Available online at http://scik.org
J. Math. Comput. Sci. 10 (2020), No. 5, 1360-1374
https://doi.org/10.28919/jmcs/4622
ISSN: 1927-5307

$L(1,1,1)$-LABELING OF PATH, BOUQUET OF CYCLES AND SUN GRAPH

NASREEN KHAN*
Department of Mathematics, Santal Bidroha Sardha Satabarshiki Mahavidyalaya, Goaltore, Paschim
Medinipur-721128, West Bengal, India

Copyright © 2020 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

For a given graph $G(V, E), L(1,1,1)$-labeling problem is an assignment from vertex set V to the set of non negative integers. If Z^{+}be the non negative integers then $L(1,1,1)$-labeling is a function $f: V \rightarrow Z^{+}$such that for any two vertices x and y, $|f(x)-f(y)| \geq 1$, when $d(x, y)=1 ;|f(x)-f(y)| \geq 1$, when $d(x, y)=2$; and $|f(x) f(y)| \geq 1$, when $d(x, y)=3$. The $L(1,1,1)$-chromatic number $\lambda_{1,1,1}$ is the smallest positive integer such that G has an $L(1,1,1)$-labeling with $\lambda_{1,1,1}$ as the maximum label. In this paper we determine the $L(1,1,1)$-chromatic number for a path, a cycle, bouquet of cycles joining at a vertex (all are of finite lengths) and sun graph. We also present a lower and upper bounds for $\lambda_{1,1,1}$ in terms of the maximum degree of G.

Keywords: distance labeling; radio labeling; graph colouring; λ-labeling; $L(h, k)$-labeling; $L(d, 1,1)$-labeling; L(d, 2,1)-labeling.

2010 AMS Subject Classification: 05C12.

1. Introduction

In 1980 Hale introduced channel assignment problem, which is nothing but an assignment to

*Corresponding author

E-mail address: nasreen.khan10@gmail.com
Received April 14, 2020
assign a channel (non-negative integer) to each radio transmitter (radio, T.V, cell phone, etc.) so that interfering transmitters are assigned channels whose separations is not in a set of disallowed separations. A variation of the channel assignment problem in which "close" transmitters must receive different channels and "very close" transmitters must receive channels that are at least two channels apart. This problem can be modelled as a graph labelling/colouring problem where the vertices represent the transmitters, two vertices are "very close" if they are adjacent and "close" if they are of distance two in the graph. This type of channel assignment is known in the literature as an $\mathrm{L}(2,1)$-labeling. Frequency assignment problem has been widely studied in the past $[6,7,9,12,19,21,20]$.
$\mathrm{L}(3,2,1)$-labeling naturally extends from $\mathrm{L}(2,1)$-labeling by taking into consideration vertices which are within a distance of three apart, but it remains less difficult than radio-labeling. An $\mathrm{L}(3,2,1)$-labelling of a graph G is a function f from its vertex set V to the set of non-negative integers such that $|f(x)-f(y)| \geq 3$ if $d(x, y)=1,|f(x)-f(y)| \geq 2$ if $d(x, y)=2$ and $|f(x)-f(y)| \geq 1$ if $d(x, y)=3$. The $L(3,2,1)$-labelling number, $k_{3}(G)$, of G is the smallest natural number k_{3} such that G has an $\mathrm{L}(3,2,1)$-labelling with k_{3} as the maximum label. An $L(3,2,1)$-labeling of a graph G is called a minimal $L(3,2,1)$-labeling of G if, under the labeling, the highest label of any vertex is $\mathrm{k}_{3}(\mathrm{G})$.

In 2007, Bertossi et al. have studied approximate $\mathrm{L}\left(\delta_{1}, \delta_{2}, \ldots, \delta_{\mathrm{t}}\right)$-coloring of trees and interval graphs [2] and Bodlaender et al. have studied about approximations for λ-colorings of graphs [3]. Also in [16], Khan et al. have studied $\mathrm{L}(2,1)$-total labeling of cactus graphs and in [17] they studied $\mathrm{L}(0,1)$-labeling of cactus graphs. Later Calamoneri [4] studied $\mathrm{L}\left(\delta_{1}, \delta_{2}, 1\right)$-labeling of eight grids, Amanathulla and Pal studied $\mathrm{L}(3,2,1)$-labeling and $\mathrm{L}(4,3,2,1)$-labeling of circular-arc graphs [1]. The upper bound of $\lambda_{p, 1}(G)$ of any graph G is $\Delta^{2}-(p-1) \Delta-2$ [5], where Δ is the degree of the graph. In [10], Clipperton et al. showed that $\lambda_{3,2,1}(G) \leq \Delta^{3}+\Delta^{2}+$ 3Δ for any graph. Later Chai et al. [8] improved this upper bound and showed that $\lambda_{3,2,1}(\mathrm{G}) \leq$ $\Delta^{3}+2 \Delta$ for any graph. In [18], Liu and Shao studied the $L(3,2,1)$-labeling of planer graph and showed that $\lambda_{3,2,1}(G) \leq 15\left(\Delta^{2}-\Delta+1\right)$. In [8], Chia et al. also showed that $\lambda_{3,2,1}(G)=2 n+5$
if T is a complete n -ary tree of height $\mathrm{h} \geq 3$ and for any tree $2 \Delta+1 \leq \lambda_{3,2,1}(\mathrm{G}) \leq 2 \Delta+3$. In [11], Jean studied about $L(d, 2,1)$-labeling of simple graph and showed that $\lambda_{d, 2,1}\left(K_{n}\right)=$ $d(n-1)+1$, where K_{n} is complete graph with n vertices and also shown that $\lambda_{d, 2,1}\left(K_{m, n}\right)=$ $d+2(m+n)-3$. Kim et al. [15] show that $\lambda_{3,2,1}\left(K_{3} \square C_{n}\right)=15$ when $n \geq 28$ and $n \equiv$ $0(\bmod 5)$, where $K_{3} \square C_{n}$ is the Cartesian product of complete graphs K_{3} and the cycle C_{n}. An $\mathrm{L}(1,1,1)$-labeling is a simplified model for the channel assignment problem. $\mathrm{L}(1,1,1)$-labeling is a function $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{Z}^{+}$such that for any two vertices x and $\mathrm{y}, \mid \mathrm{f}(\mathrm{x})-$ $f(y) \mid \geq 1$, when $d(x, y)=1 ;|f(x)-f(y)| \geq 1$, when $d(x, y)=2$; and $|f(x) f(y)| \geq 1$, when $d(x, y)=3$. The $L(1,1,1)$-chromatic number $\lambda_{1,1,1}$ is the smallest positive integer such that G has an $\mathrm{L}(1,1,1)$-labeling with $\lambda_{1,1,1}$ as the maximum label.

