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Abstract: In this paper we will generalize Picard’s iterated approximation, to solve the conformable fractional 

differential equations with an initial condition. This will be by proving the uniqueness, convergence and existence of 

the solution under the definition and properties of the conformable fractional derivative and integral. Besides the 

Lipschitz condition and the Gronwall’s inequality after generalizing it to the conformable fractional case. Also, we 

will show some CFDE examples and their solution besides of the graphs to show the convergence of the approximation 

solutions to the exact one and their applications.   

Keywords: conformable derivative; integral; Lipschitz function; Picard’s method; uniformly convergence; existence; 

uniqueness. 

2010 AMS Subject Classification: 34A08. 

 

1. INTRODUCTION AND PRELIMINARIES 

        Fractional Calculus has become more interesting for many researchers because it plays an 

important role in several applications from engineering and science problems to physics, 

economics and chemistry. Few years ago it has been found that Fractional calculus use in studies 

of viscoelastic materials, as well as in many fields of science and engineering including fluid flow, 

diffusive transport, electrical networks, electromagnetic theory and probability [1-3]. Particularly 
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in engineering, the fractional calculus arises in the time-dependent viscous-diffusion fluid 

mechanics problems, in addition to the classical transient viscous-diffusion equation in a semi-

infinite space to yield explicit analytical (fractional) solutions for the shear stress and fluid speed 

anywhere in the domain [4]. 

       The theory of conformable fractional calculus was first introduced in 2014 by Dr. Rushdi 

Khalil [5]. It is one of the most useful and easy to understand theories for fractional differential 

equations. This is because the new definition introduced by Dr. Khalil and all subsequent 

properties and results coincide with the definition and properties of the normal derivative more so 

than other definitions presented by Riemann-Liouville or Caputo [6,7].  

       The purpose of this paper is to improve on Picard’s successive iterative approximation [10]. 

and develop a solution to the Conformable initial value problem: 

 𝑇𝛼(𝑦)(𝑥) = 𝑓(𝑥, 𝑦), 𝑦(0) = 𝑦0, If 𝑓(𝑥, 𝑦) satisfies the Lipschitz condition. It will also prove the 

existence and convergence of the solution through the use of Gromwall’s inequality to prove 

uniqueness. 

Gromwall’s inequality plays an important role in solving integral equations and proving some 

related inequalities, that why the scientists nowadays interest on it and generalize to the fractional 

calculus. 

Definition 1.1: (Riemann-Liouville) [6]. For 𝛼 ∈ [𝑛 − 1, 𝑛) the 𝛼 −derivative of 𝑓 is: 

 𝐷𝑎
𝛼(𝑓)(𝑥) =

1

Γ(𝑛−𝛼)

𝑑𝑛

𝑑𝑥𝑛 ∫
𝑓(𝑡)

(𝑥−𝑡)𝛼−𝑛+1 𝑑𝑡
𝑥

𝑎
 

Definition 1.2: (Caputo) [7]. For 𝛼 ∈ [𝑛 − 1, 𝑛] the 𝛼 −derivative of 𝑓 is: 

 𝐷𝑎
𝛼(𝑓)(𝑥) =

1

Γ(𝑛−𝛼)
∫

𝑓(𝑛)(𝑡)

(𝑥−𝑡)𝛼−𝑛+1 𝑑𝑡
𝑥

𝑎
. 

Barriers to these definitions are as follows: 

(1) They don’t satisfy that 𝐷𝑎
𝛼(𝑐) = 0 for any Constant c. 

(2) They don’t satisfy the known formulas for the derivative of the product and quotient for 

any two 𝛼 − differentiable functions 𝑓(𝑥)𝑎𝑛𝑑 𝑔(𝑥): 

 𝐷𝑎
𝛼(𝑓. 𝑔) ≠ 𝐷𝑎

𝛼(𝑓). 𝑔 + 𝐷𝑎
𝛼(𝑔). 𝑓 And 𝐷𝑎

𝛼 (
𝑓

𝑔
) (𝑥) ≠

𝑔𝐷𝑎
𝛼(𝑓)−𝑓.𝐷𝑎

𝛼(𝑔)

𝑔2 . 

