

Available online at http://scik.org
J. Math. Comput. Sci. 2 (2012), No. 4, 889-897

ISSN: 1927-5307

ON THE MIDDLE CN-DOMINATING GRAPHS

ANWAR ALWARDI*, N.D. SONER, AND G. DEEPAK

Department of Studies in Mathematics, University of Mysore, Mysore 570 006, India

Abstract

Let $G=(V, E)$ be a graph and $A(G)$ is the collection of all minimal CN-dominating sets of G. The middle CN-dominating graph of G is the graph denoted by $M_{\text {cnd }}(G)$ with vertex set the disjoint union of $V \cup A(G)$ and (u, v) is an edge if and only if $u \cap v \neq \phi$ whenever $u, v \in A(G)$ or $u \in v$ whenever $u \in v$ and $v \in A(G)$. In this paper, characterizations are given for graphs whose middle CN-dominating graph is connected and $K_{p} \subseteq M_{\text {cnd }}(G)$. Other properties of middle CN-dominating graphs are also obtained.

Keywords: CN-Dominating Graph; Minimal CN-Dominating set; CN-Domination number. 2000 AMS Subject Classification: 05C69

1. Introduction

All the graphs considered here are finite, undirected with no loops and multiple edges. A set D of vertices in a graph G is a dominating set if every vertex in $V-D$ is adjacent to some vertex in D. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. The connectivity $k=k(G)$ of a graph G is the minimum number of vertices whose removal results a disconnected or trivial graph. Analogously the line-connectivity

[^0]$\lambda=\lambda(G)$ is the minimum number of lines whose removal results a disconnected or trivial graph. For terminology and notations not specifically defined here we refer reader to [2]. For more details about domination number and neighbourhood number and their related parameters, we refer to [3], [4], and [9].
Let G be simple graph $G=(V, E)$ with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ for $i \neq j$, the common neighborhood of the vertices v_{i} and v_{j}, denoted by $\Gamma\left(v_{i}, v_{j}\right)$, is the set of vertices, different from v_{i} and v_{j}, which are adjacent to both v_{i} and v_{j}. A subset D of V is called common neighbourhood dominating set (CN-dominating set) if for every vertex $v \in V-D$ there exists at least one vertex $u \in D$ such that $u v \in E(G)$ and $|\Gamma(u, v)| \geq 1$, where $|\Gamma(u, v)|$ is the number of common neighbourhood between the vertices u and v. The minimum cardinality of such CN-dominating set denoted by $\gamma_{c n}$ and is called common neighbourhood domination number (CN-domination number) of G. It is clear that CN-domination number is defined for any graph. A common neighbourhood dominating set D is said to be minimal common neighbourhood dominating set if no proper subset of D is common neighbourhood dominating set. A minimal common neighbourhood dominating set D of maximum cardinality is called $\Gamma_{c n}$-set and its cardinality is denoted by $\Gamma_{c n}$. Let $u \in V$. The CN-neighbourhood of u denoted by $N_{c n}(u)$ is defined as $N_{c n}(u)=\{v \in N(u):|\Gamma(u, v)| \geq 1\}$. The cardinality of $N_{c n}(u)$ is denoted by $d_{c n}(u)$ in G, and $N_{c n}[u]=N_{c n}(u) \cup\{u\}$. The maximum and minimum common neighbourhood degree of a point in G are denoted respectively by $\Delta_{c n}(G)$ and $\delta_{c n}(G)$. That is $\Delta_{c n}(G)=\max _{u \in V}\left|N_{c n}(u)\right|, \delta_{c n}(G)=\min _{u \in V}\left|N_{c n}(u)\right|$. A subset S of V is called a common neighbourhood independent set (CN-independent set), if for every $u \in S, v \notin N_{c n}(u)$ for all $v \in S-\{u\}$. It is clear that every independent set is CN -independent set. An CN-independent set S is called maximal if any vertex set properly containing S is not CNindependent set, The maximum cardinality of CN -independent set is denoted by $\beta_{c n}$, and the lower CN -independence number $i_{c n}$ is the minimum cardinality of the CN -maximal independent set. An edge $e=u v \in E(G)$ is said to be common neighbourhood edge(CNedge) if $|\Gamma(u, v)| \geq 1$. A subset S of V is called Common neighbourhood vertex covering (CN-vertex covering) of G if for CN-edge $e=u v$ either $u \in S$ or $v \in S$. The minimum
cardinality of CN-vertex covering of G is called the CN-covering number of G and denoted by $\alpha_{c n}(G)$.

