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Abstract. In fuzzy topological space, the concepts of fuzzy continuity are developed by applying fuzzy open sets.

In this paper the notions of fuzzy continuity are investigated using fuzzy C -open sets, where C is an arbitrary

complement function C : [0,1]→ [0,1] and some of their properties are studied.
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1. INTRODUCTION

Most of the concepts of general topology are developed using the notions of continuity. The

idea of continuity in topological space are introduced by open sets. [5] generalized the continu-

ity of a function in topological space to fuzzy topological space using fuzzy open sets. Some of

the week forms of fuzzy continuity investigated by [1, 7, 9, 8, 4, 6, 10, 3]. A new type of fuzzy

closed sets are introduced using arbitrary complement function named as fuzzy C -closed sets

by [2]. Continuing this fuzzy C -open sets are defined with arbitrary complement function by

[11] and verified that fuzzy C -open sets and fuzzy C -closed sets are independent with respect

to arbitrary complement function C : [0,1]→ [0,1]. A fuzzy subset λ is fuzzy C -open if C λ
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is fuzzy closed. In 2017, fuzzy C -interior are characterized using fuzzy C -open sets. Further

fuzzy nearly open sets are investigated using fuzzy C -interior and fuzzy closure operators. In

this paper the concepts of fuzzy continuity are characterized using fuzzy nearly C -open sets.

Throughout this paper (X ,τ) be a fuzzy topological space and C be an arbitrary complement

function.

Definition 1. Let f : (X ,τ)→ (Y,σ) be a function from a fuzzy topological space (X ,τ) to a

fuzzy topological space (Y,σ).

(i) f is fuzzy continuous if the inverse image of every fuzzy open set in Y is fuzzy open in X.

[5]

(ii) f is fuzzy semi continuous if f−1(µ) is fuzzy semi open of X for each µ of Y . [1]

(iii) f is fuzzy pre continuous if f−1(µ) is fuzzy pre open in X for each µ in Y . [4]

(iv) f is fuzzy α-continuous if f−1(µ) is a fuzzy α-open set in X for each µ in Y . [4]

(v) f is fuzzy almost continuous function if f−1(µ) is a fuzzy open set for each fuzzy regular

open set µ in Y . [1]

(vi) f is fuzzy semi pre continuous function if f−1(µ) is fuzzy semi pre open of X for each µ of

Y . [6]

(vii) f is fuzzy b-continuous function if f−1(µ) is fuzzy b-open of X for each µ of Y . [3]

Lemma 2. [11] Let C S = SC where C be an arbitrary complement function and S be standard

complement function. Then

(i) λ is fuzzy C -closed iff Sλ is fuzzy C -open.

(ii) λ is fuzzy C -open iff Sλ is fuzzy C -closed.

Definition 3. [13]

(i) If intC (cl(λ )) = λ , then λ is fuzzy regular C -open

(ii) If λ ≤ intC (cl(intC (λ ))), then λ is fuzzy α-C -open

(iii) If λ ≤ cl(intC (λ )), then λ is fuzzy semi C -open

(iv) If λ ≤ intC (cl(λ )), then λ is fuzzy pre C -open

(v) If λ ≤ cl(intC (cl(λ ))), then λ is fuzzy semi pre C -open

(vi) If λ ≤ cl(intC (λ ))∨ intC (cl(λ )), then λ is fuzzy b-C -open
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(vii) If λ = cl(intC (λ ))∨ intC (cl(λ )), then λ is fuzzy b#-C -open

The fuzzy interior and fuzzy closure operators for the above sets are defined in the usual

manner and denoted as SC int, PC int, βC int, bC int, b#
C int, SC cl, PC cl, βC cl, bC cl and b#

C cl.

Lemma 4. [13] Let λ be a fuzzy subset of a fuzzy topological space (X ,τ) and C be a comple-

ment function that satisfies the monotonic and involutive conditions. Then λ is fuzzy α-C -closed

if and only if C λ is fuzzy α-C -open.

2. FUZZY C -CONTINUITY

Definition 5. A function f : (X ,τ)→ (Y,σ) be a function and C be a complement function.

Then f is said to be

(i) fuzzy C -continuous if f−1(µ) is fuzzy C -open for each fuzzy open subset µ of Y .