(3) They don’t satisfy the chain rule for any two 𝛼 − Differentiable functions 𝑓(𝑥)𝑎𝑛𝑑 𝑔(𝑥)  

then: 𝐷𝑎
𝛼(𝑓𝑜𝑔)(𝑥) ≠ 𝐷𝑎

𝛼(𝑓(𝑔(𝑥)). 𝐷𝑎
𝛼(𝑔)(𝑥) 
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(4) They don’t satisfy 𝐷𝛼𝐷𝛽𝑓 = 𝐷𝛼+𝛽𝑓. 

Definition 1.3: (Conformable fractional derivative) [5]: Let 𝑓(𝑥): defined from [0, ∞)𝑡𝑜 ℝ 

then for all 𝑥 > 0 and 𝛼 ∈ (0,1): 

         𝑇𝛼(𝑓)(𝑥) = lim
𝜖→0

𝑓(𝑥+𝜖𝑥1−𝛼)−𝑓(𝑥)

𝜖
 

 𝑇𝛼 Is the conformable fractional derivative of 𝑓 of order 𝛼. 

If 𝑓 is 𝛼-differentiable in some interval (0, 𝑎), 𝑎 > 0 and lim
𝑥→0+

𝑓(𝛼)(𝑥) exist, then we define: 

 𝑇𝛼(𝑓(0)) = lim
𝑥→0+

𝑓(𝛼)(𝑥). 

From definition 1.3 the following formulas can be demonstrated: 

1) 𝑇𝛼(𝑐) = 0 For any constant 𝑐 ∈ ℝ. 

2) 𝑇𝛼(𝑥𝑞) = 𝑞𝑥𝑞−𝛼 

3) 𝑇𝛼(𝑠𝑖𝑛𝑎𝑥) = 𝑎𝑥1−𝛼𝑐𝑜𝑠𝑎𝑥 𝑎 ∈ ℝ 

4) 𝑇𝛼(𝑐𝑜𝑠𝑎𝑥) = −𝑎𝑥1−𝛼𝑠𝑖𝑛𝑎𝑥  

5) 𝑇𝛼(𝑒𝑎𝑥) = 𝑎𝑥1−𝛼𝑒𝑎𝑥  

6) 𝑇𝛼(𝑓)(𝑥) = 𝑥1−𝛼 𝑑𝑓

𝑑𝑥
 Is direct from the definition see [5]. 

In addition, some functions arise in solving CFDE: 

1) 𝑇𝛼 (
𝑥𝛼

𝛼
) = 1 

2)  𝑇𝛼 (𝑒
𝑥𝛼

𝛼 ) = 𝑒
𝑥𝛼

𝛼   

3) 𝑇𝛼 (sin (
𝑥𝛼

𝛼
)) = cos (

𝑥𝛼

𝛼
) 

4) 𝑇𝛼 (cos (
𝑥𝛼

𝛼
)) = −sin (

𝑥𝛼

𝛼
) 

Definition 1.4: (Conformable fractional integral) [5]. Let 𝑎 ≥ 0 And 𝑥 ≥ 𝑎  let 𝑓  be a function 

defined on (𝑎, 𝑥] ,Then the 𝛼 -fractional integral of 𝑓  is defined by:  𝐼𝛼
𝑎𝑓(𝑥) = ∫

𝑓(𝑠)

𝑠1−𝛼 𝑑𝑠
𝑥

𝑎
=

∫ 𝑠𝛼−1𝑓(𝑠)𝑑𝑠
𝑥

𝑎
.  

