A FIXED POINT THEOREM USING E.A PROPERTY ON MULTIPLICATIVE METRIC SPACE

V. SRINIVAS ${ }^{1,{ }^{, *},}$ T. THIRUPATHI ${ }^{2}$, K. MALLAIAH ${ }^{3}$
${ }^{1}$ Mathematics Department, University College of Science, Saifabad, Osmania University, Hyderabad, India
${ }^{2}$ Mathematics Department, Sreenidhi Institute of Science \& Technology, Ghatkesar, Hyderabad, Telangana, India ${ }^{3}$ JN Government Polytechnic, Ramanthapur, Hyderabad, Telangana, India.
Copyright © 2020 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The emphasis of this paper is to establish a common fixed point theorem on a multiplicative metric space using the conditions weakly compatible mappings and EA-property. Further some examples are discussed to substantiate our result.

Keywords: common fixed point; multiplicative metric space; weakly compatible mappings and EA- property.
2010 AMS Subject Classification: 54H25, 47H10.

1. INTRODUCTION

In the recent past, the notion of multiplicative metric space (MMS) was introduced by Bashirove et.al. [1]. Many authors [3], [4], [5], [7], [8] and [9] proved fixed point theorems on multiplicative metric space. Jungck and Rhoades [10] defined the weaker class of mappings as weakly compatible mappings. Aamri and Moutawakil [2] developed the notion of E.A

[^0]Received June 5, 2020
property .Further Ozavsar et.al. [7] designed the notion of convergence and proved unique common fixed point results in multiplicative metric space. In this paper we generate a common fixed point theorem using the concept of weakly compatible mappings with EA property. Our presentation is also supported by the provision of a suitable example.

2. PRELIMINARIES

2.1 Definition:

Let $\mathrm{X} \neq \phi$, an MMS is a mapping $\delta: X \times X \rightarrow \mathbb{R}+$ holding the conditions below:
(i) $\delta(\alpha, \beta) \geq 1, \delta(\alpha, \beta)=1 \Leftrightarrow \alpha=\beta$,
(ii) $\delta(\alpha, \beta)=\delta(\beta, \alpha)$,
(iii) $\quad \delta(\alpha, \beta) \leq \delta(\alpha, \gamma) . \delta(\gamma, \beta) \forall \alpha, \beta, \gamma \in \mathrm{X}$.

Mapping together with $\mathrm{X},(X, \delta)$ is called MMS.

2.2 Definition:

In a MMS a sequence $\left\{\alpha_{k}\right\}$ is assumed as
i. a multiplicative convergent if for any multiplicative open ball $B_{\in}(\alpha)=\{\beta / \delta(\alpha, \beta)<$ $\in\}, \in>1$, then $\exists N \in \mathbb{N}$ such that $\alpha_{k} \in B_{\in}(X) \forall k \geq \mathbb{N}$ holds. That is $d\left(\alpha_{k}, \alpha\right) \rightarrow 1$ as $\mathrm{k} \rightarrow \infty$.
ii. A multiplicative Cauchy sequence is one if $\forall \epsilon>1, \mathrm{~N} \in \mathbb{N}$ such that $\delta\left(\alpha_{\mathrm{k}}, \alpha_{\mathrm{l}}\right)<\epsilon \forall \mathrm{k}, \mathrm{l} \geq$ \mathbb{N} holds. That is $\delta\left(\alpha_{k}, \alpha_{l}\right) \rightarrow 1$ as $k, l \rightarrow \infty$.
iii. An MMS is complete if every multiplicative Cauchy sequence is convergent in it.

2.3 Definition:

Let f be a mapping of MMS and if the existence of a number $\lambda \in[0,1)$ such that $\delta(\mathrm{G} \alpha, \mathrm{G} \beta) \leq$ $\delta^{\lambda}(\alpha, \beta) \forall \alpha, \beta \in \mathrm{X}$ holds, then G is known as multiplicative contraction.

