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Abstract. In this note, we introduce the concept of MA-metric space as a generalisation of partial A-metric space.

We also, prove some fixed point theorems satisfying fundamental contraction principles in the setting of MA-metric

space.
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1. INTRODUCTION

The generalisations of metric fixed point have been an important research area for the last

many years and many researchers had contributed a lot in this area. The results on generaliza-

tion of metric space can be seen in the research papers [1–14] and references therein. These

generalisations were then also used to extend the scope of the study of fixed point theory.

Mujahid Abbas, Bashir Ali and Yusuf I Suleiman [15] inroduced the concept of n−tuple

metric space A : Xn → [0,∞) and also generalised coupled common fixed point theorems for

mixed weakly monotone maps in partially ordered A− metric spaces.
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Using the concept of partially A−metric space, we extend fixed point results in MA−metric

space.

Definition 1.1. [11] Let X be a nonempty set and p : X ×X −→ [0,+∞). We say that (X , p) is

an ordinary partial metric space if for all x,y,z ∈ X we have:

(1) x = y if and only if p(x,y) = p(x,x) = p(y,y);

(2) p(x,x)≤ p(x,y);

(3) p(x,y) = p(y,x);

(4) p(x,z)≤ p(x,y)+ p(y,z)− p(y,y).

The pair (X , p) is called partial metric space.

Definition 1.2. [16] Let X be a nonempty set. A function m : X ×X → R is called an m-metric

space if the following conditions are satisfied:

(m1) m(x,x) = m(y,y) = m(x,y)⇔ x = y,

(m2) mxy ≤ m(x,y),

(m3) m(x,y) = m(y,x),

(m4) (m(x,y)−mxy)≤ (m(x,z)−mxz)+(m(z,y)+mzy).

Then the pair (X ,m) is called an M-metric space.

Definition 1.3. [1] Let X be a nonempty set. An S-metric on X is a function S : X3→ [0,∞) that

satisfies the following conditions,

1. S(x,y,z)≥ 0,

2. S(x,y,z) = 0 if and only if x = y = z

3. S(x,y,z)≤ S(x,x,a)+S(y,y,a)+S(z,z,a)

for each x,y,z,a ∈ X.

The pair (X ,S) is called S-metric space.

Definition 1.4. [15] Let X be a nonempty set. A function A : Xn→ [0,∞) is called an A-metric

on X if for any xi,a ∈ X , i = 1,2, ...,n, the following conditions hold:

(A1) A(x1,x2,x3, ...,xn−1,xn)≥ 0,
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(A2) A(x1,x2,x3, ...,xn−1,xn) = 0 if and only if x1 = x2 = x3 = ...= xn−1 = xn,

(A3)

A(x1,x2,x3, ...,xn−1,xn) ≤ [A(x1,x1,x1, ...,(x1)n−1,a)

+A(x2,x2,x2, ...,(x2)n−1,a)

+A(x3,x3,x3, ...,(x3)n−1,a)

...

+A(xn−1,xn−1,xn−1, ...,(xn−1)n−1,a)

+A(xn,xn,xn, ...,(xn)n−1,a).]

The pair (X ,A) is called an A-metric space.

Definition 1.5. [15] Let X be a nonempty set. A partial A-metric space is a function AP : Xn→

[0,∞) that satisfies the following conditions, for all x1,x2, . . . ,xn, t ∈ X;

(i) AP(x1,x2, . . . ,xn)≥ 0,

(ii) x1 = x2 = · · · = xn if and only if AP(x1,x1, . . . ,x1) = AP(x2,x2, . . . ,x2) = · · · =

AP(xn,xn, . . . ,xn),

(iii)

AP(x1,x2, . . . ,xn) ≤ AP(x1,x1, . . . ,(x1)n−1, t)+AP(x2,x2, . . . ,(x2)n−1, t)

+ · · ·+AP(xn,xn, . . . ,(xn)n−1, t)−AP(t, t, . . . , t),

(iv) AP(x1,x1, . . . ,x1)≤ AP(x1,x2, . . . ,xn),

(v) AP(x1,x1, . . . ,x1,x2) = AP(x2,x2, . . . ,x2,x1).

The pair (X ,AP) is called a partial A-metric space.

