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Abstract: The paper deals with a third order finite difference approach with variable mesh using the non−polynomial 

spline for the solution of a problems with singularity in convection-diffusion equation. The problem's discretization 

equation is constructed using the continuity condition at the inner nodes for the derivatives of first order of the 

non−polynomial spline, which is not valid at singularity. At the singularity, the problem is modified in order to have 

a three-term relationship. The method's tridiagonal scheme is interpreted by means of discrete invariant imbedding 

algorithm. Error analysis of the method is analyzed and the maximum absolute error in the solution is tabulated. Layer 

behaviour is picturized in graphs. 
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1. INTRODUCTION 

Consider the problem with singularity in convection - diffusion equation 
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                       ϵ𝑦 ''(x) =
𝑘

𝑥
𝑦′(𝑥) + 𝑞(𝑥) + 𝑟(𝑥)                            (1) 

with                      𝑦(0) = 𝛾0,    𝑦(1) = 𝛾1                                                                                        

where   0 < 𝜖 ≪ 1 ,   𝑞(𝑥), 𝑟(𝑥)   are continuous functions in (0, 1), and   𝛾0, 𝛾1   are finite 

constants.  Let 𝑝(𝑥) =
𝑘

𝑥
 .  If 𝑝(𝑥) ≥ �̅� > 0  all over the domain, �̅�  is a positive constant, 

then the layer exists in the neighbourhood of 𝑥 = 1.  If 𝑝(𝑥) ≤ �̅� < 0 all over the domain, N  

is a negative constant, then the layer will be in the neighborhood of  𝑥 = 0. 

       In many areas of the applied mathematics such as quantum mechanics, elasticity, optimal 

control, chemical-reactor theory, aerodynamics, fluid mechanics, geophysics, and many other 

fields, this class of problems also occurs. Equations of this type show layer solutions; that is, the 

problem-solving domain includes narrow areas with extremely large solution derivatives. Due to 

the presence of interior or boundary layers, the numerical treatment of these problems gives 

significant computational difficulties. A wide range of books and papers have been published, 

including [2-8], [11], [13] detailing different methods for solving singularly perturbed boundary 

value problems. In [5], authors proposed a B-spline-fitted mesh scheme to solve Eq. (1). Variety 

of schemes based on tension spline and spline compression developed by Mohanty et al. [9, 10, 

11] for the solution of Eq. (1). Cubic spline solution is used by Rashidinia [13] on a uniform mesh 

for the solution of Eq. (1). 

        In the present paper, a variable mesh non polynomial spline is used to develop a 

numerical method for the smooth approximation to the solution for Eq. (1). Parameter 𝜔  is 

introduced in the difference scheme of first order derivative term to achieve third order 

convergence. The paper is organized as follows: In section 2, we develop the nonpolynomial spline 

method for solving Eq. (1). In section 3, description of the method is given. The error analysis of 

the method is considered in section 4. Finally, Maximum absolute errors of the solutions of the 

considered examples are given in section 5. 

 

2. NON – POLYNOMIAL SPLINE 

Let 0 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 1 be a sub - division of the region  [0,  1], where ℎ𝑖 =

𝑥𝑖 − 𝑥𝑖−1, 𝑖 =  1,2, … , 𝑛  and ℎ𝑖+1 = 𝜎ℎ𝑖 .  Let the exact solution be 𝑦(𝑥)  and 𝑦𝑖  be an 

approximation to 𝑦(𝑥𝑖  )  achieved by the non −  polynomial spline 𝑆𝑖(𝑥 )  passing through 

(𝑥𝑖  , 𝑦𝑖  ) and (𝑥𝑖+1  , 𝑦𝑖+1). The spline satisfies interpolatory conditions at 𝑥𝑖  and  𝑥𝑖+1 and also 
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first derivative continuity at the common nodes (𝑥𝑖  , 𝑦𝑖 ). 