In this paper we only focus on $\mathrm{L}(1,1,1)$-labeling of paths, a cycle, bouquet of cycles (joining at a common cut vertex) and sun graph. And also we find out the lower and upper bounds of $\mathrm{L}(1,1,1)$-labeling number $\lambda_{1,1,1}(\mathrm{G})$ such that G has an $L(1,1,1)$-labeling with λ as the maximum label.

2. L(1,1,1)-LABELING OF PATH

Lemma 1 Let P_{n} be a path of length $\mathrm{n} \geq 2$. Then $\lambda_{1,1,1}$ lies between $\Delta+1$ and $\Delta+2$, where Δ is the degree of path.

Proof. Let us consider $\mathrm{v}_{\mathrm{i}} ; \mathrm{i}=0,1,2, \ldots, \mathrm{n}-1$ be the vertices of P_{n}. Here we label the vertices of P_{2} as $f\left(v_{0}\right)=1, f\left(v_{1}\right)=2 ; P_{3}$ as $f\left(v_{0}\right)=1, f\left(v_{1}\right)=2, f\left(v_{2}\right)=3$ respectively. For $n \geq 4$ the labeling procedure of the vertices of P_{n} is as follows

$$
f\left(v_{i}\right)= \begin{cases}1, & \text { if } i \equiv 0(\bmod 4) \\ 2, & \text { if } i \equiv 1(\bmod 4) \\ 3, & \text { if } i \equiv 2(\bmod 4) \\ 4, & \text { if } i \equiv 3(\bmod 4)\end{cases}
$$

Here $\lambda_{1,1,1}\left(\mathrm{P}_{2}\right)=2=\Delta+1, \quad \lambda_{1,1,1}\left(\mathrm{P}_{3}\right)=3=\Delta+1$ and $\lambda_{1,1,1}\left(\mathrm{P}_{\mathrm{n}}\right)=4=\Delta+2$ (for $\mathrm{n} \geq$ 4).

We have proved that for $\mathrm{P}_{\mathrm{n}}, \Delta+1 \leq \lambda_{1,1,1}\left(\mathrm{P}_{\mathrm{n}}\right) \leq \Delta+2$.

3. $L(1,1,1)$-LAbELING OF A CYCLE

Lemma 2 If C_{n} be a cycle of finite length n, then $\lambda_{1,1,1}$ lies between $\Delta+1$ and $\Delta+5$, where $\Delta=2$.

Proof. Let us consider C_{n} be a cycle of finite length n and $v_{0}, v_{1}, \ldots, v_{n-1}$ be the vertices.
Here degree of the cycle is 2 , that is $\Delta=2$. Now we classify C_{n} into five groups, viz., $C_{3}, C_{4 k}$, $\mathrm{C}_{4 \mathrm{k}+1}, \mathrm{C}_{4 \mathrm{k}+2}$ and $\mathrm{C}_{4 \mathrm{k}+3}$ respectively. Then the labeling procedures of $\mathrm{L}(1,1,1)$ are as follows.

Case 1. For $\mathrm{n}=3$.
We label the vertices of C_{3} as $\{1,2,3\}$. Here $\lambda_{1,1,1}\left(\mathrm{C}_{3}\right)=3=\Delta+1$.
Case 2. For $\mathrm{n}=4 \mathrm{k} \equiv 0(\bmod 4)$.
The labeling technique for the case is

$$
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)= \begin{cases}1, & \text { if } \mathrm{i} \equiv 0(\bmod 4) \\ 2, & \text { if } \mathrm{i} \equiv 1(\bmod 4) \\ 3, & \text { if } \mathrm{i} \equiv 2(\bmod 4) \\ 4, & \text { if } \mathrm{i} \equiv 3(\bmod 4)\end{cases}
$$

Here we have found $\lambda_{1,1,1}\left(\mathrm{C}_{4 \mathrm{k}}\right)=4=\Delta+2$.
Case 3. For $\mathrm{n}=4 \mathrm{k}+1 \equiv 1(\bmod 4)$.
First we label the vertices $\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{4 \mathrm{k}-1}$ using the procedure as developed in case 2 . Then we label the remaining vertex $\mathrm{v}_{4 \mathrm{k}}$ as

$$
\mathrm{f}\left(\mathrm{v}_{\mathrm{S} 4 \mathrm{k}}\right)=5
$$

Here we can see that the maximum non negative integer is 5 , so, $\lambda_{1,1,1}\left(\mathrm{C}_{4 \mathrm{k}+1}\right)=5=\Delta+3$.
Case 4. For $n=4 \mathrm{k}+2 \equiv 2(\bmod 4)$.
The labeling technique of first $\mathrm{n}-2=4 \mathrm{k}$ vertices is same as given in case 2 of this lemma.
For remaining two vertices $V_{4 k}$ and $V_{4 k+1}$, we label them as

$$
\mathrm{f}\left(\mathrm{v}_{4 \mathrm{k}}\right)=5 \text { and } \mathrm{f}\left(\mathrm{v}_{4 \mathrm{k}+1}\right)=6
$$

Here $\lambda_{1,1,1}\left(\mathrm{C}_{4 \mathrm{k}+2}\right)=6=\Delta+4$.
Case 5. For $n=4 \mathrm{k}+3 \equiv 3(\bmod 4)$.
Using the same procedure as developed in case 2 , we can label first $n-3=4 \mathrm{k}$ vertices. And we label the last three vertices as

$$
\mathrm{f}\left(\mathrm{v}_{4 \mathrm{k}}\right)=5, \quad \mathrm{f}\left(\mathrm{v}_{4 \mathrm{k}+1}\right)=6 \text { and } \mathrm{f}\left(\mathrm{v}_{4 \mathrm{k}+2}\right)=7
$$

Here, $\lambda_{1,1,1}\left(\mathrm{C}_{4 \mathrm{k}+3}\right)=7=\Delta+5$.
Thus, from all above cases we see that $L(1,1,1)$-chromatic number $\lambda_{1,1,1}$ lies between $\Delta+1$ and $\Delta+5$, that is, $\Delta+1 \leq \lambda_{1,1,1}\left(\mathrm{C}_{\mathrm{n}}\right) \leq \Delta+5$, where $\Delta=2$.