2.4 Definition:

We define mappings G and I of a MMS as compatible if $\delta\left(G I \alpha_{k}, I G \alpha_{k}\right)=1$ as $\mathrm{k} \rightarrow \infty$, when ever $\left\{\alpha_{\mathrm{k}}\right\}$ is a sequence in X such that $G \alpha_{k}=I \alpha_{k}=\mu$ as $\mathrm{k} \rightarrow \infty$ for some $\mu \in \mathrm{X}$.

2.5 Definition:

The mappings G and Hof a MMS in which if $G \mu=I \mu$ for some $\mu \in X$ such that $G I \mu=I G \mu$ holds then we say that G and I are weakly compatible mappings.

2.6 Definition:

Mappings G and I of a MMS (X,d) are said to hold EA property if $\lim _{\mathrm{k} \rightarrow \infty} \mathrm{Gx}_{\mathrm{k}}=\lim _{\mathrm{k} \rightarrow \infty} \mathrm{Ix}_{\mathrm{k}}=\mu$ some $\mu \in \mathrm{X}$.

Now we discuss an example for E.A property.

Example:

Suppose $\mathrm{X}=[2,4]$ with $\delta(\alpha, \beta)=\mathrm{e}^{|\alpha-\beta|}$ for all $\alpha, \beta \in X$
Define $\quad G(\alpha)= \begin{cases}2 & \text { if } \alpha=2 \\ \frac{2 \alpha}{3} & \text { if } 3<\alpha \leq 4\end{cases}$
and $I(\alpha)=\left\{\begin{array}{lll}2 & \text { if } 2 \leq \alpha<3 \\ \frac{\alpha+3}{3} & \text { if } & 3 \leq \alpha<4\end{array}\right.$

Take a sequence $\left\{\alpha_{\mathrm{k}}\right\}$ as $\alpha_{k}=3+\frac{1}{k}$ for $k \geq 0$.
Then $G \alpha_{k}=G\left(3+\frac{1}{k}\right)=\frac{2\left(3+\frac{1}{k}\right)}{3}=2+\frac{1}{\mathrm{k}}=2$ as $\mathrm{k} \rightarrow \infty$ and
$I \alpha_{k}=I\left(3+\frac{1}{k}\right)=\frac{\left(3+\frac{1}{k}+3\right)}{3}=\left(\frac{6}{3}+\frac{1}{3 k}\right)=2+\frac{1}{k}=2$ as $k \rightarrow \infty$.
This gives $G \alpha_{k}=I \alpha_{k}=2 \in X$ as $\mathrm{k} \rightarrow \infty$.
This gives (G,I) satisfies EA-property.
Then $G I \alpha_{k}=G\left(2+\frac{1}{k}\right)=\frac{4}{3}$
and $I G \alpha_{k}=I\left(2+\frac{1}{k}\right)=2$.
Therefore $G I \alpha_{k} \neq I G \alpha_{k}$, this shows the pair (G,I) is not compatible.

Also $\mathrm{G}(2)=\mathrm{I}(2)=2$, and $\mathrm{GI}(2)=\mathrm{IG}(2)$, this shows the pair (G,I) is weakly compatible.

3. MAIN RESULTS

Now we prove our main theorem on MMS.

3.1. Theorem

Suppose in a complete MMS (X, δ), there are four mappings G, H, I and J holding the conditions

$$
\begin{equation*}
G(X) \subseteq J(X) \text { and } \mathrm{H}(\mathrm{X}) \subseteq I(X) \tag{C1}
\end{equation*}
$$