Definition 1.6. [15] Let X be a nonempty set. A partial A-metric on X is a function Ap : Xn→

[0,∞) that satisfies the following conditions for all x1,x2, . . . ,xn, t ∈ X,

(i) x1 = x2 if and only if Ap(x1,x1, . . . ,x1) = Ap(x2,x2, . . . ,x2) = Ap(x1,x1, . . . ,x1,x2).
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(ii)

Ap(x1,x2, . . . ,xn) ≤ Ap(x1,x1, . . . ,x1, t)+Ap(x2,x2, . . . ,x2, t)

+ · · ·+Ap(xn,xn, . . . ,xn, t)+Ap(t, t, . . . , t).

(iii) Ap(x1,x1, . . . ,x1)≤ Ap(x1,x2, . . . ,xn).

(iv) Ap(x1,x1, . . . ,x1,x2) = Ap(x2,x2, . . . ,x2,x1).

The pair (X ,Ap) is called a partial A-metric space.

Next, we give the definition of an MA-metric space, but first we introduce the following

notations.

Notation 1.

1. mAx1,x2,...,xn
:= min{mA(x1,x1, . . . ,x1),mA(x2,x2, . . . ,x2), . . . ,mA(xn,xn, . . . ,xn)}.

2. MAx1,x2,...,xn
:= max{mA(x1,x1, . . . ,x1),mA(x2,x2, . . . ,x2), . . . ,mA(xn,xn, . . . ,xn)}.

Definition 1.7. An MA-metric on a nonempty set X is a function mA : Xn→R+ such that for all

x1,x2, . . . ,xn, t ∈ X, the following conditions are satisfied:

1. mA(x1,x1, . . . ,x1) = mA(x2,x2, . . . ,x2) = mA(x1,x1, . . . ,x1,x2) if and only if x1 = x2.

2. mAx1,x2,...,xn
≤ mA(x1,x2, . . . ,xn).

3. mA(x1,x1, . . . ,x1,x2) = mA(x2,x2, . . . ,x2,x1).

4.

(
mA(x1,x2, . . . ,xn)−mAx1,x2,...,xn

)
≤

(
mA(x1,x1, . . . ,x1, t)−mAx1,x1,...,x1,t

)
+
(
mA(x2,x2, . . . ,x2, t)−mAx2,x2,...,x2,t

)
+ . . .

+
(
mA(xn,xn, . . . ,xn, t)−mAxn,xn,...,xn,t

)
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The pair (X ,mA) is called an MA-metric space. Notice that the condition mA(x1,x1, . . . ,x1) =

mA(x2,x2, . . . ,x2) = · · · = mA(xn,xn, . . . ,xn = mA(x1,x2, . . . ,xn)⇔ x1 = x2 = · · · = xn implies

that (1) above.

It is straightforward to verify that every partial A-metric space is an MA-metric space but the

converse is not true. The following example is an MA-metric which is not a partial A-metric

space.

Example 1. Let X = {1,2, . . . ,n} and define

Definition 1.8. Let (X ,mA) be an MA-metric space. Then

1. a sequence {xp} in X converges to a point x if and only if limp→∞

(
mA(xp,xp, . . . ,xp,x)−

mAxp,xp,...,xp,x

)
= 0.

2. a sequence {xp} in X is said to be MA-Cauchy sequence if and only if

lim
p,q→∞

(
mA(xp,xp, . . . ,xp,xq)−mAxp,xp,...,xp,xq

)
and

lim
p,q→∞

(
MAxp,xp,...,xp,xq

−mAxp,xp,...,xp,xq

)
exists and finite.

3. an MA-metric space is said to be complete if every MA-Cauchy sequence {xp} converges

to a point x such that

lim
p→∞

(
mA(xp,xp, . . . ,xp,x)−mAxp,xp,...,xp,x

)
= 0

and

lim
p→∞

(
MAxp,xp,...,xp,x

−mAxp,xp,...,xp,x

)
= 0.

A ball in the MA-metric (X ,mA) space with centre x ∈ X and radius η > 0 is defined by

BA[x,η ] = {x2 ∈ X : mA(x1,x1, . . . ,x1,x2)−mAx1,x1,...,x1,x2
} ≤ η .

The topology of (X ,MA) is generated by means of the basis β = {BA[x,η ] : η > 0}.