Hence the proof.

4. L(1,1,1)-LAbELING OF Two Cycles (Joined at a Common Cutvertex)

Lemma 3. Let G be a graph consists of two cycles C_{n} and C_{m} of finite lengths n and m respectively, joined at a common cutvertex. Then $\lambda_{1,1,1}$ lies between $\Delta+1$ and $\Delta+3$, where $\Delta=4$ is the degree of the common cutvertex.

Proof. Let us consider $G=C_{n} U_{v_{0}} C_{m}$, and $v_{i} ; i=0,1, \ldots, n-1$ and $v_{0}, v_{j}^{\prime} ; j=1, \ldots, m-$
1 be the vertices of C_{n} and C_{m} respectively. Here V_{0} is the common cutvertex. We will prove this lemma by using six cases. Now, we discuss all the cases as follows.

Case 1. For $n=3$ and $m=3$.
By using the technique as given in case 1 of lemma 2, we label the vertices of first C_{3}. After that we label the remaining vertices of the second cycles as
$f\left(v_{1}^{\prime}\right)=4$ and $f\left(v_{2}^{\prime}\right)=5$.
Here $\lambda_{1,1,1}(G)=5=\Delta+1$.
Case 2. For $n=4 k+i$ and $m=3$, for $i=0,1,2,3$.

Case 2.1. For $n=4 k \equiv 0(\bmod 4)$ and $m=3$.
Here the labelling procedure of C_{n} is same as developed in case 2 of lemma 2. Now we label the remaining vertices of C_{3} as
$f\left(v^{\prime}{ }_{1}\right)=5$ and $f\left(v^{\prime}{ }_{2}\right)=6=\Delta+2$.
Case 2.2. For $n=4 k+1 \equiv 1(\bmod 4)$ and $m=3$.
Using the labeling technique given in case 3 of lemma 2, we first label the vertices of $C_{4 k+1}$. After that we label the second vertices as
$f\left(v^{\prime}{ }_{1}\right)=6$ and $f\left(v^{\prime}\right)=7=\Delta+3$.
Case 2.3. For $n=4 k+2 \equiv 2(\bmod 4)$ and $m=3$.
The labeling procedure of $C_{4 k+2}$ is same as given in case 4 of lemma 2. Now for the vertices $v_{1}^{\prime}, v^{\prime}{ }_{2}$, we label them by
$f\left(v^{\prime}{ }_{1}\right)=4$ and $f\left(v^{\prime}{ }_{2}\right)=7$ respectively.
Here $\lambda_{1,1,1}(G)=7=\Delta+3$.

L(1,1,1)-LABELING OF PATH, BOUQUET OF CYCLES AND SUN GRAPH
Case 2.4. For $n=4 k+3 \equiv 3(\bmod 4)$ and $m=3$.
First we label the vertices of $C_{4 k+3}$ by the rule, developed in case 5 of lemma 2. And for the vertices $v_{1}^{\prime}, v_{2}^{\prime}$, we label them by
$f\left(v^{\prime}{ }_{1}\right)=4$ and $f\left(v^{\prime}{ }_{2}\right)=5$ respectively.
We get, $\lambda_{1,1,1}(G)=7=\Delta+3$.
Case 3. For $n=4 k \equiv 0(\bmod 4)$ and $m=4 k+i$, for $i=0,1,2,3$.

First we label the vertices of C_{n} by the rule as given in case 2 of lemma 2. After that the procedure to label the remaining vertices of C_{m} are given in the following subcases.

Case 3.1. For $m=4 k \equiv 0(\bmod 4)$.
$f\left(v_{1}^{\prime}\right)=5, f\left(v^{\prime}{ }_{2}\right)=3, f\left(v_{3}^{\prime}\right)=4$ and for the vertices $v_{j}^{\prime} ; j=4,5,6, \ldots, m-2=$ $4 k-2$, the labeling procedure is as follows

$$
f\left(v_{j}^{\prime}\right)= \begin{cases}1, & \text { if } j \equiv 0(\bmod 4) \\ 2, & \text { if } j \equiv 1(\bmod 4) \\ 3, & \text { if } j \equiv 2(\bmod 4) \\ 4, & \text { if } j \equiv 3(\bmod 4)\end{cases}
$$

and $f\left(v^{\prime}{ }_{4 k-1}\right)=6=\Delta+2$.
Case 3.2. For $m=4 k+1 \equiv 1(\bmod 4)$.
Using the procedure as developed in subcase 3.1, we label the first $4 k-1$ vertices of $C_{4 k+1}$. Then we label last two vertices as
$f\left(v^{\prime}{ }_{4 k-1}\right)=6$ and $f\left(v^{\prime}{ }_{m-1}\right)=f\left(v^{\prime}{ }_{4 k}\right)=7$ respectively.
So, $\lambda_{1,1,1}(G)=7=\Delta+3$.

Case 3.3. For $m=4 k+2 \equiv 2(\bmod 4)$.
For the vertices $v_{j}^{\prime} ; j=1,2, \ldots, 4 k-1$, the labeling procedure is same same as developed in subcase 3.1. Now we label last two vertices as
$f\left(v^{\prime}{ }_{4 k}\right)=6$ and $f\left(v^{\prime}{ }_{m-1}\right)=f\left(v^{\prime}{ }_{4 k+1}\right)=7=\Delta+3$.

Case 3.4. $m=4 k+3 \equiv 3(\bmod 4)$.
The labeling rule of first $4 k$ vertices of $C_{4 k+3}$ is same as given in subcase 3.1. Then we label last three vertices as

$$
f\left(v_{4 k}^{\prime}\right)=5, f\left(v_{4 k+1}^{\prime}\right)=6 \text { and } f\left(v_{4 k+2}^{\prime}\right)=7=\Delta+3 .
$$

Case 4. For $n=4 k+1 \equiv 1(\bmod 4)$ and $m=4 k+i$, for $i=1,2,3$.
Here also we label the first cycle C_{n} by using case 3 in lemma 2. After that we label the vertices (except v_{0}) of C_{m} and the rule are discuss in the following subcases.