(C2) $\delta(G \alpha, H \beta) \leq\left[\max ,\left\{\begin{array}{l}\frac{\delta(G \alpha, I \alpha) \delta(H \beta, J \beta)}{1+\delta(I \alpha, J \beta)}, \frac{\delta(G \alpha, J \beta) \delta(I \alpha, H \beta)}{1+\delta(J \beta, I \alpha)}, \\ \frac{\delta(G \alpha, J \beta) \delta(H \beta, J \beta)}{1+\delta(I \alpha, J \beta)}, \frac{\delta(G \alpha, I \alpha) \delta(H \beta, I \alpha)}{1+\delta(I \alpha, J \beta)}\end{array}\right\}\right]^{\lambda}$
for all $\alpha, \beta \in X$, where $\quad \lambda \in\left(0, \frac{1}{3}\right)$
(C3) the pairs (G, I) and (H, J) are satisfying the E.A property
(C4) the pair of mappings(G,I) and (H,J) are weakly compatible.
Then the above mappings will be having a common fixed point.
Proof:
Begin with using the condition (C1), there is a point $\quad \propto_{0} \in \mathrm{X}$ such that $\mathrm{G} \propto_{0}=\mathrm{J} \propto_{1}={ }^{\beta}{ }_{0}($ Say $)$.
For this point \propto_{1} then there exists $\propto_{2} \in \mathrm{X}$ such that $\mathrm{H} \propto_{1}=\mathrm{I} \propto_{2}=\beta_{1}$ (say).
Continuing this process, it is possible to construct a Sequence $\left\{\beta_{k}\right\}$ in X
Such that $\beta_{2 k}=G \alpha_{2 k}=J \alpha_{2 k+1}$ and $\beta_{2 k+1}=H \alpha_{2 k+1}=I \alpha_{2 k+2}$ for $k \geq 0$.
We now prove $\left\{\beta_{k}\right\}$ is a Cauchy sequence in MMS.
$\operatorname{Consider} \delta\left(\beta_{2 k}, \beta_{2 k+1 .}\right)=$
$\delta\left(G \alpha_{2 k}, H \alpha_{2 k+1}\right) \leq\left[\max ,\left\{\begin{array}{l}\frac{\delta\left(G \alpha_{2 k}, I \alpha_{2 k+1}\right) \delta\left(H \alpha_{2 k+1}, J \alpha_{2 k+1}\right)}{1+\delta\left(I \alpha_{2 k}, J \alpha_{2 k+1}\right)}, \frac{\delta\left(G \alpha_{2 k}, J \alpha_{2 k+1}\right) \delta\left(I \alpha_{2 k}, H \alpha_{2 k+1}\right)}{1+\delta\left(J \alpha_{2 k+1}, I \alpha_{2 k}\right)}, \\ \frac{\delta\left(G \alpha_{2 k}, J \alpha_{2 k+1}\right) \delta\left(H \alpha_{2 k+1}, J \alpha_{2 k+1}\right)}{1+\delta\left(I \alpha_{2 k}, J \alpha_{2 k+1}\right)}, \frac{\delta\left(G \alpha_{2 k}, I \alpha_{2 k}\right) \delta\left(H \alpha_{2 k+1}, I \alpha_{2 k}\right)}{1+\delta\left(I \alpha_{2 k}, J \alpha_{2 k+1}\right)}\end{array}\right]^{\lambda}\right.$
$\delta\left(\beta_{2 k}, \beta_{2 k+1}\right) \leq\left[\max ,\left\{\begin{array}{l}\frac{\delta\left(\beta_{2 k}, \beta_{2 k-1}\right) \delta\left(\beta_{2 k-1}, \beta_{2 k-1}\right)}{1+\delta\left(\beta_{2 k-1}, \beta_{2 k-1}\right)}, \frac{\delta\left(\beta_{2 k}, \beta_{2 k-1}\right) \delta\left(\beta_{2 k-1}, \beta_{2 k+1}\right)}{1+\delta\left(\beta_{2 k-1}, \beta_{2 k-1}\right)}, \\ \frac{\delta\left(\beta_{2 k}, \beta_{2 k-1}\right) \delta\left(\beta_{2 k+1}, \beta_{2 k-1}\right)}{1+\delta\left(\beta_{2 k-1}, \beta_{2 k-1}\right)}, \frac{\delta\left(\beta_{2 k}, \beta_{2 k}\right) \delta\left(\beta_{2 k+1}, \beta_{2 k-1}\right)}{1+\delta\left(\beta_{2 k-1}, \beta_{2 k-1}\right)}\end{array}\right]^{\lambda}\right.$
$\delta\left(\beta_{2 k}, \beta_{2 k+1}\right) \leq\left[\max ,\left\{\delta\left(\beta_{2 k}, \beta_{2 k-1}\right), \delta\left(\beta_{2 k-1}, \beta_{2 k+1}\right), \delta\left(\beta_{2 k+1}, \beta_{2 k-1}\right), \delta\left(\beta_{2 k-1}, \beta_{2 k+1}\right)\right\}\right]^{d}$ on simplification
$\delta\left(\beta_{2 k}, \beta_{2 k+1}\right) \leq\left[\delta\left(\beta_{2 k-1}, \beta_{2 k+1}\right)\right]^{2}$
$\delta\left(\beta_{2 k}, \beta_{2 k+1}\right) \leq\left[\delta\left(\beta_{2 k-1}, \beta_{2 k}\right), \delta\left(\beta_{2 k}, \beta_{2 k+1}\right)\right]^{2}$