(ii) fuzzy regular C -continuous if f−1(µ) is fuzzy regular C -open for each fuzzy open subset

µ of Y .

(iii) fuzzy α-C -continuous if f−1(µ) is fuzzy α-C -open for each fuzzy open subset µ of Y .

(iv) fuzzy semi C -continuous if f−1(µ) is fuzzy semi C -open for each fuzzy open subset µ of

Y .

(v) fuzzy pre C -continuous if f−1(µ) is fuzzy pre C -open for each fuzzy open subset µ of Y .

(vi) fuzzy semi pre C -continuous if f−1(µ) is fuzzy semi pre C -open for each fuzzy open subset

µ of Y .

(vii) fuzzy b-C -continuous if f−1(µ) is fuzzy b-C -open for each fuzzy open subset µ of Y .

(viii) fuzzy b#-C -continuous if f−1(µ) is fuzzy b#-C -open for each fuzzy open subset µ of Y .

Definition 6. A function f : (X ,τ)→ (Y,σ) is said to be almost C -continuous if f−1(µ) is fuzzy

C -open for each fuzzy regular open subset µ of Y .

Theorem 7. A function f : (X ,τ)→ (Y,σ) be a function and C be a complement function

satisfies the monotonic and involutive conditions. Consider the following statements.

(i) f is a fuzzy almost C -continuous function.

(ii) f−1 is a fuzzy C -closed set for each regular closed set µ of Y .

(iii) intC f−1(µ)≤ f−1(int(cl(µ))) for each µ ∈ Y .
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(iv) f−1(cl(int(µ)))≤ cl( f−1(cl(µ)))

Then the implications (i)⇒ (ii), (ii)⇒ (i), (i)⇒ (iii) and (i)⇒ (iv) holds.

Proof. (i)⇒ (ii) Suppose (i) holds and λ is fuzzy regular closed. Then Sλ is fuzzy regular

open. By using Definition 5, f−1(Sλ ) is fuzzy C -open. ⇒ S f−1(λ ) is fuzzy C -open. By using

Lemma 2, f−1(λ ) is fuzzy C -closed.

(ii)⇒ (i) Suppose (ii) holds. Let λ be a fuzzy regular open, then Sλ is fuzzy regular closed.

By (ii), f−1(Sλ ) is fuzzy C -closed. ⇒ S( f−1(λ )) is fuzzy C -closed. Using Lemma 2, f−1(λ )

is fuzzy C -open. Thus f is fuzzy almost C -continuous.

(i)⇒ (iii) Now λ ≤ cl(λ )⇒ int(λ )≤ int(cl(λ ))⇒ intC f−1(int(λ ))≤ f−1(int(cl(λ ))).

(i)⇒ (iv) Now int(λ )≤ λ ⇒ cl(int(λ ))≤ cl(λ )⇒ f−1(cl(int(λ )))≤ f−1(cl(λ ))

⇒ f−1(cl(int(λ )))≤ cl( f−1(cl(λ ))). �

Theorem 8. f : (X ,τ) → (Y,σ) is fuzzy α-C -continuous if and only if it is fuzzy semi C -

continuous and fuzzy pre C -continuous where C be a complement function that satisfies the

monotonic and involutive conditions.

Proof. Let f be fuzzy semi C -continuous and fuzzy pre C -continuous. Let µ be a fuzzy open

in Y . Then by Definition 5, f−1(µ) is fuzzy semi C -open and f−1(µ) is fuzzy pre C -open.

Since C satisfies the monotonic and involutive conditions, using Lemma 4, f−1(µ) is fuzzy

α-C -open set. Thus f is fuzzy α-C -continuous.

Conversely, f is fuzzy α-C -continuous. This implies that f−1(µ) is fuzzy α-C -open for

each fuzzy open set µ in Y . We have every fuzzy α-C -open set is fuzzy semi C -open and fuzzy

pre C -open. Therefore f is fuzzy semi C -continuous and fuzzy pre C -continuous. �

Theorem 9. Let f : (X ,τ)→ (Y,σ) be a function and C be a complement function that satisfies

the monotonic and involutive conditions. Then the following statements are equivalent.

(i) f is a fuzzy b-C -continuous function.

(ii) f−1(λ ) is a fuzzy b-closed set of X, for each fuzzy closed set λ of Y .

(iii) f (bC clµ)≤ cl f (µ) for each fuzzy subset µ of X.