 We write 𝑆𝑖(𝑥 ) in the form 

    𝑆𝑖(𝑥 ) = 𝑎𝑖 + 𝑏𝑖  (𝑥 − 𝑥𝑖) + 𝑐𝑖  𝑠𝑖𝑛𝜏 (𝑥 − 𝑥𝑖) + 𝑑𝑖  𝑐𝑜𝑠𝜏 (𝑥 − 𝑥𝑖), 𝑖 = 0,1,2, … , 𝑛       (2)  

where 𝑎𝑖 , 𝑏𝑖,𝑐𝑖  and 𝑑𝑖 are constants and  𝜏  is a free parameter. 

The function in Eq. (2) interpolates 𝑦(𝑥)  at the grid points 𝑥𝑖 , 𝑖 = 1,2, … , 𝑛 , having the 

parameter 𝜏 and as 𝜏 → 0 reduces to cubic spline.  

To get the values for the coefficients of Eq. (1) in term of  𝑦𝑖 , 𝑦𝑖+1,𝑀𝑖  and 𝑀𝑖+1 define  

𝑆𝑖(𝑥 ) = 𝑦𝑖  ,  𝑆𝑖(𝑥𝑖+1 
) = 𝑦𝑖+1,   𝑆′′(𝑥𝑖 

) = 𝑀𝑖 , 𝑆′′(𝑥𝑖+1 
) = 𝑀𝑖+1. 

From algebraic calculations, we get 

        𝑎𝑖 = 𝑦𝑖 +
𝑀𝑖

𝜏2 , 𝑏𝑖 =
𝑦𝑖+1−𝑦𝑖

ℎ𝑖
+

𝑀𝑖+1−𝑀𝑖

𝜃𝜏
,   𝑐𝑖 =

𝑀𝑖𝑐𝑜𝑠𝜃−𝑀𝑖−1

𝜏2𝑠𝑖𝑛𝜃
, 𝑑𝑖 = −

𝑀𝑖

𝜏2              (3) 

where 𝜃 = 𝜏ℎ𝑖+1 for 𝑖 =  0, 1, 2, . . . , 𝑛. 

Using the first order derivative continuity at (𝑥𝑖  , 𝑦𝑖  ) , that is 𝑆𝑖−1
′ (𝑥𝑖 ) = 𝑆𝑖

′(𝑥𝑖 ),  we get the 

following relations for 𝑖 = 1, 2, . . . , 𝑛 − 1. 

            𝜎𝑦𝑖−1 − (1 + 𝜎)𝑦𝑖 + 𝑦𝑖+1 = ℎ𝑖+1
2 [𝛼𝑖𝑀𝑖−1 + 𝛽𝑀𝑖 + 𝛼2𝑀𝑖+1]              (4) 

where 𝛼𝑖 =
−1

𝜏2ℎ𝑖
2 +

1

𝜏ℎ𝑖si n(𝜏ℎ𝑖)
, 𝛽𝑖 =

−1

𝜏2ℎ𝑖
2 +

1

𝜏ℎ𝑖si n(𝜏ℎ𝑖)
, 𝛼2 =

−1

𝜃2 +
1

𝜃si n θ
,                  𝑀𝑗 = y''(𝑥𝑗),

𝑗 = 𝑖, 𝑖 ± 1 𝑎𝑛𝑑 𝜃 = 𝜏ℎ𝑖+1. 