Lemma 1.1. Assume xp→ x and yp→ y as p→ ∞ in an MA-matric space (X ,mA). Then,

lim
p→∞

(
mA(xp,xp, . . . ,xp,yp)−mAxp,xp,...,xp,yp

)
= mA(x,x, . . . ,x,y)−mAx,x,...,x,y .
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Proof. The proof follows by the inequality (4) in definition (1.7). Indeed, we have

|
(
mA(xp,xp, . . . ,xp,yp)−mAxp,xp,...,xp,yp

)
− (mA(x,x, . . . ,x,y)−mAx,x,...,x,y)|

≤ (n−1)|
(
mA(xp,xp, . . . ,xp,x)−mAxp,xp,...,xp,x

)
+
(
mA(yp,yp, . . . ,yp,y)−mAyp,yp,...,yp,y

)
|

�

2. MAIN RESULTS

In this section, we consider some results about the existence and uniqueness of fixed point

for self-mappings on an MA-metric space, under different contraction principles.

Theorem 2.1. Let (X ,mA) be a complete MA-metric space and T be a self-mapping on X satis-

fying the following condition:

mA(T x,T x, . . . ,T x,Ty) ≤ kmA(x,x, . . . ,x,y)(1)

for all x,y ∈ X, where k ∈ [0,1). Then T has a unique fixed point u. Moreover, mA(u,u, . . . ,u) =

0.

Proof. Since k ∈ [0,1), we can choose a natural number n0 such that for a given 0 < ε < 1, we

have kn0 < ε

4(n−1) . Let T n0 = F and F ix0 = xi for all natural number i, where x0 is arbitrary.

Hence, for all x,y ∈ X , we have

mA(Fx, . . . ,Fx,Fy) = mA(T n0x, . . . ,T n0x,T n0y)

≤ kn0mA(x,x, . . . ,x,y)

For any i, we have

mA(xi+1, . . . ,xi+1,xi) = mA(Fxi, . . . ,Fxi,Fxi−1)

≤ kn0mA(xi, . . . ,xi,xi−1)

≤ kn0+imA(x1, . . . ,x1,x0)→ 0 as i→ ∞.

Similarly, by (1) we have mA(xi, . . . ,xi,xi)→ 0 as i→ ∞. Thus, we choose l such that

mA(xl+1, . . . ,xl+1,xl)<
ε

4(n−1)
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and

mA(xl, . . . ,xl,xl)<
ε

2(n−1)
.

Now, let η = ε

2 +mA(xl, . . . ,xl,xl). Define the set

BA[xl,η ] = {y ∈ X |mA(xl, . . . ,xl,y)−mAxl ,xl ,...,xl ,y≤η}.

Note that, x1 ∈ BA[xl,η ]. Therefore BA[xl,η ] 6= φ . Let z ∈ BA[xl,η ] be arbitrary. Hence,

mA(Fz, . . . ,Fz,Fxl) ≤ kn0mA(z, . . . ,z,xl)

≤ kn0[(n−1){mA(z,z, . . . ,z)−mAz,z,...,z}

+mA(xl,xl, . . . ,xl)−mAxl ,xl ,...,xl
+mAz,z,...,z,xl

]

≤ ε

4(n−1)
[(n−1)

ε

2(n−1)
+mAz,z,...,z,xl

+mA(xl,xl, . . . ,xl)]

≤ ε

4(n−1)
[
ε

2
+mAz,z,...,z,xl

+mA(xl,xl, . . . ,xl)]

≤ ε

4(n−1)
[1+2mA(xl,xl, . . . ,xl)].

Also, we know that

mA(Fxl,Fxl, . . . ,Fxl,xl) = mA(xl+1,xl+1, . . . ,xl+1,xl)<
ε

4(n−1)
.