Case 4.1. For $m=4 k+1 \equiv 1(\bmod 4)$.

$$
f\left(v_{1}^{\prime}\right)=6, f\left(v_{2}^{\prime}\right)=3, f\left(v_{3}^{\prime}\right)=4, \text { for the vertices } v_{j}^{\prime} ; j=4,5,6, \ldots, m-2=4 k-
$$ 1 , the labelling procedure is as follows

$$
f\left(v_{j}^{\prime}\right)= \begin{cases}1, & \text { if } j \equiv 0(\bmod 4) \\ 2, & \text { if } j \equiv 1(\bmod 4) \\ 3, & \text { if } j \equiv 2(\bmod 4) \\ 4, & \text { if } j \equiv 3(\bmod 4)\end{cases}
$$

and $f\left(v^{\prime}{ }_{4 k}\right)=7=\Delta+3$.

Case 4.2. For $m=4 k+2 \equiv 2(\bmod 4)$.

The labeling technique of the vertices $v_{j}^{\prime} ; j=1,2, \ldots, 4 k-2$ is same as given in subcase 4.1. And for the remaining vertices, we label them as
$f\left(v^{\prime}{ }_{4 k-1}\right)=5, f\left(v^{\prime}{ }_{4 k}\right)=4$ and $f\left(v^{\prime}{ }_{4 k+1}\right)=7=\Delta+3$.

Case 4.3. For $m=4 k+3 \equiv 3(\bmod 4)$.
Using the procedure given in subcase 4.1, we label the vertices $v_{j}^{\prime} ; j=1,2, \ldots, 4 k-2$. For the remaining vertices, we label them as
$f\left(v^{\prime}{ }_{4 k-1}\right)=5, f\left(v^{\prime}{ }_{4 k}\right)=6, f\left(v^{\prime}{ }_{4 k+1}\right)=4$ and $f\left(v^{\prime}{ }_{4 k+2}\right)=7$ respectively.
Thus, $\lambda_{1,1,1}\left(C_{4 k+1} \cup_{v_{0}} C_{4 k+3}\right)=7=\Delta+3$.
Case 5. For $n=4 k+2 \equiv 2(\bmod 4)$ and $m=4 k+i$, for $i=2,3$.
Using case 4 of lemma 2, we label the vertices of C_{n}. And the labeling of second cycle are discussed in the following subcases.

Case 5.1. For $m=4 k+2 \equiv 2(\bmod 4)$.
$f\left(v_{1}^{\prime}\right)=4, f\left(v_{2}^{\prime}\right)=3, f\left(v_{3}^{\prime}\right)=5$, for the vertices $v_{j}^{\prime} ; j=4,5,6, \ldots, m-3=4 k-$ 1 , the labeling procedure is as follows

$$
f\left(v_{j}^{\prime}\right)= \begin{cases}1, & \text { if } j \equiv 0(\bmod 4) \\ 2, & \text { if } j \equiv 1(\bmod 4) \\ 3, & \text { if } j \equiv 2(\bmod 4) \\ 4, & \text { if } j \equiv 3(\bmod 4)\end{cases}
$$

and $f\left(v^{\prime}{ }_{4 k}\right)=5, f\left(v^{\prime}{ }_{4 k+1}\right)=7=\Delta+3$.
Case 5.2. For $m=4 k+3 \equiv 3(\bmod 4)$.

L(1,1,1)-LABELING OF PATH, BOUQUET OF CYCLES AND SUN GRAPH
The labeling rule of the vertices $v_{j}^{\prime} ; j=1,2, \ldots, 4 k-1$ is same as developed in subcase 5.1. For the remaining vertices the procedure is as
$f\left(v^{\prime}{ }_{4 k}\right)=6, f\left(v^{\prime}{ }_{4 k+1}\right)=5$ and $f\left(v^{\prime}{ }_{4 k+2}\right)=7$ respectively.
Thus, $\lambda_{1,1,1}(G)=7=\Delta+3$.

Case 6. For $n=4 k+3 \equiv 3(\bmod 4)$ and $m=4 k+3 \equiv 3(\bmod 4)$.
Using case 5 of lemma 2 , we label the vertices of C_{n}. For the vertices $v_{j}^{\prime} ; j=$ $1,2, \ldots, 4 k-2$, the labeling procedure is same as given in subcase 3.1. And we label last three vertices as
$f\left(v^{\prime}{ }_{4 k-1}\right)=5, f\left(v^{\prime}{ }_{4 k}\right)=7, f\left(v^{\prime}{ }_{4 k+1}\right)=4$ and $f\left(v^{\prime}{ }_{4 k+2}\right)=6$.
Here, $\lambda_{1,1,1}(G)=7$.
So, from all above cases we have found that $\Delta+1 \leq \lambda_{1,1,1}(G) \leq \Delta+3$.
Hence the proof.

5. L($1,1,1$)-Labeling Of Three Cycles (Joined at a Common Cutvertex)

Lemma 4. Let G be a graph consists of three cycles C_{n}, C_{m} and C_{l} of finite lengths n, m and l , joined at a common cutvertex. Then $\Delta+1 \leq \lambda_{1,1,1}(\mathrm{G}) \leq \Delta+3$, where $\Delta=6$ is the degree of the common cutvertex.
Proof. Let us consider $v_{i} ; i=0,1,2, \ldots, n-1 ; v_{0}, v_{j}^{\prime} ; j=1,2, \ldots, m-1 ; v_{0}, v_{p}^{\prime} ; p=$ $1,2, \ldots, l-1$ be the vertices of C_{n}, C_{m} and C_{l} respectively. Here v_{0} is the common cutvertex. So, $G=C_{n} \cup_{v_{0}} C_{m} \cup_{v_{0}} C_{l}$.

Case 1. For $n=3, m=3$ and $l=3$.
Using the procedure as given in case 1 of lemma 3, we label first two cycles. Next we label remaining vertices of the third cycle as
$f\left(v^{\prime \prime}{ }_{1}\right)=6$ and $f\left(v^{\prime \prime}{ }_{2}\right)=7$.
Here $f\left(v^{\prime \prime}{ }_{2}\right)=7=\Delta+1$.
Case 2. For $n=4 k+i ; i=0,1,2,3, m=3$ and $l=3$.
The labeling technique for first two cycles has been developed in case 2 of lemma 3 . Now labeling procedure of the remaining vertices of third cycle for different values of i are given in the following subcases.

