ pn +qn− (p2 +q2)+ |p2|+ |q2|√
p2

n +q2
n

.

Thus all the zeros of D
′
α f (z) lie in

|z| ≤ pn +qn− (p2 +q2)+ |p2|+ |q2|√
p2

n +q2
n

.

In other words all zeros of Dα f (z) which does not lie in

|z| ≤ pn +qn− (p2 +q2)+ |p2|+ |q2|√
p2

n +q2
n

are simple, where Re(bt) = pt , Im(bt) = qt and bt = (t−1)[tαkt +(n−(t−1))kt−1] f or t =

2,3,4, ...,n

Proof of the Theorem 7.

Let f (z) = knzn + kn−1zn−1 + ...+ k1z+ k0 be the nth degree polynomial with real coefficients.

Then by the definition of polar derivative, we have

Dα f (z) = n f (z)+α f
′
(z)− z f

′
(z)

Dα f (z) = n(knzn + kn−1zn−1 + ...+ k1z+ k0)+α(nknzn−1 +(n−1)kn−1zn−2 + ...+ k1)

− z(nknzn−1 +(n−1)kn−1zn−2 + ...+ k1)

Dα f (z) = [nαkn +(n− (n−1))kn−1]zn−1 +[(n−1)αkn−1 +(n− (n−2))kn−2]zn−2 + ...

+[2αk2 +(n−1))k1]z+[αk1 +nk0]

Now,

D
′
α f (z) = bnzn−2 +bn−1zn−3 +bn−2zn−4 + ...+b4z2 +b3z+b2

where bt = (t−1)[tαkt +(n− (t−1))kt−1] f or t = 2,3,4, ...,n

Now Consider g(z) = (1− z)D
′
α f (z), so that

g(z) = (1− z)[bnzn−2 +bn−1zn−3 +bn−2zn−4 + ...+b4z2 +b3z+b2]

g(z) =−bnzn−1 +(bn−bn−1)zn−2 +(bn−1−bn−2)zn−3 +(bn−2−bn−3)zn−4 + ...

+(bm+1−bm)zm−1 +(bm−bm−1)zm−2 + ...+(b4−b3)z2 +(b3−b2)z+b2

|g(z)| ≥ |bn||z|n−2
[
|z| − 1

|bn|
{
|pn− pn−1|+ |pn−1−pn−2|

|z| + |pn−2−pn−3|
|z|2 + ...+ |p4−p3|

|z|n−4 + |p3−p2|
|z|n−3 +

|p2|
|z|n−2 + |qn−qn−1|+ |qn−1−qn−2|

|z| + |qn−2−qn−3|
|z|2 + ...+ |q4−q3|

|z|n−4 + |q3−q2|
|z|n−3 + |q2|

|z|n−2

}]
Also, if |z|>1 then 1

|z|<1
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then

≥ |bn||z|n−2
[
|z| − 1

|bn|
{
|pn− pn−1|+ |pn−1− pn−2|+ ...+ |pm+1− pm|+ |pm− pm−1|+ ...+

|p4− p3|+ |p3− p2|+ |p2|+ |qn− qn−1|+ |qn−1− qn−2|+ ...+ |qm+1− qm|+ |qm− qm−1|+

...+ |q4−q3|+ |q3−q2|+ |q2|
}]

≥ |bn||z|n−2
[
|z| − 1

|bn|
{

pn−1 − pn + pn−2 − pn−1 + ... + pm − pm+1 + pm+1 − pm+2 + ... +

p3− p4 + p2− p3 + |p2|+ qn−1 − qn + qn−2 − qn−1 + ...+ qm − qm+1 + qm+1 − qm+2 + ...+

q3−q4 +q2−q3 + |q2|
}]

≥ |bn||z|n−2
[
|z|− 1

|bn|
{
− pn + p2 + |p2|+−qn +q2 + |q2|

}]
Hence |g(z)|> 0, provided

|z|> −pn−qn + p2 +q2 + |p2|+ |q2|√
p2

n +q2
n

.

This implies that all zeros of g(z) whose modulus is greater than 1 are lie in

|z| ≤ −pn−qn + p2 +q2 + |p2|+ |q2|√
p2

n +q2
n

.

Since the zeros of g(z) whose modulus is less than or equal to 1 are already lie in

|z| ≤ −pn−qn + p2 +q2 + |p2|+ |q2|√
p2

n +q2
n

,

it follows that all the zeros of g(z) lie in

|z| ≤ −pn−qn + p2 +q2 + |p2|+ |q2|√
p2

n +q2
n

.

Since all the zeros of g(z) are also the zero of D
′
α f (z) lie in

|z| ≤ −pn−qn + p2 +q2 + |p2|+ |q2|√
p2

n +q2
n

.