$$
\begin{align*}
& \delta^{1-\lambda}\left(\beta_{2 k}, \beta_{2 k+1 .}\right) \leq \delta^{\lambda}\left(\beta_{2 k-1}, \beta_{2 k}\right) \\
& \delta\left(\beta_{2 k}, \beta_{2 k+1 .}\right) \leq \delta^{\frac{\lambda}{1-\lambda}}\left(\beta_{2 k-1}, \beta_{2 k}\right) \\
& \delta\left(\beta_{2 k}, \beta_{2 k+1 .}\right) \leq \delta^{h}\left(\beta_{2 k-1}, \beta_{2 n}\right) \text { where } \mathrm{h}=\frac{\lambda}{1-\lambda} \in(0,1)- \tag{1}
\end{align*}
$$

Now it gives

$$
\left[\delta\left(\beta_{k}, \beta_{k+1}\right)\right] \leq \delta^{h}\left(\beta_{k-1}, \beta_{k}\right) \leq \delta^{h^{2}}\left(\beta_{k-2}, \beta_{k-1}\right) \leq---\leq \delta^{h^{k}}\left(\beta_{0}, \beta_{1}\right)
$$

Hence for $\mathrm{k}<\mathrm{l}$, on using the multiplicative triangle inequality we get

$$
\left[\delta\left(\beta_{k}, \beta_{l}\right)\right] \leq\left[\delta^{h^{k}}\left(\beta_{0}, \beta_{1}\right)\right]\left[\delta^{h^{k+1}}\left(\beta_{0}, \beta_{1}\right)\right]-\cdots-\left[\delta^{h^{l-1}}\left(\beta_{0}, \beta_{1}\right)\right]
$$

$\left[\delta\left(\beta_{k}, \beta_{l}\right)\right] \leq\left[\delta^{\frac{1}{1-h}\left(h^{k}\right)}\left(\beta_{0}, \beta_{1}\right)\right]$.
This shows $\left\{\beta_{\mathrm{k}}\right\}$ as a cauchy sequencein MMS.
Since on using (C3), the pair (G,I) satiesfies EA - property, \exists a sequence $\left\{\alpha_{k}\right\} \in X$ such that
$\lim _{\mathrm{k} \rightarrow \infty} \mathrm{G} \alpha_{\mathrm{k}}=\lim _{\mathrm{k} \rightarrow \infty} \mathrm{I} \alpha_{\mathrm{k}}=\mu$ for some $\mu \in \mathrm{X}$.
Since $G(X) \subseteq J(X)$ then \exists sequence $\left\{\beta_{k}\right\}$ in X such that $G \alpha_{k}=J \beta_{k}$.
Hence $\quad \lim _{\mathrm{k} \rightarrow \infty} \mathrm{J} \beta_{\mathrm{k}}=\mu$.
From (2) and (3) it gives
$\lim _{\mathrm{k} \rightarrow \infty} \mathrm{G} \alpha_{\mathrm{k}}=\lim _{\mathrm{k} \rightarrow \infty} \mathrm{I} \alpha_{\mathrm{k}}=\lim _{\mathrm{k} \rightarrow \infty} \mathrm{J} \beta_{\mathrm{k}}=\mu$ for some $\mu \in \mathrm{X}$
We now show that $\lim _{\mathrm{k} \rightarrow \infty} \mathrm{H} \beta_{\mathrm{k}}=\mu$.
In the inequality (C2), by putting $\alpha=\alpha_{k}$ and $\beta=\beta_{k}$ then we have