Case 2.1. For $n=4 k \equiv 0(\bmod 4), m=3$ and $l=3$.

$$
f\left(v^{\prime \prime}\right)=7 \text { and } f\left(v^{\prime \prime}{ }_{2}\right)=8=\Delta+2 .
$$

Case 2.2. For $n=4 k+i ; i=1,2,3, m=3$ and $l=3$.

$$
f\left(v^{\prime \prime}{ }_{1}\right)=8 \text { and } f\left(v^{\prime \prime}{ }_{2}\right)=9=\Delta+3
$$

Case 3. For $n=4 k \equiv 0(\bmod 4), m=4 k+j ; j=0,1,2,3$ and $l=3$.
Here first we label first two cycles using the procedure given in case 3 of lemma 3. Next we label the remaining vertices of third cycle for different values of j as given in the following subcases.

Case 3.1. For $n=4 k \equiv 0(\bmod 4), m=4 k \equiv 0(\bmod 4)$ and $l=3$.
The labeling procedure of $v^{\prime \prime}$ and $v^{\prime \prime}{ }_{2}$ is same as developed in subcase 2.1.
Case 3.2. For $n=4 k \equiv 0(\bmod 4), m=4 k+j ; j=1,2,3$ and $l=3$.
We can label the vertices $v^{\prime \prime}{ }_{1}$ and $v^{\prime \prime}{ }_{2}$ by the technique given in subcase 2.2.

Case 4. For $n=4 k+i ; i=1,2,3 \quad m=4 k+j ; j=1,2,3$ and $l=3$.
Here also we label the vertices $v^{\prime \prime}{ }_{1}$ and $v^{\prime \prime}{ }_{2}$, using the technique given in subcase 2.2.
Case 5. For $n=4 k \equiv 0(\bmod 4), m=4 k \equiv 0(\bmod 4)$ and $l=4 k+p ; p=0,1,2,3$. Using the procedure of labeling as developed in case 3.1 of lemma 3 , we label C_{n} and C_{m} first. After that we label C_{l} and the procedure is discussed in the following subcases.

Case 5.1. For $l=4 k \equiv 0(\bmod 4)$.
$f\left(v^{\prime \prime}{ }_{1}\right)=7 ; f\left(v^{\prime \prime}{ }_{2}\right)=3 ; f\left(v^{\prime \prime}{ }_{3}\right)=4$;
for the vertices $p=4,5, \ldots, l-2=4 k-2$,

$$
f\left(v_{p}^{\prime \prime}\right)= \begin{cases}1, & \text { if } p \equiv 0(\bmod 4) \\ 2, & \text { if } p \equiv 1(\bmod 4) \\ 3, & \text { if } p \equiv 2(\bmod 4) \\ 4, & \text { if } p \equiv 3(\bmod 4)\end{cases}
$$

and $f\left(v^{\prime \prime}{ }_{l-1}\right)=f\left(v^{\prime \prime}{ }_{4 k-1}\right)=8=\Delta+2$.
Case 5.2. For $l=4 k+1 \equiv 1(\bmod 4)$.
The labeling procedure of $v^{\prime \prime}{ }_{p} ; p=1,2, \ldots, l-4=4 k-3$ is same as given in the above subcase except last three vertices. We label them as
$f\left(v^{\prime \prime}{ }_{l-3}\right)=f\left(v^{\prime \prime}{ }_{4 k-2}\right)=5$,
$f\left(v^{\prime \prime}{ }_{l-2}\right)=f\left(v^{\prime \prime}{ }_{4 k-1}\right)=3$,

$$
f\left(v^{\prime \prime}{ }_{l-1}\right)=f\left(v^{\prime \prime}{ }_{4 k}\right)=8=\Delta+2
$$

But when $l=5$, then
$f\left(v^{\prime \prime}{ }_{1}\right)=7, f\left(v^{\prime \prime}{ }_{2}\right)=3, f\left(v^{\prime \prime}{ }_{3}\right)=8$ and $f\left(v^{\prime \prime}{ }_{4}\right)=9=\Delta+3$.

Case 5.3. For $l=4 k+2 \equiv 2(\bmod 4)$.
For the vertices $v^{\prime \prime}{ }_{p} ; p=1,2, \ldots, l-3=4 k-1$, we label them by using the same technique as given in case 5.1. And for the remaining vertices, we label them as

L(1,1,1)-LABELING OF PATH, BOUQUET OF CYCLES AND SUN GRAPH

$$
\begin{aligned}
& f\left(v^{\prime \prime}{ }_{l-2}\right)=f\left(v^{\prime \prime}{ }_{4 k}\right)=8 \\
& f\left(v_{l-1}^{\prime \prime}\right)=f\left(v_{4 k+1}^{\prime}\right)=9=\Delta+3
\end{aligned}
$$

Case 5.4. For $l=4 k+3 \equiv 3(\bmod 4)$.
The labeling rule for first $l-3=4 k+3-3=4 k$ vertices is same as given in subcase 5.1. For the last three vertices the rule is as follows
$f\left(v^{\prime \prime}{ }_{4 k}\right)=5, f\left(v^{\prime \prime}{ }_{4 k+1}\right)=8$ and $f\left(v^{\prime \prime}{ }_{4 k+2}\right)=9=\Delta+3$.

Case 6. For $n=4 k \equiv 0(\bmod 4), m=4 k+1 \equiv 1(\bmod 4)$ and $l=4 k+p ; p=$ $1,2,3$.

The labeling rule for the vertices C_{n} and C_{m} is same as given in subcase 3.2 of lemma 3. After that we label C_{l} and the procedure is given in the following subcases.