For more details about CN-dominating set see [1].
Let S be a finite set and $F=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ be a partition of S. Then the intersection graphs $\Omega(F)$ of F is the graph whose vertices are the subsets in F and in which two vertices S_{i} and S_{j} are adjacent if and only if $S_{i} \cap S_{j} \neq \phi$. Kulli and Janakiram introduced many classes of intersection graphs in the field of domination theory see [5-8]. The purpose of this paper is to introduce a new class of intersection graphs called The middle CN-dominating graph $M_{c n d}(G)$ of a graph G, we get characterizations for graphs whose middle CN-dominating graph is connected and $K_{p} \subseteq M_{c n d}(G)$. Other interesting properties of middle CN -dominating graphs are also obtained.

3. Main results

Let $G=(V, E)$ be a graph and S be the collection of minimal CN-dominating set of G. The middle CN-dominating graph of G is the graph denoted by $M_{c n d}(G)$ with vertex set the disjoint union $V(G) \cup S$ and $u v$ is an edge if and only if $u \cap v \neq \phi$ whenever $u, v \in S$ or $u \in v$ whenever $u \in V(G)$ and $v \in S$.

Example. In figure 1a we have the graph G the middle CN -dominating sets are $A=$ $\{1,3,5,6\}, B=\{1,3,5,7\}, C=\{3,4,5\}, D=\{2,3,5,6\}, E=\{2,3,5,7\}$ and the graph $M_{c n d}(G)$ is showen in Figure 1b.

Figure 1a

Figure 1b

Proposition 2.1. $M_{c n d}(G) \cong K_{1, p}$ if and only if G is triangle-free graph.
Proof. Suppose that G is triangle-free graph. Then there exists only one minimal CNdominating set and from the definition of $M_{c n d}(G)$ every vertex in G is adjacent to this minimal CN-dominating set in $M_{c n d}(G)$, that is $M_{c n d}(G)$ is isomorphic to $K_{1, p}$. Conversely, assume that $M_{c n d}(G)$ is isomorphic to $K_{1, p}$ and if it is possible G is not triangle-free graph, then there exists at least two minimal CN-dominating set S and S, and $\Delta_{c n}\left(M_{c n d}(G)\right)<p-1$, a contradiction. Hence G triangle-free graph.

Proposition 2.2. $M_{c n d}(G)=p K_{2}$ if and only if $G=K_{p}$.
Proof. Suppose that $G=K_{p}$. Then clearly each vertex in G will form a minimal CNdominating Set. Hence $M_{c n d}(G)=p K_{2}$.

Conversely, Suppose $M_{c n d}(G)=p K_{2}$ and $G \neq K_{p}$. Then there exists at least one minimal CN-dominating set S containing two vertices of G. Then S will form p_{3} in $M_{c n d}(G)$, a contradiction. Hence $G=K_{p}$.

Theorem 2.3. Let G be a graph with p vertices and q edges. $M_{\text {cnd }}(G)$ is a graph with $2 P$ vertices and p edges if and only if $G \cong K_{p}$.

Proof. Let $M_{c n d}(G)$ be $(2 p, p)$-graph. Since only the the graph $p K_{2}$ is of $2 p$ vertices and p edges, then by Proposition 2.2. $G \cong K_{p}$.

Theorem 2.4. Let G be a graph with p vertices and q edges. $M_{c n d}(G)$ is a graph with $P+1$ vertices and p edges if and only if G is triangle-free graph.

