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1. INTRODUCTION 

In the recent past, the notion of multiplicative metric space (MMS) was introduced by Bashirove 

et.al. [1]. Many authors [3], [4], [5], [7], [8] and [9] proved fixed point theorems on 

multiplicative metric space. Jungck and Rhoades [10] defined the weaker class of mappings as 

weakly compatible mappings. Aamri and Moutawakil [2] developed the notion of E.A 
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property .Further Ozavsar et.al. [7] designed the notion of convergence and proved unique 

common fixed point results in multiplicative metric space. In this paper we generate a common 

fixed point theorem using the concept of weakly compatible mappings with EA property. Our 

presentation is also  supported by the  provision of a suitable example. 

 

2. PRELIMINARIES 

2.1 Definition: 

Let X ≠ ϕ, an MMS is a mapping δ: 𝑋 × 𝑋 → ℝ + holding the conditions below: 

(i) δ(𝛼, 𝛽) ≥ 1 , δ(𝛼, 𝛽) = 1⇔α= 𝛽, 

(ii) δ(𝛼, 𝛽) = δ(𝛽, 𝛼), 

(iii) δ(𝛼, 𝛽)  ≤ δ(𝛼, γ). δ(γ, 𝛽) α,β,γ∈ X. 

Mapping together with X, (𝑋, δ) is called MMS. 

2.2 Definition: 

In a MMS a sequence {αk} is assumed as 

i. a multiplicative convergent if for any multiplicative open ball B∈ (α) = {β/  δ(α, β ) <

∈}, ∈> 1, 𝑡ℎ𝑒𝑛 ∃Nϵℕ such that αkϵB∈ (X) ∀k ≥ ℕ holds. That is d(αk, α) → 1 as 

k → ∞. 

ii. A multiplicative Cauchy sequence is one if ∀ϵ > 1, N∈ ℕ such that δ(αk, αl) < 𝜖 ∀k,l≥

ℕ holds. That is δ(αk, αl) → 1     as k, l → ∞ . 

iii. An MMS is complete if every multiplicative Cauchy sequence is convergent in it. 

2.3 Definition: 

Let f be a mapping of MMS and if the existence of a number λϵ[0, 1) such that δ(Gα, Gβ)≤ 

δλ(α, β)α,β ϵ X holds, then G is known as multiplicative contraction. 

2.4 Definition: 

We define mappings G and I of a MMS as compatible if 𝛿(𝐺𝐼𝛼𝑘, 𝐼𝐺𝛼𝑘) = 1   as k → ∞, when 

ever {αk} is a sequence in X such that 𝐺𝛼𝑘 = 𝐼𝛼𝑘 = 𝜇   as  k → ∞  for some  𝜇 ∈ X . 

2.5 Definition: 
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The mappings G and Hof a MMS in which if 𝐺µ = 𝐼µ for some µ𝜖𝑋 such that GIµ = 𝐼𝐺µ 

holds then we say that 𝐺 and I are weakly compatible mappings. 

2.6 Definition: 

Mappings G and I of a MMS (X,d) are said to hold  EA property if 

X. some IxlimGxlim k
k

k
k

==
→→


 

Now we discuss an example for E.A property. 
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Also G(2)=I(2)=2,and GI(2)=IG(2),this shows the pair (G,I) is weakly compatible. 

 

3. MAIN RESULTS 

Now we prove our main theorem on MMS. 

3.1. Theorem 

Suppose in a complete MMS (X, δ), there are four mappings G, H, I and J holding the conditions 

(C1)  
)(   H(X)      )()( XIandXJXG 
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(C3)  the pairs (G, I) and (H,J)  are  satisfying the E.A property 

(C4)  the pair of mappings(G,I) and (H,J) are weakly compatible. 

Then the above mappings will be having a common fixed point. 

Proof: 

Begin with using the condition (C1), there is a point  ∝0єX such that G∝0=J∝1= 0
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Nowthe pair (G,I) is weakly compatible with  Gαk=Iαk gives  GIαk=IGαk and this  inturn  
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implies Gµ=Iµ. 

Now we show that Gµ = µ. 

Putting α=µ and 
k

 =  in the inequality (C2) we have 
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point. fixedcommon   theof uniqueness   theassures This  

Now we substantiate our result with an example. 

3.2 Example: 
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Similarly we can prove other cases. 
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J. and IG,H, mappings self

four  for thepoint  fixed uniquecommon     theis 
3

2
that  observed becan It 

 

CONCLUSION 

In this paper we established a result in multiplicative metric space using the set of conditions 

weakly compatible mappings and EA-property and also an example is given to justify our 

theorem. 
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