Case 6.1. For $l=4 k+1 \equiv 1(\bmod 4)$.
$f\left(v^{\prime \prime}{ }_{1}\right)=8 ; f\left(v^{\prime \prime}{ }_{3}\right)=3 ; f\left(v^{\prime \prime}{ }_{3}\right)=4 ;$
for the vertices $p=4,5, \ldots, l-3=4 k-2$,

$$
f\left(v_{p}^{\prime \prime}\right)= \begin{cases}1, & \text { if } p \equiv 0(\bmod 4) \\ 2, & \text { if } p \equiv 1(\bmod 4) \\ 3, & \text { if } p \equiv 2(\bmod 4) \\ 4, & \text { if } p \equiv 3(\bmod 4)\end{cases}
$$

and $f\left(v^{\prime \prime}{ }_{l-1}\right)=6 f\left(v^{\prime \prime}{ }_{4 k-1}\right)=9=\Delta+3$.

Case 6.2. For $l=4 k+2 \equiv 2(\bmod 4)$.
The labeling of the vertices $v^{\prime \prime}{ }_{p} ; p=1,2, \ldots, l-3=4 k-1$ is same as given in subcase 6.1. And for the remaining vertices, we label the vertices as follows

$$
f\left(v^{\prime \prime}{ }_{4 k}\right)=6, f\left(v_{4 k+1}^{\prime \prime}\right)=9=\Delta+3
$$

Case 6.3. For $l=4 k+3 \equiv 3(\bmod 4)$.
We label the vertices $v^{\prime \prime}{ }_{p} ; p=1,2, \ldots, l-4=4 k-1$ as the same procedure as given in subcase 6.1. Then we label last three vertices as

$$
\begin{aligned}
& f\left({v^{\prime \prime}}^{l-3}\right)=f\left({v^{\prime \prime}}_{4 k}\right)=5 \\
& f\left({v^{\prime \prime}}^{l-2}\right)=f\left({v^{\prime \prime}}^{4 k+1}\right)=6 \\
& f\left({v^{\prime \prime}}^{l-1}\right)=f\left({v^{\prime \prime}}^{4 k+2}\right)=9=\Delta+3 .
\end{aligned}
$$

Case 7. For $n=4 k \equiv 0(\bmod 4), m=4 k+2 \equiv 2(\bmod 4)$ and $l=4 k+p ; p=2,3$.
The rule of vertex labeling of C_{n} and C_{m} is same as mentioned in subcase 3.3 of lemma 3. Now the labeling technique for labeling the vertices of C_{l} of different cases are discussed in the following subcases.

Case 7.1. For $l=4 k+2 \equiv 2(\bmod 4)$.
The labeling procedure of $C_{l}=C_{4 k+2}$ is same as given in subcase 6.2 of this lemma.

Case 7.2. For $l=4 k+3 \equiv 3(\bmod 4)$.
Here also the procedure of vertex labeling of C_{l} is same as given subcase 6.3.
Case 8. For $n=4 k \equiv 0(\bmod 4), m=4 k+3 \equiv 3(\bmod 4)$ and $l=4 k+3 \equiv 3(\bmod$ 4).

We label the vertices of C_{l} using the rule as developed in subcase 6.3 of this lemma.
Case 9. For $n=4 k+1 \equiv 1(\bmod 4), m=4 k+1 \equiv 1(\bmod 4)$ and $l=4 k+p ; p=$ 1,2,3.

We label the vertices of first two cycles using the technique as given in subcase 4.1 of lemma 3. For the third cycle C_{l}, the rules are discussed below.

Case 9.1. For $l=4 k+1 \equiv 1(\bmod 4)$.
Using the technique of vertex labeling as given in subcase 6.1 of this lemma, we label first $4 k$ vertices. After that we label last vertex as
$f\left(v^{\prime \prime}{ }_{4 k}\right)=9=\Delta+3$.
Case 9.2. For $l=4 k+2 \equiv 2(\bmod 4)$.
For the vertices $v^{\prime \prime}{ }_{p} ; p=1,2, \ldots, l-4=4 k-2$, we label them by using the rule as given in subcase 6.1. And for the remaining vertices, we label them as

$$
f\left(v^{\prime \prime}{ }_{4 k-1}\right)=5, f\left(v^{\prime \prime}{ }_{4 k}\right)=4 \text { and } f\left(v^{\prime \prime}{ }_{4 k+1}\right)=9=\Delta+3
$$

Case 9.3. For $l=4 k+3 \equiv 3(\bmod 4)$.
For the vertices $v^{\prime \prime}{ }_{p} ; p=1,2, \ldots, l-4=4 k-1$, we label them by using the rule as given in subcase 6.1. And for the remaining vertices, we label them as
$f\left(v^{\prime \prime}{ }_{4 k}\right)=5, f\left(v^{\prime \prime}{ }_{4 k+1}\right)=3$ and $f\left(v^{\prime \prime}{ }_{4 k+2}\right)=9=\Delta+3$.
Case 10. For $n=4 k+1 \equiv 1(\bmod 4), m=4 k+2 \equiv 2(\bmod 4)$ and $l=4 k+p ; p=$ 2,3.

We label the vertices of C_{n} and C_{m} using the process as in subcase 4.2 of lemma 3. For the third cycle C_{l}, the labeling procedures are discussed below.

Case 10.1. For $l=4 k+2 \equiv 2(\bmod 4)$.
The labeling procedure of C_{l} is same as mentioned in subcase 9.2.

Case 10.2. For $l=4 k+3 \equiv 3(\bmod 4)$.
The labeling procedure of C_{l} is same as in subcase 9.3.
Case 11. For $n=4 k+1 \equiv 1(\bmod 4), m=4 k+3 \equiv 3(\bmod 4)$ and $l=4 k+3 \equiv 3$ $(\bmod 4)$.

Here we first label the vertices of C_{n} and C_{m} using the process as given in subcase 4.3

L(1,1,1)-LABELING OF PATH, BOUQUET OF CYCLES AND SUN GRAPH
of lemma 3. Then using the rule as given in subcase 9.3, we label the vertices of C_{l}.
Case 12. For $n=4 k+2 \equiv 1(\bmod 4), m=4 k+2 \equiv 2(\bmod 4)$ and $l=4 k+p ; p=$ 2,3 .