Proof. Let $M_{c n d}(G)$ be a graph with $P+1$ vertices and p edges that means $M_{c n d}(G) \cong$ $K_{1, p}$, and by Proposition 2.1. G is triangle-free graph. Conversely, Let G be triangle-free graph. Then by Proposition 2.1. $G \cong K_{1, p}$ which is of $p+1$ vertices and P edges. In the next theorem characterizations are given for graphs whose middle CN-dominating graph is connected.

Theorem 2.5. For any graph G with at least two vertices $M_{\text {cnd }}(G)$ is connected if and only if $\Delta_{c n}(G) \leq p-1$.

Proof. Let $\Delta_{c n}(G) \leq p-1$ and suppose there is no minimal CN-dominating containing both u and v. Then there exists a vertex w in $V(G)$ such that w is neither adjacent to u nor v. Let D and D, be two maximal CN-independent set containing u, w and v, w respectively since every maximal CN -independent set is minimal CN -dominating set, u and v are connected by the path $u D D^{\prime} v$. Hence $M_{\text {cnd }}(G)$ is connected.
Conversely, suppose $M_{c n d}(G)$ is connected. let $\Delta_{c n}(G)=p-1$ and let u is a vertex such that $d_{c n}(u)=p-1$. Then $\{u\}$ is minimal CN-dominating set and G has at least two vertices, it is clear that G has no CN -isolated vertices, then $V-D$ containing minimal CN-dominating set say D^{\prime}. Since $D \cup D^{\prime}=\phi$ in $M_{\text {cnd }}(G)$ there is one path joining u to any vertex of $V-D$, this implies that $M_{c n d}(G)$ is disconnected, a contradiction. Hence $\Delta_{c n}(G) \leq p-1$.

Corollary 2.6. Let $G=(V, E)$ be a graph and u, v any two vertices in $V(G)$. Then $d(u, v)_{M_{c n d}(G)} \leq 3$, where $d(u, v)_{M_{c n d}(G)}$ is the distance between the vertex u and v in the graph $M_{c n d}(G)$.

Theorem 2.7. For any graph $G, K_{t} \subseteq M_{\text {cnd }}(G)$ if and only if G contains at least one $C N$-isolated vertex, where t is the number of minimal $C N$-dominating set in G.

Proof. If G has CN-isolated vertex then the subgraph of $M_{c n d}(G)$ which induced by the set of all minimal CN-dominating sets of G is complete graph K_{t}. Hence $K_{p} \subseteq M_{c n d}(G)$.

Conversely, Suppose $K_{t} \subseteq M_{e d}(G)$, then it is clear that the vertices of K_{t} are the minimal CN-dominating sets of G. Therefor there exists at least one CN-isolated vertex in G.

Theorem 2.8. For any graph $G, M_{c n d}(G)$ is either connected or it has at least one component which is K_{2}.

Proof. If $\Delta_{c n}(G) \leq p-1$, then by Theorem 2.5. $M_{c n d}$ is connected, and by Proposition 2.2. If G is complete clear $M_{c n d}$ is connected. Hence we must prove the case $\delta_{c n}(G)<$ $\Delta_{c n}(G)=p-1$.

Let $\left\{u_{1} \ldots u_{s}\right\}$ is the set of vertices in G such that $d_{c n}\left(u_{i}\right)=p-1$, where $i=1, \ldots, t$, then it is clear $\left\{u_{i}\right\}$ is minimal CN-dominating set. Then each vertex u_{i} with the minimal corresponding CN-dominating set $\left\{u_{i}\right\} i=1, \ldots s$ form component isomorphic to K_{2}. Hence has at least one component which is K_{2}.