Therefore,

mA(Fz,Fz, . . . ,Fz,xl)−mAFz,...,Fz,xl
≤ (n−1)[mA(Fz,Fz, . . . ,Fxl)−mAFz,...,Fz,Fxl

]

+mA(Fxl, . . . ,Fxl,xl)−mAFxl ...,Fxl ,xl

≤ (n−1)mA(Fz,Fz, . . . ,Fxl)+mAFxl ...,Fxl ,xl

≤ (n−1)
ε

4(n−1)
[1+2mA(xl,xl, . . . ,xl)]+

ε

4(n−1)

=
ε

4
+

ε

4(n−1)
+

ε

2
mA(xl,xl, . . . ,xl)

=
nε

4(n−1)
+

ε

2
mA(xl,xl, . . . ,xl)

<
ε

2
+mA(xl,xl, . . . ,xl).
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Thus, Fz ∈ Bb[xl,η ] which implies that F maps Bb[xl,η ] into itself. Thus by repeating the

process we deduce that for all n ≥ 1, we have Fnxl ∈ Bb[xl,η ] and that is xm ∈ Bb[xl,η ] for all

m≥ l. Therefore, for all m > n≥ l where n = l + i for some i.

mA(xn, . . . ,xn,xm) = mA(Fxn−1, . . . ,Fxn−1,Fxm−1)

≤ kn0mA(xn−1, . . . ,xn−1,xm−1)

≤ k2n0mA(xn−2, . . . ,xn−2,xm−2)

...

≤ kin0mA(xl, . . . ,xl,xm−i)

≤ mA(xl, . . . ,xl,xm−i)

≤ ε

2
+mAxl ,...,xl ,xm−i

+mA(xl, . . . ,xl,xl)

≤ ε

2
+2mA(xl, . . . ,xl,xl)

Also, we have mA(xl, . . . ,xl,xl)<
ε

4 , which implies that mA(xn, . . . ,xn,xm)< ε for all m > n > l,

and thus mA(xn, . . . ,xn,xm)−mAxn,...,xn,xm
< ε for all m > n > l. By the contraction condition (1),

we see that the sequence {mA(xn, . . . ,xn,xl)} is decreasing and hence, for all m > n > l, we have

MAxn,...,xn,xm
−mAxn,...,xn,xm

≤ MAxn,...,xn,xm

= mA(xn, . . . ,xn,xn)

≤ kmA(xn−1,xn−1, . . . ,xn−1)

...

≤ knmA(x0,x0, . . . ,x0)→ 0 as n→ ∞.

Thus, we deduce that

lim
n,m→∞

[mA(xn, . . . ,xn,xm)−mAxn,...,xn,xm
] = 0

and

lim
n,m→∞

[MAxn,...,xn,xm
−mAxn,...,xn,xm

] = 0.
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Hence, the sequence {xn} is an MA-Cauchy. Since X is complete, there exists u ∈ X such that

lim
n→∞

[mA(xn, . . . ,xn,u)−mAxn,...,xn,u
] = 0

and

lim
n→∞

[MA(xn, . . . ,xn,u)−mAxn,...,xn,u
] = 0.

The contraction condition (1) implies that mA(xn,xn, . . . ,xn)→ 0 as n→ ∞. Moreover, notice

that

lim
n→∞

[MA(xn, . . . ,xn,u)−mAxn,...,xn,u
] = lim

n→∞
|mA(xn,xn, . . . ,xn)−mA(u,u . . . ,u)|= 0,

and hence mA(u,u . . . ,u) = 0. Since xn → u, mA(u,u . . . ,u) = 0 and mA(xn,xn, . . . ,xn)→ 0 as

n→ ∞, then

lim
n→∞

mA(xn, . . . ,xn,u) = lim
n→∞

mAxn,...,xn,u
= 0.

Since mA(T xn, . . . ,T xn,Tu)≤ kmA(xn, . . . ,xn,u)→ 0 as n→ ∞, then T xn→ Tu.

Now, we show that Tu = u. By Lemma (1.1) and that T xn→ Tu and xn+1 = T xn→ u, we

have

lim
n→∞

mA(xn, . . . ,xn,u) = mAxn,...,xn,u
= 0

= lim
n→∞

mA(xn+1, . . . ,xn+1,u)−mAxn+1,...,xn+1,u

= lim
n→∞

mA(T xn, . . . ,T xn,u)−mAT xn,...,T xn,u

= mA(u, . . . ,u,u)−mATu,...,Tu,u

= mA(Tu, . . . ,Tu,u)−mATu,...,Tu,u

Hence, mA(Tu, . . . ,Tu,u) = mATu,...,Tu,u = mA(u,u, . . . ,u), but also by the contraction condition