The labeling procedure of C_{n} and C_{n} is same as given in subcase 5.1 of lemma 3 .
Case 12.1. For $l=4 k+2 \equiv 2(\bmod 4)$.
$f\left(v^{\prime \prime}{ }_{1}\right)=8 ; f\left(v^{\prime \prime}{ }_{3}\right)=3 ; f\left(v^{\prime \prime}{ }_{3}\right)=4 ;$
for the vertices $p=4,5, \ldots, l-2=4 k$,

$$
f\left(v^{\prime \prime}{ }_{p}\right)= \begin{cases}1, & \text { if } p \equiv 0(\bmod 4) \\ 2, & \text { if } p \equiv 1(\bmod 4) \\ 3, & \text { if } p \equiv 2(\bmod 4) \\ 4, & \text { if } p \equiv 3(\bmod 4)\end{cases}
$$

and $f\left(v^{\prime \prime}{ }_{l-1}\right)=6 f\left(v^{\prime \prime}{ }_{4 k+1}\right)=9=\Delta+3$.
Case 12.2. For $l=4 k+3 \equiv 3(\bmod 4)$.
The procedure given in subcase 6.3, we label the vertices of C_{l}.
Case 13. For $n=4 k+2 \equiv 2(\bmod 4), m=4 k+3 \equiv 3(\bmod 4)$ and $l=4 k+3 \equiv 3$ $(\bmod 4)$.

The labeling procedure of C_{n} and C_{n} is same as given in subcase 5.2 of lemma 3. Now we label C_{l} by using the technique as given in subcase 6.3.

Case 14. For $n=4 k+3 \equiv 3(\bmod 4), m=4 k+3 \equiv 3(\bmod 4)$ and $l=4 k+3 \equiv 3$ $(\bmod 4)$.

We label the vertices of C_{n} and C_{m} using the rule as given in subcase 5.3. The we label C_{l} using the rule as given in subcase 6.3.

So, from all the cases we see that the values of $\lambda_{1,1,1}$ lies between $\Delta+1$ and $\Delta+3$.
That is $\Delta+1 \leq \lambda_{1,1,1}(G) \leq \Delta+3, \Delta=6$ is the degree of G.
Hence the proof.

6. L(1,1,1)-LABELING OF BOUQUET OF CYCLES (JOINED AT A COMMON CUTVERTEX)

Definition 1. If $G=C_{n} U_{v_{0}} C_{m} U_{v_{0}} C_{l} U_{v_{0}} \ldots$, where C_{n}, C_{m}, \ldots, are cycles of finite lengths n, m, \ldots respectively and they joined at a common cutvertex v_{0}, then the graph G is said to be bouquet of cycles.

By using the results of lemma 2, lemma 3 and lemma 4 we can conclude the result, that is, the range of chromatic number for graph which consists of a bouquet of finite length cycles (the

NASREEN KHAN

cycles are joined at a common cutvertex). And the result is given below.

Lemma 5. If a graph G contains finite number of cycles of finite lengths (joined at a common cutvertex), then the range of $L(1,1,1)$-chromatic number $\lambda_{1,1,1}(\mathrm{G})$ is $\Delta+1$ and $\Delta+3$.

7. L(1,1,1)-LABELING OF SUN GRAPH

Definition 2. Let $v_{i} ; i=0,1, \ldots, n-1$ be the vertices of cycle C_{n}. Then sun graph $S_{2 n}$ is a graph which is obtained by adding an edge $\left(v_{i}, v_{i}^{\prime}\right) ; i=0,1, \ldots, n-1$ to every vertex of C_{n}.

Lemma 6. If $S_{2 n}$ be a sun graph, then the value of $L(1,1,1)$-chromatic number $\lambda_{1,1,1}$ lies between $\Delta+3$ and $\Delta+4$, where $\Delta=3$ is the degree of the sun graph.

Proof. Let $v_{0}, v_{1}, \ldots, v_{n-1}$ be the vertices C_{n}. And the edges of $S_{2 n}$ are $\left(v_{i}, v_{i}^{\prime}\right)$ for $i=$ $0,1, \ldots, \mathrm{n}-1$. We can label the vertices of C_{n} by using the technique as given in different cases of lemma 2. Now we label the pendent vertices of the sun graph and that are discussed in the following subcases.

Case 1. For $\mathbf{n}=3$.

$\mathrm{f}\left(\mathrm{v}^{\prime}{ }_{0}\right)=4, \mathrm{f}\left(\mathrm{v}_{1}{ }_{1}\right)=5$ and $\mathrm{f}\left(\mathrm{v}^{\prime}{ }_{2}\right)=6$.
Here $\lambda_{1,1,1}=6=\Delta+3$.
Case 2. For $n=4 k \equiv 0(\bmod 4)$.

$$
f\left(v_{i}^{\prime}\right)= \begin{cases}5, & \text { if } i \equiv 0(\bmod 2) \\ 6, & \text { if } i \equiv 1(\bmod 2)\end{cases}
$$

Here $\lambda_{1,1,1}=6=\Delta+3$.

Case 3. For $n=4 k+1 \equiv 1(\bmod 4)$.
$\mathrm{f}\left(\mathrm{v}^{\prime}{ }_{0}\right)=4, \mathrm{f}\left(\mathrm{v}^{\prime}{ }_{1}\right)=6$;
for $\mathrm{j}=2,3, \ldots, \mathrm{n}-4=4 \mathrm{k}-3$

$$
f\left(v_{i}^{\prime}\right)= \begin{cases}5, & \text { if } i \equiv 0(\bmod 2) \\ 6, & \text { if } i \equiv 1(\bmod 2)\end{cases}
$$

and $\mathrm{f}\left(\mathrm{v}^{\prime}{ }_{4 \mathrm{k}-2}\right)=7, \mathrm{f}\left(\mathrm{v}^{\prime}{ }_{4 \mathrm{k}-1}\right)=6, \mathrm{f}\left(\mathrm{v}^{\prime}{ }_{4 \mathrm{k}}\right)=7$.
So, $\lambda_{1,1,1}=7=\Delta+4$.