 

3. NUMERICAL SCHEME 

At the mesh points ix , the Eq. (1) may be written as   

                ϵ𝑦𝑖
''(x) = 𝑝(𝑥𝑖)𝑦𝑖

′ + 𝑞(𝑥𝑖)𝑦𝑖 + 𝑟𝑖 where 𝑝(𝑥𝑖) =
𝑘

𝑥𝑖
  

and using spline’s second derivatives, we have  

           ϵ𝑀𝑗 = 𝑝(𝑥𝑗)𝑦𝑗
′(𝑥) + 𝑞(𝑥𝑗)𝑦𝑖(𝑥𝑗) + 𝑟𝑖(𝑥𝑗) for 𝑗 = 𝑖 − 1, 𝑖 + 1              (5) 

Using Eq. (5) in Eq. (4) with the following approximations for the first derivative         

𝑦𝑖+1
′ ≅

1

ℎ𝑖+1
[
2𝜎 + 1

𝜎 + 1
] 𝑦𝑖+1 − (𝜎 + 1)𝑦𝑖 +

𝜎2

𝜎 + 1
 𝑦𝑖−1 

𝑦𝑖−1
′ ≅

1

ℎ𝑖
[

−1

𝜎(𝜎 + 1)
] 𝑦𝑖+1 +

(𝜎 + 1)

𝜎
𝑦𝑖 −

2 + 𝜎

𝜎 + 1
𝑦𝑖−1 
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𝑦𝑖
′ ≅

1

ℎ𝑖
(

1 + 𝜔ℎ𝑖
2𝜎(𝜎 + 1)𝑞𝑖+1 + 𝜔ℎ𝑖 [(2𝜎 + 1)𝑝𝑖+1 + 𝑝𝑖−1]

𝜎(𝜎 + 1)ℎ𝑖 
) 𝑦𝑖+1

+ ((
𝜎 − 1

𝜎ℎ𝑖 
) − 𝜔 (

1 + 𝜎

𝜎
) [𝑃𝑖+1 + 𝑃𝑖−1]) 𝑦𝑖

− (
𝜎 + 𝜔(1 + 𝜎)ℎ𝑖

2𝑞𝑖−1 − 𝜔ℎ𝑖 [𝜎𝑝𝑖+1 + (2 + 𝜎)𝑝𝑖−1]

(𝜎 + 1)ℎ𝑖 
) 𝑦𝑖−1

+ 𝜔ℎ𝑖 [ri+1 − ri−1] ,      

                                                                           (6) 

we get the tri-diagonal system  

               𝐸𝑖−1𝑦𝑖−1 + 𝐹𝑖 𝑦𝑖 + 𝐺𝑖+1𝑦𝑖+1 = 𝐻𝑖     𝑖 = 2,3, . . . , 𝑛 − 1                  (7)      

where 

𝐸𝑖−1 = −𝜀𝜎 − 𝛼1 𝑝𝑖−1 ℎ𝑖  (
2𝜎2+𝜎3

1+𝜎
) + 𝛽 𝑝𝑖ℎ𝑖

2 (
−𝜎3

(𝜎+1)ℎ𝑖
+

𝜔𝜎2

1+𝜎
[𝜎𝑝𝑖+1 + (2𝜎 + 1)𝑝𝑖−1] −

𝜔𝜎2ℎ𝑖𝑞𝑖−1) + 𝛼2𝑝𝑖+1ℎ𝑖 (
𝜎3

(𝜎+1)
) + 𝛼1𝑞𝑖−1ℎ𝑖

2(𝜎2)   

𝐹𝑖 = 𝜀(1 + 𝜎) + 𝛼1 𝑝𝑖−1 ℎ𝑖(𝜎 + 𝜎2) + 𝛽 𝑝𝑖ℎ𝑖
2 (

(𝜎2−𝜎)

ℎ𝑖
− 𝜔(𝜎2 + 𝜎)[𝑝𝑖+1 + 𝑝𝑖−1])  

                          − 𝛼2𝑝𝑖+1ℎ𝑖(𝜎 + 𝜎2) + 𝛽 𝑞𝑖ℎ𝑖
2(𝜎2) 