(1) we see that mATu,...,Tu,u = mA(Tu,Tu, . . . ,Tu). Therefore, (2) in definition (1.7) implies that

Tu = u.
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To prove the uniqueness of the fixed point u, assume that T has two fixed points u,v ∈ X ; that

is Tu = u and T v = v. Thus,

mA(u, . . . ,u,v) = mA(Tu, . . . ,Tu,T v)≤ kmA(u, . . . ,u,v)< mA(u,u, . . . ,u,v),

mA(u, . . . ,u,u) = mA(Tu,Tu, . . . ,Tu)≤ kmA(u, . . . ,u,u)< mA(u,u, . . . ,u,u),

and

mA(v,v, . . . ,v) = mA(T v,T v, . . . ,T v)≤ kmA(v,v, . . . ,v)< mA(v,v, . . . ,v),

which implies that mA(u,u, . . . ,u,v) = 0 = mA(u,u, . . . ,u) = mA(v,v, . . . ,v), and hence u = v as

disered. Finally, assume that u is a fixed point of T . Then applying the contraction condition

(1) with k ∈ [0,1), implies that

mA(u,u, . . . ,u) = mA(Tu,Tu, . . . ,Tu)

≤ kmA(u,u, . . . ,u)

...

≤ knmA(u,u, . . . ,u).

Taking the limit as n→ ∞, implies that mA(u,u, . . . ,u) = 0.

In the following result, we prove the existence and uniqueness of a fixed point for a self-

mapping in MA-metric space, but under a more general contraction. �

Theorem 2.2. Let (X ,mA) be a complete MA-metric space and T be a self-mapping on X satis-

fying the following condition

mA(T x, . . . ,T x,Ty) ≤ λ [mA(x, . . . ,x,T x)+mA(y, . . . ,y,Ty)](2)

for all x,y ∈ X, where λ ∈ [0, 1
2). Then T has a unique fixed point u, where mA(u,u, . . . ,u) = 0.

Proof. Let x0 ∈ X be arbitrary. Consider the sequence {xn} defined by xn = T nx0 and mAn =

mA(xn, . . . ,xn,xn+1). Note that if there exists a natural number n such that mAn = 0, then xn is a
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fixed point of T and we are done. So, we may assume that mA > 0 for n≥ 0. By (2), we obtain

for any n≥ 0,

mAn = mA(xn, . . . ,xn,xn+1)

= mA(T xn−1, . . . ,T xn−1,T xn)

≤ λ [mA(xn−1, . . . ,xn−1,T xn−1)+mA(xn, . . . ,xn,T xn)]

= λ [mA(xn−1, . . . ,xn−1,xn)+mA(xn, . . . ,xn,xn−1)]

= λ [mAn−1 +mAn]

⇒ mAn ≤ λmAn−1 +λmAn

⇒ mAn ≤ µmAn−1

where µ = λ

1−λ
< 1 as λ ∈ [0, 1

2).

By repeating this process, we get

mAn ≤ µ
nmA0 .

Thus, limn→∞ mAn = 0. By (2), for all natural number n,m, we have

mA(xn, . . . ,xn,xm) = mA(T nx0, . . . ,T nx0,T mx0)

= mA(T xn−1, . . . ,T xn−1,T xm−1)

≤ λ [mA(xn−1, . . . ,xn−1,T xn−1)+mA(xm−1, . . . ,xm−1,T xm−1)]

= λ [mA(xn−1, . . . ,xn−1,xn)+mA(xm−1, . . . ,xm−1,xm)]

≤ λ [mAn−1 +mAm−1].

Since limn→∞ mAn = 0, for every ε > 0, we can find a natural number n0 such that mAn <
ε

2 and

mAm < ε

2 for all m,n > n0. Therefore, it follows that

mA(xn, . . . ,xn,xm) ≤ λ [mAn−1 +mAm−1]

< λ [
ε

2
+

ε

2
]

<
ε

2
+

ε

2
= 0 for all n,m > n0.
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This implies that

mA(xn, . . . ,xn,xm)−mAxn,...,xn,xm
< ε

for all n,m > n0.