$$
\delta\left(G \alpha_{k}, H \beta_{k}\right) \leq\left[\max ,\left\{\begin{array}{l}
\frac{\delta\left(G \alpha_{k}, I \alpha_{k}\right) \delta\left(H \beta_{k}, J \beta_{k}\right)}{1+\delta\left(I \alpha_{k}, J \beta_{k}\right)}, \frac{\delta\left(G \alpha_{k}, J \beta_{k}\right) \delta\left(I \alpha_{k}, H \beta_{k}\right)}{1+\delta\left(I \alpha_{k}, J \beta_{k}\right)}, \\
\frac{\delta\left(G \alpha_{k}, J \beta_{k}\right) \delta\left(H \beta_{k}, J \beta_{k}\right)}{1+\delta\left(I \alpha_{k}, J \beta_{k}\right)}, \frac{\delta\left(G \alpha_{k}, I \alpha_{k}\right) \delta\left(H \beta_{k}, I \alpha_{k}\right)}{1+\delta\left(I \alpha_{k}, J \beta_{k}\right)}
\end{array}\right\}\right]^{\lambda}
$$

$\delta\left(\mu, H \beta_{k}\right) \leq\left[\max ,\left\{\frac{\delta(\mu, \mu) \delta\left(H \beta_{k}, \mu\right)}{1+\delta(\mu, \mu)}, \frac{\delta(\mu, \mu) \delta\left(\mu, H \beta_{k}\right)}{1+\delta(\mu, \mu)}, \frac{\delta(\mu, \mu) \delta\left(H \beta_{k}, \mu\right)}{1+\delta(\mu, \mu)}, \frac{\delta(\mu, \mu)) \delta\left(\mu, H \beta_{k}\right)}{1+\delta(\mu, \mu))}\right\}\right]^{\lambda}$
$\delta\left(\mu, H \beta_{k}\right) \leq\left[\max \left\{\delta\left(H \beta_{k}, \mu\right), \delta\left(H \beta_{k}, \mu\right), \delta\left(H \beta_{k}, \mu\right), \delta\left(H \beta_{k}, \mu\right)\right\}\right]^{\lambda}$
This gives $\delta\left(\mu, H \beta_{k}\right) \leq\left[\delta\left(H \beta_{k}, \mu\right)\right]^{\lambda} \Rightarrow H \beta_{k}=\mu$.
This gives $\lim _{\mathrm{k} \rightarrow \infty} \mathrm{G} \alpha_{\mathrm{k}}=\lim _{\mathrm{k} \rightarrow \infty} \mathrm{I} \alpha_{\mathrm{k}}=\lim _{\mathrm{k} \rightarrow \infty} \mathrm{J} \beta_{\mathrm{k}}=\lim _{\mathrm{k} \rightarrow \infty} \mathrm{H} \beta_{\mathrm{k}}=\mu$ for some $\mu \in \mathrm{X}-\cdots----$ (5)
Nowthe pair (G,I) is weakly compatible with $\quad \mathrm{G} \alpha_{\mathrm{k}}=\mathrm{I} \alpha_{\mathrm{k}}$ gives $\quad \mathrm{GI} \alpha_{\mathrm{k}}=\mathrm{IG} \alpha_{\mathrm{k}}$ and this inturn