𝐺𝑖+1 = −𝜀 − 𝛼1 𝑝𝑖−1 ℎ𝑖  (
𝜎

1+𝜎
) + 𝛽 𝑝𝑖ℎ𝑖

2 (
𝜎

(𝜎+1)ℎ𝑖
+

𝜔𝜎

(1+𝜎)
[(2𝜎 + 1)𝑝𝑖+1 + 𝑝𝑖−1] + 𝜔ℎ𝑖𝑞𝑖+1𝜎2) 

+𝛼2𝑝𝑖+1ℎ𝑖 (
2𝜎2+𝜎

𝜎+1
) + 𝛼2𝑞𝑖+1ℎ𝑖

2(𝜎2) 

 𝐻𝑖 =  ℎ𝑖+1
2 [(𝛼1 − 𝜔𝛽 𝑝𝑖ℎ𝑖)𝑟𝑖−1 + 𝛽 𝑟𝑖 + (𝛼2 + 𝜔𝛽 𝑝𝑖ℎ𝑖)𝑟𝑖+1]                             (8) 

where  ℎ𝑖+1 = 𝜎 ℎ𝑖. 

For i = 1, the coefficients 𝑦𝑖−1, 𝑦𝑖  and 𝑦𝑖+1 are not defined in Eq. (7), thus we need to develop 

an equation for this case. By using L-Hospital rule, from Eq. (5), we get   

       𝑦𝑖
″ =

𝑞𝑖𝑦𝑖+𝑟𝑖

𝜀−𝑘
   gives     𝑀𝑖 =

𝑞𝑖𝑦𝑖+𝑟𝑖

𝜀−𝑘
                            (9)                                                      

Again using Eq. (4), we get the following boundary formula for i = 1 

[−𝜎 +
𝛼1 ℎ2

2𝑞0

𝜀 − 𝑘
] 𝑦0 + [(1 + 𝜎) +

𝛽 ℎ2
2𝑞1

𝜀 − 𝑘
] 𝑦1 + [−𝜎 +

𝛼2 ℎ2
2𝑞2

𝜀 − 𝑘
] 𝑦2  

=
−ℎ2

2

𝜀 − 𝑘
[𝑘1 𝑟0 + 𝑘2 𝑟1 + 𝑘3 𝑟2]                                                                                   (10) 

We solve the tri-diagonal system Eq. (7) together with the Eq. (10) for 



1403 

SOLUTION OF CONVECTION - DIFFUSION PROBLEMS 

𝑖 = 2,3, . . . , 𝑛 − 1  to get the approximations 𝑦1,𝑦2, , . . . , 𝑦𝑛−1  of the solution 𝑦(𝑥)  at 

𝑥1, 𝑥2, . . . , 𝑥𝑛−1. 

 

4. ERROR ANALYSIS 

Using the approximations for first order derivative of 𝑦  in Eq. (6), we get 

𝑒𝑖−1
′ = 𝑦′(𝑥𝑖−1) − 𝑦𝑖−1

′  

     = (
𝜎2+2𝜎+1

6(1+𝜎)
) ℎ𝑖

2𝑦(3)(𝑥𝑖) + (
𝜎3−3𝜎−2

24(1+𝜎)
) ℎ𝑖

3𝑦(4)(𝑥𝑖) + (
𝜎4+4𝜎+3

120(1+𝜎)
) ℎ𝑖

4
𝑦(5) (ξ1

(𝑖)
)           (11)  

𝑒𝑖+1
′ = 𝑦′(𝑥𝑖+1) − 𝑦𝑖+1

′  

 = (
𝜎3+2𝜎2+𝜎

6(1+𝜎)
) ℎ𝑖

2𝑦(3)(𝑥𝑖) + (
2𝜎4+3𝜎3−𝜎

24(1+𝜎)
) ℎ𝑖

3𝑦(4)(𝑥𝑖) + (
3𝜎5+4𝜎4+𝜎

120(1+𝜎)
) ℎ𝑖

4𝑦(5) (ξ
2
(𝑖)

)           (12) 