Proposition: 𝑇𝛼𝐼𝛼(𝑓)(𝑥) = 𝑓(𝑥) comes by: 

𝑇𝛼𝐼𝛼(𝑓)(𝑥)=𝑥1−𝛼 𝑑

𝑑𝑥
∫

𝑓(𝑠)

𝑠1−𝛼
𝑑𝑠

𝑥

𝑎
  =𝑥1−𝛼 𝑓(𝑥)

𝑥1−𝛼
    = 𝑓(𝑥). 
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2. MAIN RESULTS 

In this section the proof of the convergence and continuity of the solution of the conformable 

fractional differential equation with initial condition in (1) can be demonstrated as:   

                                                  𝑇𝛼(𝑦)(𝑥) = 𝑓(𝑥, 𝑦), 𝑦(𝑥0) = 𝑦0                                                 (1) 

Definition 2.1: (Lipschitz function) [5]. A function 𝑓(𝑥, 𝑦) ∈ 𝐶[[𝑥0, 𝑥0 + 𝑇] × ℝ, ℝ] is said to be 

a Lipschitz function in y if for any 𝑦1, 𝑦2  there exists 𝐿 > 0 such that:|𝑓(𝑥, 𝑦1) − 𝑓(𝑥, 𝑦2)| ≤

𝐿|𝑦1 − 𝑦2|. 

Theorem 1: (Gromwall’s inequality) [6-9]: If 𝑓(𝑥) and 𝑔(𝑥) are a nonnegative functions and 

continuous for all 𝑥 > 0 where 𝑘 > 0 is a constant and let:  1

0

( ) ( ) ( ) ,

x

f x k s g s f s ds− +  for 0x  . 

Then: 

1

0

( )

( ) .

x

s g s ds

f x ke

−


  

Proof: we will start by: 
1

0

( )
1

( ) ( )

x

f x

k s g s f s−



+ 

 

1
1

1

0

( ). ( )
( )

( ) ( )

x

x f x g x
x g x

k s g s f s






−
−

−



+ 

 Now we will integrate both sides normally to get: 

1 1

0 00

ln ( ) ( ) ( )

x
x x

k s g s f s ds s g s ds − −
 

+  
 

  ,  

1 1

0 0

ln ( ) ( ) ln ( )

x x

k s g s f s ds k s g s ds − −
 

+ −  
 

  . 

  Then: 1 1

0 0

ln ( ) ( ) ln ( )

x x

k s g s f s ds k s g s ds − −
 

+  + 
 

    

Hence 

1

0

( )
1

0

( ) ( )

x

x s g s ds

k s g s f s ds ke





−

−


+   . 

Then: 

1

0

( )

( )

x

s g s ds

f x ke

−


  The proof now completed. 
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Result 1: if 𝑔(𝑥) = 𝑓(𝑥) 𝑡ℎ𝑒𝑛 𝑓(𝑥) ≡ 0. 

Result 2: if 𝑔(𝑥) = 1, then ( )
x

f x ke



  

Lemma 1: (Differential type) if 𝑓(𝑥) and 𝑔(𝑥) are a nonnegative functions and continuous for all 

𝑥 > 0 where 𝑘 > 0 is a constant and assume: ( )( ) ( ) ( )T f x g x f x  , then: 

1

0

( )

( ) (0)

x

s g s ds

f x f e

−


 . 

Theorem 2: Assume that 𝑓(𝑥, 𝑦) is a continuous function in the region D of 𝑥𝑦 plan and M be a 

constant where: 

 |𝑓(𝑥, 𝑦)| < 𝑀, ∀(𝑥, 𝑦) ∈ 𝐷 And satisfy Lipschitz condition in 𝑦 where: |𝑓(𝑥, 𝑦1) − 𝑓(𝑥, 𝑦2)| ≤

𝐿|𝑦1 − 𝑦2| where L is constant, let R be the rectangle defined by: 

 𝑅 = {(𝑥, 𝑦): |𝑥 − 𝑥0| ≤ 𝑎, |𝑦 − 𝑦0| ≤ 𝑏} Where 𝑅 ⊂ 𝐷 , let ℎ = min {𝑎,
𝑏

𝑀
𝛼

1

𝛼}: 

Then the CFDE in (1) has a unique solution 𝑦 = 𝑦(𝑥) where 𝑦(𝑥0) = 𝑦0, ∀|𝑥 − 𝑥0| < ℎ. and 

hence the iterations: 

 𝑦𝑛(𝑥) = 𝑦0 + ∫ 𝑠𝛼−1𝑓(𝑠, 𝑦𝑛−1(𝑠))𝑑𝑠
𝑥

𝑥0
, will converge uniformly to the solution of the CFIVP (1). 