Now, for all natural numbers n,m, we have

MAxn,...,xn,xm
= mA(T xn−1, . . . ,T xn−1,T xn−1)

≤ λ [mA(xn−1, . . . ,xn−1,T xn−1)+mA(xn−1, . . . ,xn−1,T xn−1)]

= λ [mA(xn−1, . . . ,xn−1,xn)+mA(xn−1, . . . ,xn−1,xn)]

= λ [mAn−1 +mAn−1 ]

= 2λmAn−1.

As limn→∞ mAn−1 = 0, for every ε > 0 we can find a natural number n0 such that mAn <
ε

2 and

for all m,n > n0. Therefore, it follows that

MAxn,...,xn,xm
≤ λ [mAn−1 +mAn−1]

< λ [
ε

2
+

ε

2
]

<
ε

2
+

ε

2
= 0 for all n,m > n0,

which implies that

MAxn,...,xn,xm
−mAxn,...,xn,xm

< ε for all n,m > n0.

Thus, {xn} is an MA-Cauchy sequence in X . Since X is complete, there exists u ∈ X such that

lim
n→∞

mA(xn, . . . ,xn,u)−mAxn,...,xn,u
= 0.

Now, we show that u is a fixed point of T in X . For any natural number n, we have,

lim
n→∞

mA(xn, . . . ,xn,u)−mAxn,...,xn,u
= 0

= lim
n→∞

mA(xn+1, . . . ,xn+1,u)−mAxn+1,...,xn+1,u

= lim
n→∞

mA(T xn, . . . ,T xn,u)−mAT xn,...,T xn,u

= mA(Tu, . . . ,Tu,u)−mATu,...,Tu,u.
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This implies that mA(Tu, . . . ,Tu,u) = mAu,...,u,Tu = 0, and that is mA(Tu, . . . ,Tu,u) = mAu,...,u,Tu .

Now, assume that

mA(Tu, . . . ,Tu,u) = mA(Tu, . . . ,Tu,Tu)

≤ 2λmA(u, . . . ,u,Tu)

= 2λmA(Tu, . . . ,Tu,u)

< mA(u, . . . ,u,Tu)

Thus,

mA(Tu, . . . ,Tu,u) = mA(u, . . . ,u,u)

≤ mA(Tu, . . . ,Tu,Tu)

≤ 2λmA(u, . . . ,u,Tu)

< mA(u, . . . ,u,Tu)

Therefore, Tu = u and thus u is a fixed point of T .

Next, we show that if u is a fixed point, then mA(u, . . . ,u,u) = 0. Assume that u is a fixed

point of T , then using the contraction (2), we have

mA(u,u, . . . ,u) = mA(Tu, . . . ,Tu,Tu)

≤ λ [mA(u,u, . . . ,u,Tu)+mA(u,u, . . . ,u,Tu)]

= 2λmA(u,u, . . . ,u,Tu)

= 2λmA(u,u, . . . ,u)

< mA(u,u, . . . ,u) since λ ∈ [0,
1
2
),

that is, mA(u,u, . . . ,u) = 0.
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Finally, to prove the uniqueness, assume that T has two fixed points, say u,v ∈ X . Hence,

mA(u, . . . ,u,v) = mA(Tu, . . . ,Tu,T v)

≤ λ [mA(u,u, . . . ,u,Tu)+mA(v,v, . . . ,v,T v)]

= λ [mA(u,u, . . . ,u)+mA(v,v, . . . ,v)] = 0,

which implies that

mA(u, . . . ,u,v) = 0 = mA(u,u, . . . ,u) = mA(v,v, . . . ,v),

and u = v as required. �

In closing, the authors would like to bring to the reader’s attention that in this interesting

MA-metric space, it is possible to add some control functions in both contractions of Theorems

1 and 2.

Theorem 2.3. Let (X ,mA) be a complete MA-metric space and T be a self-mapping on X satis-

fying the following condition: for all x1,x2, . . . ,xn ∈ X

mA(T x1,T x2, . . . ,T xn) ≤ mA(x1,x2, . . . ,xn)−φ(mA(x1,x2, . . . ,xn)),(3)

where φ : [0,∞)→ [0,∞) is a continuous and non-decreasing function and φ−1(0) = 0 and

φ(t)> 0 for all t > 0. Then T has a unique fixed point in X.

Proof. Let x0 ∈ X . Define the sequence {xn} in X such that xn = T n−1x0 = T xn−1 for all n ∈N.