Theorem 2.9. For any graph G with $\Delta_{c n}(G)<p-1, \operatorname{diam}\left(M_{c n d}(G)\right) \leq 5$.
Proof. Let G be any graph and $\Delta_{c n}(G)<p-1$. Then by Theorem 2.5. $M_{e d}(G)$ is connected, suppose u, v be any two vertices in $M_{c n d}(G)$, then we have the following cases:

Case 1: Let u, v be any two vertices in $V(G)$. Then by Corollary 2.6. $d(u, v)_{M_{c n d}(G)} \leq 3$.
Case 2: Suppose $u \in V(G)$ and $v=D$ be a minimal CN-dominating set in G, If $u \in D$ then $d(u, v)=1$ and if $u \notin D$ then there exists a vertex $w \in D$ adjacent to u. Hence $d(u, v)_{M_{c n d}(G)}=d(u, w)_{M_{c n d}(G)}+d(w, v)_{M_{\text {cnd }}(G)}$ and from corollary 2.6. We have $d(u, w)_{M_{c n d}(G)} \leq 3$. Hence $d(u, v)_{M_{c n d}(G)} \leq 4$

Case3: Suppose that both u and v are not in $V(G)$, and $u=D, v=D^{\prime}$ are two minimal CN-dominating sets if D and D^{\prime} are adjacent,then $d(u, v)_{M_{c n d}(G)}=1$, suppose that D and D^{\prime} are not adjacent then every vertex $w \in D$ is adjacent to some vertex $x \in D^{\prime}$ and vice versa. Hence $d(u, v)=d(u, w)+d(w, x)+d(x, v) \leq 5$.

Hence $\operatorname{diam}\left(M_{e d}(G)\right) \leq 5$.
Theorem 2.10. Let G be a graph. Then $d_{c n}\left(M_{c n d}(G)\right)=2$ if and only if $G=K_{p}$ or $G=\overline{K_{2}}$, where $d_{c n}\left(M_{c n d}(G)\right)$ is the $C N$-domatic number of the graph $M_{c n d}(G)$.

Proof. If $G=K_{p}$ or $G=\overline{K_{2}}$, then $M_{c n d}(G)=p K_{2}$ or $G=K_{1,2}$ by Proposition 2.2. Hence $d_{c n}\left(M_{c n d}(G)\right)=2$. The converse is obvious.

Theorem 2.11. For any graph G with at least one $C N$-isolated vertex,

$$
\beta_{c n}(G)=\beta(G)=p
$$

Proof. Let G be a graph of p vertices, and has at least one CN -isolated vertex w. Then from the definition of $M_{c n d}(G)$ if u and v any vertices in G then u and v can not be adjacent in $M_{c n d}(G)$, that is there is CN-independent containing w and of size p,and this CN-independent will be the maximal CN-independent because w is adjacent for all the minimal CN-dominating sets. Therefore $\beta_{c n}(G)=\beta(G)=p$.

Corollary 2.12.For any graph G with at least one $C N$-isolated vertex, $\alpha_{c n}(G)=\alpha(G)=$ $|S|$, where $|S|$ is the number of minimal $C N$-dominating set in G.

Proof. We have for any graph G with p vertices $\alpha_{c n}(G)+\beta_{c n}(G)=\alpha(G)+\beta(G)=p$ see [1], and from Theorem 2.11. Corollary is proved.

Observation 2.13. Let G is complete multi bipartite graph $K_{n_{1}, n_{2}, \ldots n_{t}}$, then $M_{\text {cnd }}(G) \cong$ $K_{1, \sum_{i=1}^{t}} n_{i}$.

Theorem 2.14. For any graph $G, d_{c n}(G)=\beta_{c n}\left(M_{c n d}(G)\right)$, if and only if G is complete graph.

Proof. Let G be complete graph K_{p}. Then from Theorem 2.11. $\beta_{c n}\left(M_{c n d}(G)\right)=p$, and we have $d_{c n}(G)=p$. Hence $d_{c n}(G)=\beta_{c n}\left(M_{e d}(G)\right)$.

Conversely, suppose $d_{c n}(G)=\beta_{c n}\left(M_{e d}(G)\right)$. From Theorem 2.11. $\beta_{c n}\left(M_{c n d}(G)\right)=p$ implies that $d_{c n}(G)=p$. Hence $G=K_{p}$.

Theorem 2.15. If $G=K_{p} \cup K_{1}$ for every $p \geq 3$, then the corona graph $K_{p} o K_{1}$ and K_{p} are edge-disjoint subgraphs of the graph $M_{c n d}(G)$.