Proof: Now the proof of theorem 2 is divided into 3 steps and fix the initial condition on 𝑥0 = 0 

mainly 𝑦(0) = 𝑦0 then we can generalize for any 𝑥0. 

Step (1): Continuity: to show that ∀𝑛 ∈ ℕ, 𝑦𝑛(𝑥) is continuous for all [0, ℎ] = 𝐼.This can be done 

through induction. 

Because 𝑦0(𝑥) = 𝑦(0) = 𝑦0 is continuous on I since it is constant. 

Now 𝑦1(𝑥) = 𝑦0 + ∫ 𝑠𝛼−1𝑓(𝑠, 𝑦0(𝑠))𝑑𝑠
𝑥

0
 is also continuous because f is continuous, this means 

that all terms of the sequence {𝑦𝑛} are continuous. Mainly: 

𝑦𝑛+1(𝑥) = 𝑦0 + ∫ 𝑠𝛼−1𝑓(𝑠, 𝑦𝑛(𝑠))𝑑𝑠
𝑥

0
 is continuous. 

Step (2): Convergence, it can be shown that the sequence {𝑦𝑛(𝑥)} is convergent uniformly. 

We will start by the relation:   0 1

1

( )
n

n i i

i

y y y y −

=

= + − .  It is clear that this relation is true. 

We aim to show that |𝑦𝑛(𝑥)| converges uniformly which is equal 0 1

1

( )
n

i i

i

y y y −

=

+ − . 
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To show that we will use the continuity of 𝑓 and the fact ( , )f x y M  in addition to the fact that 

𝑓(𝑥, 𝑦) is Lipschitzian in y. From this we aim to show that:  

( 1)

1 ( 1)
( ) ( )

( 1)!

n n

n n n

ML x
y x y x

n





+

+ +
− 

+
. 

For 𝑛 = 0: 

1

1 0 0

0

( ) ( ) ( , ( ))

x

y x y x s f s y s ds−− =     1

0

0

( , ( ))

x

s f s y s ds−     1

0

x

M s ds−  =
Mx


 

Now assume it is true for 𝑛 = 𝑘 : 

 

( 1)
1

1 ( 1)
( ) ( ) ( ) .

( 1)! ( 1)!

k k k
k

k k k

ML x ML x
y x y x

k k

 

 

+
+

+ +
−  =

+ +
Then 

1

2 1 1

0

( ) ( ) [ ( , ( )) ( , ( ))]

x

k k k ky x y x s f s y s f s y s ds−

+ + +− = −  

                             1

1

0

( , ( )) ( , ( ))

x

k ks f s y s f s y s ds−

+ −  

                             
11 ( 1)

1 1

0 0

( ) ( )
( 1)!

x xk
k

k k k

L L M
L s y s y s ds s s ds

k

 



−− +

+ +


 − 

+   

                              
1

( 2) 1

1

0
( 1)!

xk
k

k

L M
s ds

k





+
+ −

+
=

+   

 
1 ( 2) 1 ( 2)

1 2

.

( 1)! ( 2) ( 2)!

k k k k

k k

L M x L M x

k k k

 

  

+ + + +

+ +
= =

+ + +
 

So 2 1( ) ( )k ky x y x+ +−

1 ( 2)

2

.

( 2)!

k k

k

L M x

k





+ +

+


+
 

The induction now is completed.  Now to show that { }n ny  is convergent we need to find a bound 

for ( )ny x . 