implies $\mathrm{G} \mu=\mathrm{I} \mu$.
Now we show that $\mathrm{G} \mu=\mu$.
Putting $\alpha=\mu$ and $\beta=\beta_{k}$ in the inequality (C2) we have
$\delta\left(G \mu, H \beta_{k}\right) \leq\left[\max ,\left\{\begin{array}{l}\frac{\delta(G \mu, I \mu) \delta\left(H \beta_{k}, J \beta_{k}\right)}{1+\delta\left(I \mu, J \beta_{k}\right)}, \\ \frac{\delta\left(G \mu, J \beta_{k}\right) \delta\left(I \mu, H \beta_{k}\right)}{1+\delta\left(I \mu, J \beta_{k}\right)}, \\ \frac{\delta\left(G \mu, J \beta_{k}\right) \delta\left(H \beta_{k}, J v\right)}{1+\delta\left(I \mu, J \beta_{k}\right)}, \\ \frac{\delta\left(G \mu, I \beta_{k}\right) \delta\left(H \beta_{k}, I \mu\right)}{1+\delta\left(I \mu, J \beta_{k}\right)}\end{array}\right\}\right]^{\lambda}$
$\delta(G \mu, \mu) \leq\left[\max ,\left\{\frac{\delta(G \mu, I \mu) \delta(\mu, \mu)}{1+\delta(I \mu, \mu)}, \frac{\delta(G \mu, \mu) \delta(I \mu, \mu)}{1+\delta(I \mu, \mu)}, \frac{\delta(G \mu, \mu) \delta(\mu, \mu)}{1+\delta(I \mu, \mu)}, \frac{\delta(G \mu, I \mu) \delta(\mu, I \mu)}{1+\delta(I \mu, \mu)}\right\}\right]^{\lambda}$
$\delta(G \mu, \mu) \leq\left[\max ,\left\{\begin{array}{l}\frac{\delta(G \mu, G \mu) \delta(\mu, \mu)}{1+\delta(G \mu, \mu)}, \frac{\delta(G \mu, \mu) \delta(G \mu, \mu)}{1+\delta(G \mu, \mu)}, \\ \frac{\delta(G \mu, \mu) \delta(\mu, \mu)}{1+\delta(G \mu, \mu)}, \frac{\delta(G \mu, G \mu) \delta(\mu, G \mu)}{1+\delta(G \mu, \mu)}\end{array}\right\}\right]^{\lambda}[\because G \mu=I \mu]$
$\delta(G \mu, \mu) \leq\left[\max ,\left\{\frac{1}{\delta(G \mu, \mu)}, \delta(G \mu, \mu), \delta(G \mu, \mu), 1\right\}\right]^{\lambda}$
either $\delta(G \mu, \mu) \leq\left[\delta^{\lambda}(G \mu, \mu)\right]$ or $\delta(G \mu, \mu) \leq 1$,
this gives $G \mu=\mu$, which implies $G \mu=I \mu=\mu$.
Since (H, J) is weakly compatible mapping with $\mathrm{H} \beta_{\mathrm{k}}=\mathrm{J} \beta_{\mathrm{k}}$ and $\mathrm{HJ} \beta_{\mathrm{k}}=\mathrm{JH} \beta_{\mathrm{k}}$ and this inturnimplies $\mathrm{H} \mu=\mathrm{J} \mu$.