𝑒𝑖
′ = 𝑦′(𝑥𝑖) − 𝑦𝑖

′ = −ℎ𝑖
2

(
𝜎

6
+ (1 + 𝜎)𝜀𝜔) 𝑦(3)(𝑥𝑖) + ℎ𝑖

3
(

𝜔𝜀(1−𝜎2)

2
+

(𝜎−𝜎2)

24
) 𝑦(4)(𝑥𝑖)  

−ℎ𝑖
4 [

𝜔𝜀(1+𝜎3)

6
𝑦(5)(𝜖3

(𝑖)
) +

1

120
𝑦(5)(𝜖4

(𝑖)
) −

𝜔(1+𝜎3)

12
𝑝𝑖(𝜖5

(𝑖)
)𝑦(4)(𝜖5

(𝑖)
) −

𝜔(𝜎3+𝜎2+𝜎+1)

6
𝑝𝑖

′(𝜖6
(𝑖)

)𝑦𝑖
(3)

(ξ
6

(𝑖)
)]                                                          (13) 

where  𝑥𝑖 < ξ
1

(𝑖)
, ξ

2

(𝑖)
, ξ

3

(𝑖)
, ξ

4

(𝑖)
, ξ

5

(𝑖)
, ξ

6

(𝑖)
< 𝑥𝑖 

Substituting  𝜀𝑀𝑗 = 𝑝(𝑥𝑗)𝑦𝑗
′(x) + q(𝑥𝑗)y(𝑥𝑗) + r(𝑥𝑗), 𝑗 =  𝑖, 𝑖 ± 1, in Eq. (4), we get  

𝜀𝜎𝑦𝑖−1 − 𝜀(1 + 𝜎)𝑦𝑖 + 𝜀𝑦𝑖+1 = ℎ𝑖+1
2 [𝛼1(𝑝𝑖−1𝑦𝑖−1

′ + 𝑞𝑖−1𝑦𝑖−1 + 𝑟𝑖−1) + 

                       𝛽(𝑝𝑖𝑦𝑖
′ + 𝑞𝑖𝑦𝑖 + 𝑟𝑖) + 𝛼(𝑝𝑖+1𝑦𝑖+1

′ + 𝑞𝑖+1𝑦𝑖+1 + 𝑟𝑖+1)]             (14) 

Putting exact solution in (14), we get 

𝜀𝜎𝑦(𝑥𝑖−1) − 𝜀(1 + 𝜎)𝑦(𝑥𝑖) + 𝜀𝑦(𝑥𝑖+1) = ℎ𝑖+1
2 [𝛼1(𝑝𝑖−1𝑦′(𝑥𝑖−1) + 𝑞𝑖−1𝑦(𝑥𝑖−1) + 𝑟𝑖−1) +

𝛽(𝑝𝑖𝑦′(𝑥𝑖) + 𝑞𝑖𝑦(𝑥𝑖) + 𝑟𝑖) + 𝛼2(𝑝𝑖+1𝑦′(𝑥𝑖+1) + 𝑞𝑖+1𝑦(𝑥𝑖+1) + 𝑟𝑖+1)] + 𝑇𝑖(ℎ𝑖)          (15) 

where  𝑇𝑖(ℎ𝑖) = [−
𝜎

2
(1 + 𝜎) + 𝜎2(𝛼1 + 𝛽 + 𝛼2)] 𝑦

𝑖
(2)ℎ𝑖

2 + [−
𝜎

6
(−1 + 𝜎2) − 𝜎2(𝛼1 −

𝜎𝛼2)] 𝑦
𝑖
(3)ℎ𝑖

3 + [−
𝜎

24
(1 + 𝜎3) +

𝜎2

2
(𝛼1 + 𝜎2𝛼2)] 𝑦

𝑖
(4)ℎ𝑖

4 + [−
𝜎

120
(−1 + 𝜎4) −

𝜎2

6
(𝛼1 −

𝜎3𝛼2)] 𝑦
𝑖
(5)ℎ𝑖

5 + 0 (ℎ6
) 