Thus all the zeros of D
′
α f (z) lie in

|z| ≤ −pn−qn + p2 +q2 + |p2|+ |q2|√
p2

n +q2
n

.
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In other words all zeros of Dα f (z) which does not lie in

|z| ≤ −pn−qn + p2 +q2 + |p2|+ |q2|√
p2

n +q2
n

are simple, where Re(bt) = pt , Im(bt) = qt and bt = (t−1)[tαkt +(n−(t−1))kt−1] f or t =

2,3,4, ...,n

Proof of the Theorem 8.

Let f (z) = knzn + kn−1zn−1 + ...+ k1z+ k0 be the nth degree polynomial with real coefficients.

Then by the definition of polar derivative, we have Dα f (z) = n f (z)+α f
′
(z)− z f

′
(z)

Dα f (z) = n(knzn + kn−1zn−1 + ...+ k1z+ k0)+α(nknzn−1 +(n−1)kn−1zn−2 + ...+ k1)

− z(nknzn−1 +(n−1)kn−1zn−2 + ...+ k1)

Dα f (z) = [nαkn +(n− (n−1))kn−1]zn−1 +[(n−1)αkn−1 +(n− (n−2))kn−2]zn−2 + ...

+[2αk2 +(n−1))k1]z+[αk1 +nk0]

Now,

D
′
α f (z) = bnzn−2 +bn−1zn−3 +bn−2zn−4 + ...+b4z2 +b3z+b2

where bt = (t−1)[tαkt +(n− (t−1))kt−1] f or t = 2,3,4, ...,n

Now Consider g(z) = (1− z)D
′
α f (z), so that

g(z) = (1− z)[bnzn−2 +bn−1zn−3 +bn−2zn−4 + ...+b4z2 +b3z+b2]

g(z) =−bnzn−1 +(bn−bn−1)zn−2 +(bn−1−bn−2)zn−3 +(bn−2−bn−3)zn−4 + ...

+(bm+1−bm)zm−1 +(bm−bm−1)zm−2 + ...+(b4−b3)z2 +(b3−b2)z+b2

|g(z)| ≥ |bn||z|n−2
[
|z| − 1

|bn|
{
|pn− pn−1|+ |pn−1−pn−2|

|z| + |pn−2−pn−3|
|z|2 + ...+ |p4−p3|

|z|n−4 + |p3−p2|
|z|n−3 +

|p2|
|z|n−2 + |qn−qn−1|+ |qn−1−qn−2|

|z| + |qn−2−qn−3|
|z|2 + ...+ |q4−q3|

|z|n−4 + |q3−q2|
|z|n−3 + |q2|

|z|n−2

}]
Also, if |z|>1 then 1

|z|<1

then

≥ |bn||z|n−2
[
|z| − 1

|bn|
{
|pn− pn−1|+ |pn−1− pn−2|+ ...+ |pm+1− pm|+ |pm− pm−1|+ ...+

|p4− p3|+ |p3− p2|+ |p2|+ |qn− qn−1|+ |qn−1− qn−2|+ ...+ |qm+1− qm|+ |qm− qm−1|+

...+ |q4−q3|+ |q3−q2|+ |q2|
}]

≥ |bn||z|n−2
[
|z|− 1

|bn|
{

pn− pn−1+ pn−1− pn−2+ ...+ pm+1− pm+ pm− pm−1+ ...+ p4− p3+

p3− p2 + |p2|+ qn−1 − qn + qn−2 − qn−1 + ...+ qm − qm+1 + qm+1 − qm+2 + ...+ q3−q4 +
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q2−q3 + |q2|
}]

≥ |bn||z|n−2
[
|z|− 1

|bn|
{

pn− p2 + |p2|−qn +q2 + |q2|
}]

Hence |g(z)|> 0, provided

|z|> pn−qn− p2 +q2 + |p2|+ |q2|√
p2

n +q2
n

.

This implies that all zeros of g(z) whose modulus is greater than 1 are lie in

|z| ≤ pn−qn− p2 +q2 + |p2|+ |q2|√
p2

n +q2
n

.

Since the zeros of g(z) whose modulus is less than or equal to 1 are already lie in

|z| ≤ pn−qn− p2 +q2 + |p2|+ |q2|√
p2

n +q2
n

,

it follows that all the zeros of g(z) lie in

|z| ≤ pn−qn− p2 +q2 + |p2|+ |q2|√
p2

n +q2
n

.

Since all the zeros of g(z) are also the zeros of D
′
α f (z) lie in

|z| ≤ pn−qn− p2 +q2 + |p2|+ |q2|√
p2

n +q2
n

.

Thus all the zeros of D
′
α f (z) lie in

|z| ≤ pn−qn− p2 +q2 + |p2|+ |q2|√
p2

n +q2
n

.