Note that if there exists an n ∈ N such that xn+1 = xn, then xn is a fixed point for T . Without

loss of generality, assume that xn+1 6= xn for all n ∈ N. Now

mA(xn,xn+1, . . . ,xn+1) = mA(T xn−1,T xn, . . . ,T xn)

≤ mA(xn−1,xn, . . . ,xn)−φ(mA(xn−1,xn, . . . ,xn))

≤ mA(xn−1,xn, . . . ,xn)(4)

Similarly, we can prove that mA(xn−1,xn, . . . ,xn) ≤ mA(xn−2,xn−1, . . . ,xn−1). Hence,

mA(xn,xn+1, . . . ,xn+1) is a nondecreasing sequence. Hence there exists r ≥ 0 such that

lim
n→∞

mA(xn,xn+1, . . . ,xn+1) = r.
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Now, by taking the limit as n→ ∞ in the inequality (4), we get r ≤ r−φ(r) which leads to a

contraction unless r = 0. Therefore,

lim
n→∞

mA(xn,xn+1, . . . ,xn+1) = 0.

Suppose that {xn} is not an MA-Cauchy sequence. Then there exists an ε > 0 such that we

can find subsequences xmk and xnk of {xn} such that

mA(xnk ,xmk , . . . ,xmk)−mAxnk ,xmk ,...,xmk
≥ ε(5)

Choose nk to be the smallest integer with nk > mk and satisfies the inequality (5). Hence,

mA(xnk ,xmk−1, . . . ,xmk−1)−mAxnk ,xmk−1 ,...,xmk−1
< ε.

Now,

ε ≤ mA(xmk ,xnk , . . . ,xnk)−mAxmk ,xnk ,...,xnk

≤ mA(xmk ,xnk−1, . . . ,xnk−1)+(n−1)mA(xnk−1, . . . ,xnk−1)−mAxmk ,xnk−1,...,xnk−1

≥ ε +(n−1)mA(xnk−1, . . . ,xnk−1)

< ε,

as n→∞. Hence, we have contradiction. Without loss of generality, assume that mAxn,xn,...,xn,xm
=

mA(xn,xn, . . . ,xn,xm). Then we have

0 ≤ mAxn,xn,...,xn,xm
−mA(xn,xn, . . . ,xn,xm)

≤ MAxn,xn,...,xn,xm

= mA(xn,xn, . . . ,xn,xm)

= mA(T xn−1,T xn−1, . . . ,T xn−1)

≤ mA(xn−1,xn−1, . . . ,xn−1)−φ(mA(xn−1,xn−1, . . . ,xn−1))

≤ mA(xn−1,xn−1, . . . ,xn−1)

...

≤ mA(x0,x0, . . . ,x0).
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Hence, limn→∞ mAxn,xn,...,xn,xm
−mAxn,xn,...,xn,xm

exists and finite. Therefore, {xn} is an MA-Cauchy

sequence. Since X is a complete, the sequence {xn} converges to an element x ∈ X ; that is,

0 = lim
n→∞

mA(xn,xn, . . . ,xn,x)−mAxn,xn,...,xn,x

= lim
n→∞

mA(xn+1,xn+1, . . . ,xn+1,x)−mAxn+1,xn+1,...,xn+1,x

= lim
n→∞

mA(T xn,T xn, . . . ,T xn,x)−mAT xn,T xn,...,T xn,x

= mA(T x,T x, . . . ,T x,x)−mAT x,T x,...,T x,x

Similar to the proof of the Theorem 2, it is not difficult to show that this implies that, T x = x

and so x is a fixed point.

Finally, we show that T has a unique fixed point. Assume that there are two fixed points

u,v ∈ X of T . If we have mA(u,u, . . . ,u,v)> 0, then condition (3) implies that

mA(u,u, . . . ,u,v)−mA(Tu,Tu, . . . ,Tu,v) ≤ mA(u,u, . . . ,u,v)−φ(mA(u,u, . . . ,u,v))

< mA(u,u, . . . ,u,v)

and that is a contradiction. Therefore, mA(u,u, . . . ,u,v) = 0 and similarly mA(u,u, . . . ,u) =

MA(v,v, . . . ,v) = 0 and thus u = v as desired. �
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