Subtracting Eq. (14) from Eq. (15) and substituting 𝑒𝑗 = 𝑦(𝑥𝑗) − 𝑦𝑗 , 𝑗 = 𝑖, 𝑖 ± 1 with the help of 

Eq. (11) - Eq. (13) we get 

(𝜀𝜎 − 𝜎2ℎ𝑖
2𝛼1𝑞𝑖−1)𝑒𝑖−1 + (−(1 + 𝜎)𝜀 − 𝜎2ℎ𝑖

2𝛽𝑞𝑖)𝑒𝑖 + (𝜀 − 𝜎2ℎ𝑖
2𝛼2𝑞𝑖+1)𝑒𝑖+1 =   
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ℎ𝑖
4 [𝛼1 (

𝜎4+2𝜎3+𝜎2

6(1+𝜎)
) 𝑝𝑖−1 − 𝛽 (

𝜎3

6
+ (𝜎2 + 𝜎3)𝜀𝜔) 𝑝𝑖+𝛼2 (

𝜎5+2𝜎4+𝜎3

6(1+𝜎)
) 𝑝𝑖+1] 𝑦(3)(𝑥𝑖)             

+ℎ𝑖
3 [𝛼1 (

𝜎5−3𝜎3−2𝜎2

24(1+𝜎)
) 𝑝𝑖−1 − 𝛽 (

𝜔𝜀

2
(𝜎2 − 𝜎4) +

𝜎3−𝜎4

24
) 𝑝𝑖  + 𝛼2 (

2𝜎6+3𝜎5−𝜎3

24(1+𝜎)
) 𝑝𝑖+1] 𝑦(4)(𝑥𝑖) +

𝑂(ℎ𝑖
6) + 𝑇𝑖(ℎ)                                                  (16) 

Let 𝑝𝑖+1 = 𝑝𝑖 + ℎ𝑖+1𝑝𝑖
′ +

ℎ𝑖+1
2

2
𝑝𝑖

(2)
(𝜂1

(𝑖)
),  𝑝𝑖−1 =  𝑝𝑖 − ℎ𝑖𝑝𝑖

′ +
ℎ𝑖

2

2
𝑝𝑖

(2)
(𝜂2

(𝑖)
)  where                 

𝑥𝑖−1 < 𝜂1
(𝑖)

, 𝜂2
(𝑖)

< 𝑥𝑖. 

Substituting these expressions in Eq. (16) and simplifying, we get 

(𝜀𝜎 − 𝜎2ℎ𝑖
2𝛼1𝑞𝑖−1

) 𝑒𝑖−1 − ((1 + 𝜎)𝜀 + 𝜎2ℎ2𝛽𝑞𝑖) 𝑒𝑖 + (𝜀 − 𝜎2ℎ𝑖
2𝛼2𝑞𝑖+1

) 𝑒𝑖+1 = 𝑇𝑖(ℎ)       (17) 

Where 

𝑇𝑖(ℎ) = ℎ𝑖
4

[𝛼1 (
𝜎4+2𝜎3+𝜎2

6(1+𝜎)
) − 𝛽 (

𝜎3

6
+ (𝜎2 + 𝜎3)𝜔𝜀) + 𝛼2 (

𝜎5+2𝜎4+𝜎3

6(1+𝜎)
)] 𝑝𝑖𝑦

(4)(𝑥𝑖) +  

ℎ𝑖
3 {[−𝛼1 (

𝜎4+2𝜎3+𝜎2

6(1+𝜎)
) + 𝛼2 (

𝜎6+2𝜎5+𝜎4

6(1+𝜎)
)] 𝑝𝑖

′𝑦𝑖
(3)