In other words all zeros of Dα f (z) which does not lie in

|z| ≤ pn−qn− p2 +q2 + |p2|+ |q2|√
p2

n +q2
n

are simple. where Re(bt) = pt , Im(bt) = qt and bt = (t−1)[tαkt +(n−(t−1))kt−1] f or t =

2,3,4, ...,n

Proof of the Theorem 9.

Let f (z) = knzn + kn−1zn−1 + ...+ k1z+ k0 be the nth degree polynomial with real coefficients.

Then by the definition of polar derivative, we have

Dα f (z) = n f (z)+α f
′
(z)− z f

′
(z)

Dα f (z) = n(knzn + kn−1zn−1 + ...+ k1z+ k0)+α(nknzn−1 +(n−1)kn−1zn−2 + ...+ k1)
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− z(nknzn−1 +(n−1)kn−1zn−2 + ...+ k1)

Dα f (z) = [nαkn +(n− (n−1))kn−1]zn−1 +[(n−1)αkn−1 +(n− (n−2))kn−2]zn−2 + ...

+[2αk2 +(n−1))k1]z+[αk1 +nk0]

Now,

D
′
α f (z) = bnzn−2 +bn−1zn−3 +bn−2zn−4 + ...

+b4z2 +b3z+b2

where bt = (t−1)[tαkt +(n− (t−1))kt−1] f or t = 2,3,4, ...,n

Now Consider g(z) = (1− z)D
′
α f (z), so that

g(z) = (1− z)[bnzn−2 +bn−1zn−3 +bn−2zn−4 + ...+b4z2 +b3z+b2]

g(z) =−bnzn−1 +(bn−bn−1)zn−2 +(bn−1−bn−2)zn−3 +(bn−2−bn−3)zn−4 + ...

+(bm+1−bm)zm−1 +(bm−bm−1)zm−2 + ...+(b4−b3)z2 +(b3−b2)z+b2

|g(z)| ≥ |bn||z|n−2
[
|z| − 1

|bn|
{
|pn− pn−1|+ |pn−1−pn−2|

|z| + |pn−2−pn−3|
|z|2 + ...+ |p4−p3|

|z|n−4 + |p3−p2|
|z|n−3 +

|p2|
|z|n−2 + |qn−qn−1|+ |qn−1−qn−2|

|z| + |qn−2−qn−3|
|z|2 + ...+ |q4−q3|

|z|n−4 + |q3−q2|
|z|n−3 + |q2|

|z|n−2

}]
Also, if |z|>1 then 1

|z|<1

then

≥ |bn||z|n−2
[
|z| − 1

|bn|
{
|pn− pn−1|+ |pn−1− pn−2|+ ...+ |pm+1− pm|+ |pm− pm−1|+ ...+

|p4− p3|+ |p3− p2|+ |p2|+ |qn− qn−1|+ |qn−1− qn−2|+ ...+ |qm+1− qm|+ |qm− qm−1|+

...+ |q4−q3|+ |q3−q2|+ |q2|
}]

≥ |bn||z|n−2
[
|z| − 1

|bn|
{

pn−1 − pn + pn−2 − pn−1 + ... + pm − pm+1 + pm+1 − pm+2 + ... +

p3− p4 + p2− p3 + |p2|+ qn − qn−1 + qn−1 − qn−2 + ...+ qm+1 − qm + qm − qm−1 + ...+

q4−q3 +q3−q2 + |q2|
}]

≥ |bn||z|n−2
[
|z|− 1

|bn|
{
− pn + p2 + |p2|+qn−q2 + |q2|

}]
Hence |g(z)|> 0, provided

|z| ≤ −pn +qn + p2−q2 + |p2|+ |q2|√
p2

n +q2
n

.

This implies that all zeros of g(z) whose modulus is greater than 1 are lie in

|z| ≤ −pn +qn + p2−q2 + |p2|+ |q2|√
p2

n +q2
n

.
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Since the zeros of g(z) whose modulus is less than or equal to 1 are already lie in

|z| ≤ −pn +qn + p2−q2 + |p2|+ |q2|√
p2

n +q2
n

,

it follows that all the zeros of g(z) lie in

|z| ≤ −pn +qn + p2−q2 + |p2|+ |q2|√
p2

n +q2
n

.

Since all the zeros of g(z) are also the zeros of D
′
α f (z) lie in

|z| ≤ −pn +qn + p2−q2 + |p2|+ |q2|√
p2

n +q2
n

.

Thus all the zeros of D
′
α f (z) lie in

|z| ≤ −pn +qn + p2−q2 + |p2|+ |q2|√
p2

n +q2
n

.

In other words all zeros of Dα f (z) which does not lie in

|z| ≤ −pn +qn + p2−q2 + |p2|+ |q2|√
p2

n +q2
n

are simple, where Re(bt) = pt , Im(bt) = qt and bt = (t−1)[tαkt +(n−(t−1))kt−1] f or t =

2,3,4, ...,n.
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