Proof. Let $G=K_{p} \cup K_{1}$. Then there exists one CN -isolated vertex in G say x and this vertex will be exist in every minimal CN-dominating set of G. Hence the vertices
in $M_{\text {cnd }}(G)$ other than x which belong to $V(G)$ with the minimal CN-dominating set induced the corona subgraph $K_{p} o K_{1}$ of $M_{c n d}(G)$, and the minimal CN-dominating sets of G induced the subgraph K_{p} of $M_{c n d}(G)$, clearly the two subgraphs are edge-disjoint.

The vertices of the graph $M_{c n d}(G)$ can be labeling as following $v_{1}, \ldots, v_{p}, S_{1}, \ldots, S_{n}$, where $v_{i}, i=1,2, \ldots, p$ are the vertices in the graph G and $S_{j}, j=1,2, \ldots, n$ where n is number of minimal CN-dominating sets are the minimal CN-dominating set of G. By using this labeling we can get the connectivity and line-connectivity of the graph $M_{c n d}(G)$ in the following theorem.

Theorem 2.16. For any graph G,

$$
k\left(M_{c n d}(G)\right)=\lambda\left(M_{c n d}(G)\right)=\min \left\{\min \left(d_{M_{c n d}(G)}\left(v_{i}\right)\right), \min \left|S_{j}\right|\right\}
$$

Proof. We consider two cases:
Case 1: Let $u \in\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ and u have the minimum degree among all the vertices v_{i} in $M_{c n d}(G)$. If the degree of u is less than any vertex in $M_{c n d}(G)$. Then by deleting those vertices of $M_{c n d}(G)$ which are adjacent with u, we get disconnected graph, similarly by deleting those edges of $M_{c n d}(G)$ which are incident with u, results in a disconnected graph.

Case 2: If $u \in\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ and u have the minimum degree among all the vertices S_{i} in $M_{c n d}(G)$. If the degree of u is less than any vertex in $M_{c n d}(G)$. Then by deleting those vertices of $M_{c n d}(G)$ which are adjacent with u, we get disconnected graph, similarly by deleting those edges of $M_{c n d}(G)$ which are incident with u, results in a disconnected graph.

References

[1] Anwar Alwardi, N. D. Soner and Karam Ebadi, On the Common neighbourhood domination number, Journal Of Computer And Mathematical Sciences. 2(3)(2011), 547-556.
[2] F. Harary, Graph theory, Addison-Wesley, Reading Mass (1969).
[3] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc., New York (1998).
[4] S. M. Hedetneimi, S. T. Hedetneimi, R. C. Laskar, L. Markus and P. J. Slater. Disjoint dominating sets in graphs. Proc. Int. Conf. on Disc.Math., IMI-IISc, Bangalore (2006) 88-101.
[5] V. R. Kulli and B. Janakiram, The Minimal Dominating Graph, Graph Theory Notes of New York, New York Academy of Sciences, 28(1995), 12-15.
[6] V. R. Kulli, B. Janakiram and K. M. Niranjan, The Common Minimal Dominating Graph, Indian J. Pure. appl. Math., 27(1996), 193-196.
[7] V. R. Kulli, B. Janakiram and K. M. Niranjan, The Vertex Minimal Dominating Graph, Acta Ciencia Indica, 28(2002), 435-440.
[8] V. R. Kulli, B. Janakiram and K. M. Niranjan, The Dominating Graph, Graph Theory Notes of New York, New York Academy of Sciences, 46(2004), 5-8.
[9] H. B. Walikar, B. D. Acharya and E. Sampathkumar, Recent developmentsin the theory of domination in graphs, Mehta Research instutute, Alahabad, MRI Lecture Notes in Math. 1 (1979).

[^0]: *Corresponding author
 E-mail addresses: a_wardi@hotmail.com (A. Alwardi), ndsoner@yahoo.co.in (N.D Soner), deepak1873@gmail.com (G. Deepak)

 Received February 29, 2012