+ [−𝛼1 (
𝜎5−3𝜎3−2𝜎2

24(1+𝜎)
) + 𝛽 (

𝜔𝜀

2
(𝜎2 − 𝜎4) +

𝜎3−𝜎4

24
) +

𝛼2 (
2𝜎6+3𝜎5−𝜎3

24(1+𝜎)
)] 𝑝𝑖𝑦𝑖

(4)
+

𝜀

360
[𝜎(𝜎2 − 1)(𝜎 + 2)(2𝜎 + 1)]𝑦𝑖

(5)
} + 𝑂(ℎ𝑖

6)  

It can be noticed easily, that 

(i) 𝑇𝑖(ℎ𝑖) = O(ℎ𝑖
4) for the choice of  

𝛼1 =
1+𝜎−𝜎2

12𝜎
, 𝛼2 =

𝜎2+𝜎−1

12𝜎2
, 𝛼3 =

𝜎3+4𝜎2+4𝜎+1

12𝜎2
 and any value 𝜔 

(ii) 𝑇𝑖(ℎ𝑖) = O(ℎ𝑖
5)for the choice of  

𝛼1 =
1+𝜎−𝜎2

12𝜎
, 𝛼2 =

𝜎2+𝜎−1

12𝜎2 , 𝛼3 =
𝜎3+4𝜎2+4𝜎+1

12𝜎2   and  𝜔 = −
1

6𝜀
[

(𝜎3+𝜎2+𝜎)

(1+𝜎)(𝜎2+3𝜎+1)
] 

Let  J = trid [𝜎𝜀 −(1 + 𝜎)𝜀 𝜀], D = trid[𝜎2𝛼1   𝜎2𝛽 𝜎2𝛼2],   are  (𝑛 − 1 ) × (𝑛 − 1 ) 

tri-diagonal matrices and 𝑄 = (𝑞1, 𝑞2, … , 𝑞𝑛−1)𝑡   and  𝐸 = (𝑒1, 𝑒2, … , 𝑒𝑛−1)𝑡  are (𝑛 − 1 ) 

component vectors.  

Hence, Eq. (17) can be written in matrix vector form as 

                                    (𝐽 − ℎ2𝐷𝑄) 𝐸 =  𝑇𝑖(ℎ)                                       (18) 

Following [3], it can be shown that, for sufficiently small h, 

‖(𝐽 − ℎ2𝐷𝑄)
−1

‖ ≤ ‖𝐽−1‖ ≤
1

6
(

1

8ℎ2 +
1

2
) 

Hence,                      ‖𝐸‖ ≤ ‖(𝐽 − ℎ2𝐷𝑄)−1‖‖𝑇𝑖(ℎ)‖. 
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Therefore,  

‖𝐸‖ = O(ℎ𝑖
2)  for the choice of 𝛼1, 𝛽, 𝛼2 (mentioned above (i)) and any value of ω, gives a 

second - order method and 

‖𝐸‖ = O(ℎ𝑖
3)  for the choice of 𝛼1, 𝛽, 𝛼2 (mentioned above (ii)), gives a third - order 

method. 

 

5. NUMERICAL ILLUSTRATIONS 

In order to demonstrate the proposed method on a computational basis, we consider three problems 

of type Eq. (1). The mesh ratio   is chosen based on the location of the boundary layer. We 

choose the starting value of the step length given by: 

ℎ1 =
𝜎−1

𝜎𝑁−1
  for  𝜎 > 1  gives more mesh points near the left end  𝑥 = 0 and  

ℎ1 =
1−𝜎

 1−𝜎𝑁    for  𝜎 < 1  gives more mesh points near right end 𝑥 = 1. 

Example 1.     -ε𝑦′′ + (
1

𝑥
) 𝑦′ + (1 + 𝑥2)𝑦 = 𝑓(𝑥),   0 < 𝑥 < 1. 

The exact solution is    𝑦(𝑥) = 𝑒𝑥2
.  Maximum errors in the solution are shown in Table 1 for 

different values 𝜖 and h.   