Case 4. For $n=4 k+2 \equiv 2(\bmod 4)$.
$\mathrm{f}\left(\mathrm{v}_{0}^{\prime}\right)=4, \mathrm{f}\left(\mathrm{v}^{\prime}{ }_{1}\right)=7$;
for $j=2,3, \ldots, n-5=4 k-3$

L(1,1,1)-LABELING OF PATH, BOUQUET OF CYCLES AND SUN GRAPH

$$
f\left(v_{i}^{\prime}\right)= \begin{cases}5, & \text { if } i \equiv 0(\bmod 2) \\ 6, & \text { if } i \equiv 1(\bmod 2)\end{cases}
$$

and $\mathrm{f}\left(\mathrm{v}^{\prime}{ }_{4 \mathrm{k}-2}\right)=7, \mathrm{f}\left(\mathrm{v}^{\prime}{ }_{4 \mathrm{k}-1}\right)=1, \mathrm{f}\left(\mathrm{v}^{\prime}{ }_{4 \mathrm{k}}\right)=2, \mathrm{f}\left(\mathrm{v}^{\prime}{ }_{4 \mathrm{k}+1}\right)=3$.
So, $\lambda_{1,1,1}=7=\Delta+4$.

Case 5. For $n=4 k+3 \equiv 3(\bmod 4)$.

For $\mathrm{j}=0,1, \ldots, \mathrm{n}-6=4 \mathrm{k}-3$

$$
f\left(v_{i}^{\prime}\right)= \begin{cases}5, & \text { if } \mathrm{i} \equiv 0(\bmod 2) \\ 6, & \text { if } \mathrm{i} \equiv 1(\bmod 2)\end{cases}
$$

and $\mathrm{f}\left(\mathrm{v}^{\prime}{ }_{4 \mathrm{k}-2}\right)=7, \mathrm{f}\left(\mathrm{v}_{4 \mathrm{k}-1}^{\prime}\right)=1, \mathrm{f}\left(\mathrm{v}_{4 \mathrm{k}}^{\prime}\right)=2, \mathrm{f}\left(\mathrm{v}^{\prime}{ }_{4 \mathrm{k}+1}\right)=3, \mathrm{f}\left(\mathrm{v}_{4 \mathrm{k}+2}^{\prime}\right)=4$.
Thus, from all above cases we see that $\mathrm{L}(1,1,1)$-chromatic number $\lambda_{1,1,1}$ lies between $\Delta+3$ and $\Delta+4$, that is, $\Delta+3 \leq \lambda_{1,1,1}\left(\mathrm{~S}_{2 \mathrm{n}}\right) \leq \Delta+4$, where $\Delta=3$.

Hence the proof.

8. CONCLUSION

In this paper we provide very close lower and upper bounds of $\mathrm{L}(1,1,1)$-labeling number (chromatic number) for path of finite length, a cycle of finite length, bouquet of cycles of finite lengths and sun graph. In near future, we shall develop an algorithm to label the vertices by using $\mathrm{L}(1,1,1)$-labeling technique. Also we shall find the range of $\mathrm{L}(1,1,1)$-chromatics number for a cactus graph.

CONFLICT OF INTERESTS

The authors declare that there is no conflict of interests.

REFERENCES

[1] Sk. Amanathulla, M. Pal, $L(0,1)$ - and $L(1,1)$-labeling problems on circular-arc graphs, Int. J. Soft Comput. 11 (6) (2016), 343-350.
[2] A.A. Bertossi, C.M. Pinotti, Approximate $L\left(\delta_{1}, \delta_{2}, \ldots, \delta_{t}\right)$-coloring of trees and interval graphs, Networks, 49 (3) (2007), 204-216.
[3] H.L. Bodlaender, T. Kloks, R.B. Tan, J.V. Leeuwen, Approximations for λ-colorings of graphs, Comput. J. 47 (2) (2004), 193-204.

NASREEN KHAN

[4] T. Calamoneri, $L\left(\delta_{1}, \delta_{2}, 1\right)$-labeling of eight grids, Inform. Process. Lett. 113 (2013) 361-364.
[5] T. Calamoneri, The $L(h, k)$-labeling problem: an updated survey and annotated bibliography, Comput. J. 54 (8) (2011) 1344-1371.
[6] G. Chartrand, D. Erwin, F. Harary, and P. Zhang, Radio labeling of graphs, Bull. Inst. Combin. Appl. 33 (2001), 77-85.
[7] G.J. Chang, C. Lu, Distance two labelling of graphs, Eur. J. Combin. 24 (2003), 53-58.
[8] M.L. Chia, D. Qua, H. Liao, C. Yang, R.K. Yea, L(3,2,1)-labeling of graphs, Taiwan. J. Math. 15 (6) (2011) 2439-2457.
[9] S.H. Chiang, J.H. Yan, On $L(d, 1)$-labeling of cartesian product of a path, Discrete Appl. Math., 156 (15) (2008), 2867-2881.
[10] J. Clipperton, J. Gehrtz, Z. Szaniszlo, D. Torkornoo, L(3,2,1)-labeling of Simple Graphs, VERUM, Valparaiso University, 2006.
[11] J. Clipperton, $L(d, 2,1)$-labeling of simple graphs, Rose-Hulman Undergraduate Math. J. 9 (2008), Article 2.
[12] J. R. Griggs and R. K. Yeh, Labeling graphs with a condition at distance two, SIAM J. Discrete Math. 5 (1992), 586-595.
[13] W. K. Hale, Frequency assignment: theory and application, Proc. IEEE, 68 (1980), 1497-1514.
[14] K. Jonas, Graph coloring analogues with a condition at distance two: $L(2,1)$-labelling and list labellings, Ph.D. thesis, University of South Carolina (1993), 8-9.
[15] B.M. Kim, W. Hwang, B.C. Song, L(3, 2, 1)-labeling for the product of a complete graph and a cycle, Taiwan. J. Math. 19 (2015), 849-859.
[16] N. Khan, M. Pal, A. Pal, (2, 1)-total labeling of cactus graphs, Internat. J. Inform. Comput. Sci. 5 (4) (2010) 243-260.
[17] N. Khan, M. Pal, A. Pal, $L(0,1)$-labeling of cactus graphs, Commun. Network, 4 (2012), 18-29.
[18] J. Liu, Z. Shao, The $L(3,2,1)$-labeling problem on graphs, Math. Appl. 17 (4) (2004), 596-602.
[19] S. Paul, M. Pal, A. Pal, $L(2,1)$-labeling of circular-arc graph, Ann. Pure Appl. Math. 5 (2) (2014), 208-219.
[20] F. S. Roberts, T-colorings of graphs: recent results and open problems, Discrete Math. 93 (1991), 229-245.
[21] D. Sakai, Labeling chordal graphs with a condition at distance two, SIAM J. Discrete Math. 7 (1994), 133-140.