(iv) bC cl( f−1(λ ))≤ f−1(cl(λ )) for each fuzzy subset set λ of Y .

(v) f−1(int(λ ))≤ bC int f−1(λ ) for each fuzzy subset λ of Y .
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Then the implications (i)⇒(ii), (ii)⇒(iii), (iii)⇒(iv), (iv)⇒(v) and (v)⇒(vi) holds.

Proof. (i)⇒(ii)

Let λ be a fuzzy closed set of Y . Then Sλ is a fuzzy open set of Y . By Definition 5, f−1(Sλ )

is fuzzy b-C -open in X ⇒ S f−1(λ ) is fuzzy b-C -open in X . Since fuzzy b-C -open and fuzzy

b-open coincides when complement function is standard complement, S f−1(λ ) is fuzzy b-open

in X . Thus f−1(λ ) is a fuzzy b-closed set of X .

(ii)⇒(iii)

Let µ be a fuzzy subset of X . Then cl f (µ) is a fuzzy closed set of Y . From(ii), f−1(cl f (µ)) is

a fuzzy b-C -closed set of X

⇒ bC cl(µ)≤ bC cl f−1( f (µ))≤ bC cl f−1( f (clµ)) = f−1( f (clµ)).

⇒ f (bC cl(µ))≤ f f−1 f (clµ)≤ f (cl(µ)).

(iii)⇒(iv)

Let λ be a fuzzy subset of Y . By assumptions f (bC cl f−1(λ ))≤ cl( f f−1(λ ))≤ cl(λ ).

Thus bC cl f−1(λ )≤ f−1 f (bC cl f−1(λ ))≤ f−1(cl(λ ))

Therefore bC cl f−1(λ )≤ f−1(cl(λ )).

(iv)⇒(v)

Let λ be a fuzzy subset of Y . From(iv), f−1(cl(C λ ))≥ bC cl f−1(C λ ) = bC clC f−1(λ )

⇒ f−1(intC (λ )) = C f−1(cl(C λ ))≤ bC clC ( f−1(C λ )) = bC int f−1(λ ).

Thus f−1(intC (λ )) = bC int f−1(λ ).

(v)⇒(vi)

Let λ be a fuzzy open set of Y . Then λ = int(λ ).

From (v) f−1(λ ) = f−1(int(λ ))≤ bC int f−1(λ )≤ f−1(λ )

⇒ f−1(λ ) = bC int( f−1(λ ))

Therefore f is a fuzzy b-C -continuous function. �

Theorem 10. Let f : X → Y be a function and C be a complement function. Consider the

following statements.

(i) f is a fuzzy b-C -continuous.

(ii) PC int(PC cl f−1(λ ))≤ f−1(clλ ) for each λ of Y .

(iii) f (PC int(PC clµ))≤ cl f (µ) for each µ of X.
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Then the implications (i)⇒(ii), (ii)⇒(iii) and (iii)⇒(i) holds.

Proof. (i)⇒(ii)

Let λ be a fuzzy subset of Y . Then f−1(clλ ) is a fuzzy b-C -closed set.

Hence f−1(clλ )≥ PC int(PC cl f−1(clλ ))≥ PC int(PC cl f−1(λ )).

(ii)⇒(iii)

Let µ be a fuzzy subset of X and λ = f (µ), then µ ≤ f−1(λ ).

By assumption PC int(PC cl(λ ))≤ PC int(PC cl f−1(λ ))≤ f−1(cl(λ )).

Hence f (PC int(PC clλ ))≤ cl(λ ) = cl( f (µ)).

(iii)⇒(i)

Let λ be a fuzzy closed set of Y .

By assumption, f (PC int(PC cl f−1(λ )))≤ cl f f−1(λ )≤ cl(λ ) = λ .

PC int(PC cl f−1(λ ))≤ f−1 f (PC int(PC cl f−1(λ )))≤ f−1(λ )

Therefore f−1(λ ) is a fuzzy b-C -closed set. �

Theorem 11. Let f : X → Y be a bijective function and C be a complement function. Then the

function f is fuzzy b-C -continuous if and only if int( f (λ ))≤ f (bC int(λ )) for each fuzzy subset

λ of X.