Example 2.       -ϵy’’ + (
1

𝑥
) 𝑦′ = 𝑓(𝑥),   0 < 𝑥 < 1.                                                                                            

The exact solution to this is 𝑦(𝑥) = 𝑥 𝑠𝑖𝑛ℎ𝑥. 

Maximum errors are shown in Table 2 for different values 𝜖 and h.   

Example 3.    ϵy'' + (
1

𝑥
) 𝑦′ + 𝑦 = 0,   0 < 𝑥 < 1.     

with boundary conditions    𝑦(0) = 0, 𝑦(1) = 𝑒
(

−1

2
)
                                        

whose exact solution is not known.  The numerical results are shown in Table 4 for different 

values 𝜖 and h using double mesh principle.   

 

6. DISCUSSIONS AND CONCLUSION 

In this paper, variable mesh non - polynomial spline scheme is suggested for a class of 

singularly perturbed two-point singular boundary value problems. The discretization equation is 

developed with the continuity condition especially for the first order derivatives of the non - 

polynomial spline at the internal nodes.  A three-term relationship is achieved by modifying the 
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boundary value problem at the singularity zero. Using this, the problem's discretization equation 

is solved with discrete invariant imbedding algorithm. A parameter 𝜔 is introduced in this method 

to achieve the third order convergence. Maximum errors in the solution of the standard examples 

selected from the literature are tabulated in order to demonstrate the method. It is observed based 

on the numerical results and graphs, that the suggested scheme yield good results for smaller values 

of . 

Table 1.  Maximum absolute errors for Example 1 

__________________________________________________________________________ 

𝜀 ↓      N→   42              52           62            72          82  

___________________________________________________________________________ 

2−4        1.96e-004       1.45e-005       1.05e-006        7.58e-008       5.35e-009 

2−5        2.80e-004       2.17e-005       1.64e-006        1.21e-007       8.73e-009 

2−6        4.16e-004       3.40e-005       2.66e-006        2.02e-007       1.49e-008 

2−7        6.25e-004       5.45e-005       4.44e-006        3.45e-007       2.60e-008 

2−8        8.89e-004       8.75e-005       7.45e-006        5.98e-007       4.60e-008 

__________________________________________________________________________ 

Table 2.  Maximum absolute errors for Example 2 

__________________________________________________________________ 

𝜀 ↓     N→  42                52      62              72              82  

__________________________________________________________________ 

2−4    7.98e-005     5.92e-006      4.27e-007    3.03e-008     2.12e-009 

2−5   1.20e-004     9.33e-006     6.95e-007    5.05e-008        3.59e-009 

2−6    1.83e-004        1.52e-005      1.17e-006    8.73e-008        6.33e-009 

2−7    2.65e-004     2.50e-005     2.01e-006    1.53e-007        1.13e-008 

2−8     3.50e-004     3.97e-005     3.45e-006    2.72e-007       2.04e-008 

___________________________________________________________________ 

Table 3.  Maximum absolute errors for Example 3 

___________________________________________________________________ 

𝜀 ↓   N→   
42          

52               
62             

72         
82       

_______________________________________________________________ 

2−4    1.06e-004    8.36e-006        5.60e-007     9.61e-008     1.08e-007 

2−5   2.11e-004    1.72e-005     1.25e-006        8.35e-008     1.08e-007    

2−6   3.82e-004    3.21e-005     2.50e-006     1.01e-007     1.05e-007 

2−7    6.34e-004    5.76e-005     4.67e-006        2.71e-007     9.88e-008    

2−8    9.38e-004    9.77e-005     8.39e-006     5.80e-007      8.88e-008 

__________________________________________________________________ 
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                            Fig1. Example 1 with 64n =  and 𝜖 = 2−10 

 

                            Fig 2. Example 2 with 64n =  and 𝜖 = 10−3 
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