0 1

1

( )
n

n i i

i

y y y y −

=

= + − 0 1

1

n

i i

i

y y y −

=

 + −
1

0

1 !

i in

i
i

ML x
y

i





−

=

 + 0

1

( )

1
!

i
n

i

x
L

M
y

L i





=

 
 

= + − 
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0 1

x
LM

y e
L




 

 + − 
 
 

  
0 1

h
LM

y e
L





 
  
 

 
  + −
 
 

          

Hence, the term 
0 1

h
LM

y e
L





 
  
 

 
 + −
 
 

 is an upper bound for the series{ ( )}n n Ny x   .  By this, we 

demonstrated that the series converges uniformly on 𝐼 to a continuous function 𝑦(𝑥) . 

As { ( )}n n Ny x   converges to a continuous function 𝑦(𝑥)  then take the limit to both sides of:

1

0 1

0

( ) ( , ( ))

x

n ny x y s f s y s ds−
−= +    

1

0 1

0

lim ( ) lim ( , ( ))

x

n n
n n

y x y s f s y s ds−

−
→ →

= +  , then 1

0

0

( ) ( , ( ))

x

y x y s f s y s ds−= +   

This means there is a solution 𝑦(𝑥) on 𝐼 where { ( )}n n Ny x  converges uniformly to  𝑦(𝑥) which is 

a solution of the CIVB (1). 

Step(3) (uniqueness): Assuming there is another solution that satisfies the CIVP in (1), the other 

solution is 𝑤(𝑥). 

Now letting ( ) ( ) ( )u x y x w x= − , it is clear that:  

 𝑢(0) = 0, Because 𝑦(𝑥) and 𝑤(𝑥) are both solutions to the same CIVP. 

 1

0

( ) ( ) ( ) ( , ( )) ( , ( ))

x

u x y x w x s f s y s f s w s ds−= − = −  

 1

0

( , ( )) ( , ( ))

x

s f s y s f s w s ds− −   1

0

( ) ( )

x

s L y s w s ds− −    = 1

0

( )

x

s Lu s ds−

 ,  

Then we get:   1

0

( ) ( )

x

u x Ls u s ds−   

From Gromwall’s inequality (Theorem1) and because, 𝐿 > 0 𝑎𝑛𝑑 𝑢(𝑥) > 0  We get 

( ) (0) 0
x

L

u x u e



 =  

This shows that ( ) 0u x = .  Then ( ) ( ) 0y x w x− = .  Then 𝑦(𝑥) = 𝑤(𝑥). 

From this, we conclude that the solution of the CIVP (1) is unique and exists. 

At last the proof of theorem 2 is completed.  
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3. APPLICATIONS AND EXAMPLES 

In this section, we post some numerical examples to illustrate our method using the Picard’s 

iteration to find up to three approximations of the solution. We plot the solutions as well as the 

approximations for comparison, these three examples are played an important role in the 

engineering and their applications, the first and second are modeling of the exponential growth or 

decay depending on the y coefficient. While the third example shows a non linear CFDE and its 

solution the fractional tan function.  

Example 1: Consider the CFIVP: ( )( ) , (0) 1T t x y y = =  

Here ( , )f x y y=   

1

1 0 0

0

. ( , )

x

y y s f s y ds−= +  = 1

0

1 .1 1

x
x

s ds






−+ = + . 

1 1

2 0 1

0 0

( , ( )) 1 1

x x
s

y y s f s y s ds s ds


 



− −  
= + = + + 

 
  2 ( )y x

2

2
1

2

x x 

 
= + +  

2
1 1

3 2 2

0 0

1 ( , ( )) 1 1
2

x x
s s

y s f s y s ds s ds
 

 

 

− −  
= + = + + + 

 
 

2 3

3 2 3
( ) 1

2 6

x x x
y x

  

  
= + + +   

From the above series of functions 1 2 3, , ,....y y y we find that
0

( )

!

i
n

n

i

x

y
i





=

= . 