Proof. Let f be fuzzy b-C -continuous and λ be a fuzzy subset of X . Then f−1(int( f (λ ))) is a

fuzzy b-C -open set of X . Since f is injective,

f−1(int( f (λ )))≤ bC int f−1(int( f (λ ))≤ bC int f−1(λ ) = bC int(λ )

Since f is surjective,

int f (λ ) = f f−1(int f (λ ))≤ f (bC intλ ).

Conversely, let µ be a fuzzy open set of Y . Then int(µ) = µ .

By assumption f (bC int f−1(µ))≥ int f f−1(µ) = int(µ) = µ

⇒ f−1 f (bC int f−1(µ))≥ f−1(µ)

Since f is injective,

bC int f−1(µ) = f−1 f (bC int f−1(µ))≥ f−1(µ)

⇒ bC int f−1(µ)) = f−1(µ).

Thus f is fuzzy b-C -continuous. �
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Theorem 12. Let f : X → Y be a function and C be a complement function. Consider the

following statements.

(i) f is fuzzy semi pre C -continuous.

(ii) the inverses of a fuzzy closed set of Y is a fuzzy semi pre closed set.

(iii) f (βC cl(λ ))≤ cl f (λ ) for each λ of X.

(iv) βC cl f−1(µ)≤ f−1(cl(µ)) for each µ of Y .

Then the implications (i)⇒(ii), (ii)⇒(iii), (iii)⇒(iv) holds.

Proof. (i)⇒(ii)

Let λ be a fuzzy closed set of Y . Then Sλ is a fuzzy open set of Y . By Definition 5, f−1(Sλ ) is

fuzzy semi pre C -open in X ⇒ S f−1(λ ) is fuzzy semi pre C -open in X . Since fuzzy semi pre

C -open and fuzzy semi pre open coincides when complement function is standard complement,

S f−1(λ ) is fuzzy semi pre open in X . Thus f−1(λ ) is a fuzzy semi pre closed set of X .

(ii)⇒(iii)

Let λ be a fuzzy subset of X . Then cl f (λ ) is fuzzy closed. By assumption f−1(cl f (λ )) is

fuzzy semi pre C -closed.

⇒ f−1(cl f (λ )) = βC cl f−1(cl f (λ ))

Since λ ≤ f−1 f (λ ),βC cl(λ )≤ βC cl f−1 f (λ )≤ βC cl f−1(cl f (λ )) = f−1(cl f (λ )).

Thus f (βC cl(λ ))≤ cl f (λ ).

(iii)⇒(iv)

Let µ be a fuzzy subset of Y . Then by (c) we have f (βC cl f−1(µ))≤ cl f ( f−1(µ)).

⇒ βC cl f−1(µ)≤ f−1(cl f ( f−1(µ)))≤ f−1(clµ)

Thus βC cl f−1(µ)≤ f−1(clµ).

�

Theorem 13. Let f : (X ,τ)→ (Y,σ) is fuzzy pre C -continuous, then f is b-C -continuous.

Proof. Let λ be a fuzzy open set in Y . Since f is fuzzy pre C -continuous, f−1(λ ) is fuzzy pre

C -open set in X which implies f−1(λ ) is b-C -open. Hence f is fuzzy b-C -continuous. �

Theorem 14. If f : (X ,τ) → (Y,σ) is fuzzy b-C -continuous, then f is fuzzy semi pre C -

continuous.
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Proof. Let λ be a fuzzy open set in Y . Since f is fuzzy b-C -continuous, f−1(λ ) is fuzzy b-C -

open set and hence f−1(λ ) is fuzzy semi pre C -open in X . Therefore f−1(λ ) is fuzzy semi pre

C -continuous. �

Theorem 15. Let f : (X ,τ)→ (Y,σ) be a function and C be a complement function. Consider

the following statements.

(i) f is a fuzzy b#-C -continuous function.

(ii) The inverse image of a closed set in Y is fuzzy b#-closed set in X.

(iii) b#cl( f−1(µ))≤ ( f−1(cl(µ))) for every fuzzy subset µ of Y .

(iv) f (b#
C cl(λ ))≤ cl( f (λ )) for every fuzzy subset λ of X.

(v) f−1(int(µ))≤ b#
C int( f−1(µ)) for every fuzzy subset µ of Y .

