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1. INTRODUCTION

In this article, we have introduced the weaker version of a radical class of semirings and es-

tablished that the existing definition of the radical class of semirings is equivalent to the weaker

version for additively cancellative and semisubtractive semirings. We have introduced and in-

vestigated the concept of weak radical classes for additively cancellative and semisubtractive

semirings. In general addition of two k-ideals (subtractive ideals) is not a k-ideal, hence we

have tried to improve some results for restricted class of semirings as given in [1].

Definition 1.1. A nonempty set R is said to form a semiring with respect to two binary opera-

tions, addition (+) and multiplication (·) defined on it, if the following conditions are satisfied.

(1) (R,+) is a commutative semigroup with zero,
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(2) (R, .) is a semigroup,

(3) for any elements a, b, c ∈ R, the left distributive law a · (b+ c) = a · b+ a · c and the right

distributive law (b+ c) ·a = b ·a+ c ·a both hold and

(4) a ·0 = 0 ·a = 0 for all a ∈ R.

Definition 1.2. An ideal I of a semiring R is said to be a k- ideal or subtractive ideal if a ∈ I and

a+b ∈ I for b ∈ R, then b ∈ I.

Definition 1.3. A semiring R is said to be semisubtractive if for a 6= b ∈ R, there exists c ∈ R

such that a+ c = b or d ∈ R such that a = d +b.

Definition 1.4. Let α : R→ S be a homomorphism of semirings. Then α is said to be a steady

homomorphism if for any a,b ∈ R,a ≡α b if and only if a ≡Kerα b ( a ≡Kerα b if and only if

a+ k = b+ k′ for some k,k′ ∈ Kerα and a≡α b if and only if α(a) = α(b)).

Definition 1.5. A semiring R is said to be a s-homomorphic image of S if there exists a steady

homomorphism from S onto R.

Theorem 1.6. [5] Let S be a semiring, T a semiring with an absorbing zero 0T , and φ : S→ T

a surjective homomorphism. Then K = φ−1(0T ) is a k-ideal of S (also called the kernel of

φ ) and φ([s]K) = φ(s) for all s ∈ S defines a semi-isomorphism φ : S/K → T which satisfies

φ o k#
K = φ , where k#

K denotes the natural homomorphism of S onto S/K = S/kK .

Theorem 1.7. [5] For a semiring S with an absorbing zero 0 let A be a subsemiring which

contains 0 and B an ideal of S. Then φ([a]A∩B̄) = [a]B for all a ∈ A ⊆ A+B defines a semi-

isomorphism

φ : A/A∩ B̄→ A+B/B.

Theorem 1.8. [5] Let A, B be ideals of a semiring S with the additional condition A⊆ B. Then

φ̄([s]B) = [[s]A]B̄/A for all s ∈ S defines an isomorphism

φ̄ : S/B→ (S/A)/(B̄/A).

Proposition 1.9. [2] A homomorphism f from any cancellative and semisubtractive semiring

S to any cancellative semiring T is always a steady homomorphism.
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Remark 1.10. [2] If S is cancellative and semisubtractive, then S/I is cancellative and semisub-

tractive for any k-ideal I of S. From Proposition 1.5 [1], the semi-isomorphism theorems for

semirings (semimodules) are the isomorphism theorems for cancellative and semisubtractive

semirings (semimodules).

2. RADICAL CLASSES

Definition 2.1. A class ℜ of semirings is a radical class whenever the following three conditions

are satisfied:

(a) ℜ is homomorphically closed; i.e. if S is a homomorphic image of a ℜ-semiring R, then S

is also a ℜ-semiring.

(b) Every semiring R contains a ℜ-ideal ℜ(R) which in turn contains every other ℜ-ideal of R.

(c) The factor semiring R/ℜ(R) does not contain any nonzero ℜ-ideal; i.e. ℜ(R/ℜ(R)) = 0.

An ideal I of a semiring R is called an ℜ-ideal if I is an ℜ-semiring. A semiring which does

not contain any non-zero ℜ-ideals will be called ℜ- semi-simple.

Definition 2.2. The maximal ℜ-ideal S of any semiring R is called the ℜ-radical of R and it is

denoted by ℜ(R).

Note that ℜ(R) is a k-ideal.

By the union (not set theoretic union) or sum of two subsemirings I and J of a semiring R we

mean the set of all i+ j where i is in I and j in J. More generally, if I1, I2, I3, ... is any (not-

necessarily finite or even countable) class of subsemirings of R, then by ∪Ik or I1 + I2 + I3 + ...

we mean the set of all sums i1 + i2 + i3 + ... where ik is in Ik and where only a finite number of

the ik are non-zero. It is easy to verify that the union of any set of ideals (left, right or two sided

) is again an ideal (left, right or two sided).

Theorem 2.3. A class ℜ of additively cancellative and semisubtractive semirings is a radical

class if and only if

(a) ℜ is homomorphically closed, that is, a homomorphic image of a ℜ-semiring is an ℜ-

semiring.
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(d) Every non zero homomorphic image of a semiring R contains a non-zero ℜ-ideal, then

R ∈ℜ.