Then ( ) lim ( )
x

n
x

y x y x e





→
= = . See figure 1, we take 𝛼 = 0.25 as an example. 

Example 2: Solve the conformable fractional differential equation: ( )( ) 0, (0) 1T y x x y y

 − = = . 

In this example, ( , )f x y x y=  0 0x =  and 0 1y = . 

2
1 1

1 0 0

0 0

( , ( )) 1 1 .
2

x x
x

y y s f s y s ds s s ds


  



− −= + = + = +   

2 1
1 1

2 1

0 0

1 ( , ) 1 (1 )
2

x x
s

y s f s y ds s s ds


  



−
− −  

= + = + + 
 

   

 
2 4

2 2
( ) 1 .

2 8

x x
y x

 

 
= + +  
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2 4
1 1

3 2 2

0 0

1 ( , ) 1 1
2 8

x x
s s

y s f s y ds s s ds
 

  

 

− −
  

= + = + + +  
  

   

1 2 3
2 4 6

3 2 3

( ) ( ) ( )
2 2 2( ) 1 1 .

2 8 48 1! 2! 3!

x x x

x x x
y x

  

  

  
  

= + + + = + + +  

According to the series of functions 1 2 3, , ,...y y y it can be concluded that,

2

0

( )
2( )

!

i
n

n

i

x

y x
i





=

= . 

So

( 2 )

(2 )( ) lim ( )

x

n
x

y x y x e





→
= = . See figure 2 we take 𝛼 = 0.3 as an example. 

Example 3: The nonlinear CFDE. 
2( )( ) 1T y x y − = , (0) 0y = . 

Her 𝑓(𝑥, 𝑦) = 1 + 𝑦2, and 𝑥0 = 0 𝑎𝑛𝑑 𝑦0 = 0. 

1 1

1 0 0

0 0

( , ( ))

x x
x

y y s f s y s ds s ds


 



− −= + = =   

1

2 0 1

0

( , ( ))

x

y y s f s y s ds−= + 
1 2

0

(1 ( ) )

x
x

s ds






−= +
3

33

x x 

 
= +  

3
1 1 2

3 0 2 3

0 0

( , ( )) 1 ( )
3

x x
s s

y y s f s y s ds s ds
 

 

 

− −  
= + = + + 

 
 

3 5 7

3 5 7

2
.

3 3 5 7 9

x x x x   
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 From the results of the series of functions: 
1 2 3 4, , , ,...y y y y   we get that this is the McLaurin series 

of  tan (
𝑥𝛼

𝛼
) 

Then:𝑦(𝑥) = tan (
𝑥𝛼

𝛼
) 𝑤ℎ𝑒𝑟𝑒 |𝑥| ≤ (

𝛼𝜋

2
)

1

𝛼. See figure 3, we take 𝛼 = 0.5 as an example. 
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4. CONCLUSION 

Conformable fractional calculus is becoming one of the leading strategies to deal with fractional 

differential or integral equations because the kind of relationship between the integer-order and 

the fractional-order relation 1( )( )
dy

T y x x
dx





−= .  In this paper, we rewrote Gromwall’s inequality 

in the case of CFC and the proof of the existence and uniqueness of the CFIVP with help of the 

Lipschitz condition. 

Fig. 1 : 𝑦(𝑥) = 𝑒
𝑥𝛼

𝛼  , 𝛼 = 0.5 Fig.2. y(x) =

2

2

x

e



 , 𝛼=0.3. 

 

Fig. 3 : 𝑦(𝑥) = 𝑡𝑎𝑛 (𝑒
𝑥𝛼

𝛼 ) , 𝛼 = 0.5 
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Furthermore, in this paper, we established Picard’s iteration of approximation solutions of the 

CFIVP because it gives us a manageable way to find an approximate solution for the CFIVP which 

always converges to the unique solution if the correct conditions are applied.  
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