Then the implications (i)⇒ (ii), (ii)⇒ (iii), (iii)⇒ (iv), (iv)⇒ (v) and (v)⇒ (i) holds

Proof. (i)⇒ (ii)

Let λ be a fuzzy closed set of Y . Then Sλ is a fuzzy open set of Y . By Definition 5, f−1(Sλ )

is fuzzy b#-C -open in X ⇒ S f−1(λ ) is fuzzy b#-C -open in X . Since fuzzy b#-C -open and

fuzzy b#-open coincides when complement function is standard complement, S f−1(λ ) is fuzzy

b#-open in X . Thus f−1(λ ) is a fuzzy b#-closed set of X .

(ii)⇒ (iii)

Let µ be any fuzzy subset of Y . Since cl(µ) is closed in Y , then f−1(cl(µ)) is fuzzyb#-C -closed

in X . Therefore b#
C cl( f−1(µ)) ≤ b#

C cl( f−1(cl(µ))) = f−1(cl(µ)). Thus b#
C cl( f−1(µ)) ≤

f−1(cl(µ)).

(iii)⇒ (iv)

Let λ be any fuzzy subset of X .By (iii), f−1(cl( f (λ ))) ≥ b#
C cl( f−1( f (λ ))) ≥ b#

C cl(λ ). Thus

f (b#
C cl(λ )) = cl f (λ ).

(iv)⇒ (v)

Let µ be any fuzzy subset of Y . By (iv), f (b#
C cl(C ( f−1( f (µ)))≤ cl( f (C ( f−1(µ)))).

⇒ f−1(intC µ)≤ b#
C int f−1(µ).

(v)⇒ (i)

Let µ be any fuzzy open subset of Y . Then f−1(int(µ))≤ b#
C int( f−1(µ)).
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⇒ f−1(µ)≤ b#
C int( f−1(µ))

But b#
C int( f−1(µ))≤ f−1(µ)

⇒ f−1(µ) = b#
C int( f−1(µ)) Therefore f−1(µ) is fuzzy b#-C -open in X . Hence f is fuzzy

b#-C -continuous function. �

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

[1] K.K. Azad, On Fuzzy Semicontinuity, Fuzzy Almost Continuity and Fuzzy Weakly Continuity, J. Math. Anal.

Appl. 82 (1981), 14-32.

[2] K. Bageerathi, G. Sutha, P.Thangavelu, A generalization of fuzzy closed sets, Int. J. Fuzzy Syst. Rough Syst.

4(1) (2011), 1-5.

[3] B. Krsteska, Fuzzy b-open sets and Fuzzy b-separation axioms, Filomat, 13 (1999), 115-128.

[4] A.S. Bin Shahana, On fuzzy strong semi-continuity and fuzzy pre continuity, Fuzzy Sets Syst. 44 (1991),

303-308.

[5] C.L. Chang, Fuzzy topological space, J. Math. Anal. Appl. 24 (1968), 182-190.

[6] J.H. Park, B.Y. Lee, Fuzzy semi-preopen sets and fuzzy semi-precontinuous mappings, Fuzzy Sets Syst.

67(3)(1994), 359-364.

[7] S.R. Malghan, S.S. Benchalli, Open maps, closed maps and local compactness in fuzzy topological spaces,

J. Math. Anal. Appl. 99 (1984), 338-349.

[8] M.N. Mukherjee, S.P. Sinha, Irresolute and almost open functions between fuzzy topological spaces, Fuzzy

Sets Syst. 29(3)(1989), 381-388.

[9] S. Saha, Fuzzy δ -continuous mappings, J. Math. Anal. Appl. 126 (1987), 130-142.

[10] S.S. Thakur, S. Singh, On fuzzy semi-preopen sets and fuzzy semi-precontinuity, Fuzzy Sets Syst. 98 (3)

(1998), 383-391.

[11] P. Xavier, P. Thangavelu, Generalization of fuzzy open sets and fuzzy closed sets via complement func-

tions, International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai,

(2016), 889-891.

[12] P. Xavier, P. Thangavelu, Generalization of Fuzzy Operations using Arbitrary Complement Function, In. J.

Pure Appl. Math. 112 (2) (2017), 349-357.

[13] P. Xavier, A novel approach to fuzzy nearly open sets and fuzzy continuity. Ph.D. Thesis, Karunya Institute

of Technology and Sciences (Deemed to be University), India, 2019.