Proof. Assume that (a), (b) and (c) hold. Then (a) implies (a). We shall prove that (b) and

(c) imply (d). Let R be a semiring such that R /∈ ℜ. Then ℜ(R) = S and S 6= R. But then

R/S 6= 0 and R/S is a homomorphic image of R which does not have a non zero ℜ-ideal since

ℜ(R/ℜ(R)) = 0. This proves (d). Thus (b) and (c) imply (d). Conversely assume that (a) and

(d) hold. Claim that (a), (b) and (c) hold. (a)⇒ (a). Let J be the union of Ii, where Ii is an

ideal of R for each i and Ii ∈ℜ. Claim that J ∈ℜ. If J = 0, then J ∈ℜ. If J 6= 0, let J/K 6= 0

be any factor semiring of J, where K ia a k− ideal in J. Since K ⊂ J, there must exists in R an

ℜ-ideal L such that L 6⊆ K. By theorem 1.7 and remark 1.10 L+K/ K ∼= L/L∩ K̄. However

L+K/K 6= 0 and is an ideal in J/K and L/L∩ K̄ is a homomorphic image of ℜ-ideal L and

by (a) L/L∩ K̄ ∈ ℜ. Therefore, every non-zero homomorphic image of J contains a non-zero

ℜ-ideal by (d), hence J ∈ℜ.

Finally we must establish (c). Take any semiring R. We know that R has an ℜ-radical S since

(b) is already established. Suppose that R/ℜ(R) = R/S is not semisimple as (ℜ(R/ℜ(R)) 6= 0

by (d). Let M/S be its non-zero ℜ-radical ( i.e. (ℜ(R/S) = M/S). Then M is an ideal of R

and M contains S. Let M/N be any non-zero factor semiring of the semiring M, where N is

a k− ideal. If N ⊇ S, then M/N is a homomorphic image of the ℜ-semiring M/S and by (a),

M/N is an ℜ-semiring. If N 6⊇ S, then N ∩ S = S and again by theorem 1.7 and remark 1.10

(N +S)/N ∼= S/S∩ N̄. The left hand side of this isomorphism is a non-zero ideal of M/N and

the right-hand side is a homomorphic image of the ℜ-semiring S and therefore by (a) it is an

ℜ-semiring. Thus every non-zero homomorphic image of M contains a non-zero ℜ-ideal, and

by (d), M is an ℜ-semiring. Then M must be in S, a contradiction. This establishes (c). �

Definition 2.4. A class ℜ̄ of semirings is said to be a semiradical class whenever the following

three conditions are satisfied:

(a’) ℜ̄ is s-homomorphically closed; i.e. if S is an s-homomorphic image of a ℜ̄-semiring R,

then S is also a ℜ̄-semiring.

(b’) Every semiring R contains a ℜ̄-subtractive ideal ℜ̄(R) which in turn contains every other

ℜ̄-subtractive ideal of R.
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(c’) The factor semiring R/ℜ̄(R) does not contain any non-zero ℜ̄-subtractive ideals; i.e.

ℜ̄(R/ℜ̄(R)) = 0.

Proposition 2.5. If ℜ̄ is a semiradical, then R is an ℜ̄-semiradical semiring if and only if R

cannot be mapped steady-homomorphically onto a non-zero ℜ̄-semisimple semiring.

Proof. If R is an ℜ̄-semiradical semiring then condition (a’) implies that every non zero s-

homomorphic image of R is also a ℜ̄-semiradical semiring and therefore it cannot be ℜ̄-

semisimple. Conversely, if R is not a ℜ̄-semiradical semiring, then by (b’) and (c’) it can be

mapped s-homomorphically onto the non-zero ℜ̄-semisimple semiring R/ℜ̄(R), where ℜ̄(R) is

the ℜ̄-semiradical of R. �

3. WEAK RADICAL CLASSES

Definition 3.1. A class σ of semirings is a weak radical class whenever the following two

conditions are satisfied:

(a1) If R is an σ -semiring, then every non-zero steady homomorphic image of R has a non-zero

σ -subtractive ideal;

(d1) If every-non-zero steady homomorphic image of a semiring R has a non-zero σ -subtractive

ideal then R is an σ -semiring.

Remark 3.2. Observe that by axiom (d1) the semiring 0 is always a σ -weak radical semiring.

Furthermore, there are two trivial weak radical classes, the semiring 0 and the class of all semir-

ings. Note that when σ is a class of rings, this definition defaults to the standard definition of a

radical class.

Proposition 3.3. Every semiradical class of semirings is a weak radical class.

Proof. If ℜ is a semiradical class, then the class ℜ satisfies conditions (a’), (b’), and (c’).

Condition (a’) implies condition (a1) trivialy. If R is not a ℜ-semiring, then by (b’) we have

ℜ(R) 6= R, and so R/ℜ(R) is a non-zero homomorphic image of R which does not contain

non-zero ℜ-subtractive ideals by (c’). Hence the condition (d1). �

We develop weak radical classes in the same way that radical classes of rings are developed

in [3].
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Theorem 3.4. Let M be any class of semiring which satisfies the following condition:

(e) Every non-zero subtractive ideal of a semiring of M can be mapped s-homomorphically

onto some non-zero semiring of M .

Then the class σM = {R : R cannot be mapped s-homomorphically onto any non-zero semiring

of M } is a weak radical class.

Proof. Proof is similar to ([1], Theorem 3).

We prove the following fundamental theorem for any subclass of additively cancellative and

semisubtractive semirings of an universal class £ of semirings. �

Theorem 3.5. A class M ⊂ £ is a class of all ℜ-semisimple semirings with respect to some

semiradical class ℜ over the class £ if and only if M satisfies the following conditions:

(e) Every non-zero subtractive ideal of a semiring of M can be mapped s-homomorphically

onto some non-zero semiring of M .

(f) If every non-zero subtractive ideal of a semiring R can be mapped s-homomorphically onto

some non-zero semiring of M , then the semiring R must be in M .

Proof. Proof follows by Theorem 2.3 and Proposition 2.5. �
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