Now, we show that $\mathrm{H} \mu=\mu$.
Putting $\alpha=\mu$ and $\beta=\mu$ in the inequality (C2) we have
$\delta(G \mu, H \mu) \leq\left[\max ,\left\{\begin{array}{l}\frac{\delta(G \mu, I \mu) \delta(H \mu, J \mu)}{1+\delta(I \mu, J \mu)}, \frac{\delta(G \mu, J \mu) \delta(I \mu, H \mu)}{1+\delta(I \mu, J \mu)}, \\ \frac{\delta(G \mu, J \mu) \delta(H \mu, J \mu)}{1+\delta(I \mu, J \mu)}, \frac{\delta(G \mu, I \mu) \delta(H \mu, I \mu)}{1+\delta(I \mu, J \mu)}\end{array}\right\}\right]^{\lambda}$
$\delta(\mu, H \mu) \leq\left[\max ,\left\{\frac{\delta(\mu, \mu) \delta(H \mu, J \mu)}{1+\delta(\mu, J \mu)}, \frac{\delta(\mu, J \mu) \delta(\mu, H \mu)}{1+\delta(\mu, J \mu)}, \frac{\delta(\mu, J \mu) \delta(H \mu, J \mu)}{1+\delta(\mu, J \mu)}, \frac{\delta(\mu, \mu) \delta(H \mu, \mu)}{1+\delta(\mu, J \mu)}\right\}\right]^{\lambda}$
$\delta(\mu, H \mu) \leq\left[\max ,\left\{\begin{array}{l}\frac{\delta(\mu, \mu) \delta(H \mu, H \mu)}{1+\delta(\mu, H \mu)}, \frac{\delta(\mu, H \mu) \delta(\mu, H \mu)}{1+\delta(\mu, H \mu)}, \\ \frac{\delta(\mu, H \mu) \delta(H \mu, H \mu)}{1+\delta(\mu, H \mu)}, \frac{\delta(\mu, \mu) \delta(H \mu, \mu)}{1+\delta(\mu, H \mu)}\end{array}\right\}\right]^{\lambda}[\because H \mu=J \mu]$
$\delta(\mu, H \mu) \leq\left[\max ,\left\{\frac{1}{\delta(\mu, H \mu)}, \delta(\mu, H \mu), 1,1\right\}\right]^{\lambda}$
$\delta(\mu, H \mu) \leq[\delta(\mu, H \mu)]^{\lambda} \Rightarrow \delta(\mu, H \mu) \leq\left[\delta^{\lambda}(\mu, H \mu)\right] \Rightarrow H \mu=\mu$
Hence $\mathrm{H} \mu=\mathrm{J} \mu=\mu$
From (6) and (7) we have $\mathrm{I} \mu=\mathrm{H} \mu=\mathrm{J} \mu=G \mu=\mu$.
This shows that μ is a common fixed point of G, H,I and J.

For uniqueness:

consider $\phi(\mu \neq \phi)$ as an another commonfixed point of four mappings G, H,I and J.
Substitute $\alpha=\mu \& \beta=\phi$ in the inequality(C2) then we have
$\delta(G \mu, H \phi) \leq\left[\max ,\left\{\begin{array}{l}\frac{\delta(G \mu, I \mu) \delta(H \phi, J \phi)}{1+\delta(I \mu, J \phi)}, \frac{\delta(G \mu, J \phi) \delta(I \mu, H \phi)}{1+\delta(I \mu, J \phi)}, \\ \frac{\delta(G \mu, J \phi) \delta(H \phi, J \phi)}{1+\delta(I \mu, J \phi)}, \frac{\delta(G \mu, I v) \delta(H \phi, I \mu)}{1+\delta(I \mu, J \phi)}\end{array}\right\}\right]^{\lambda}$
$\delta(\mu, \phi) \leq\left[\max ,\left\{\frac{\delta(\mu, \mu) \delta(\phi, \phi)}{1+\delta(\mu, \phi)}, \frac{\delta(\mu, \phi) \delta(\mu, \phi)}{1+\delta(\mu, \phi)}, \frac{\delta(\mu, \phi) \delta(\phi, \phi)}{1+\delta(\mu, \phi)}, \frac{\delta(\mu, \phi) \delta(\phi, \mu)}{1+\delta(\mu, \phi)}\right\}\right]^{\lambda}$
$\delta(\mu, \phi) \leq\left[\max ,\left\{\frac{1}{\delta(\mu, \phi)}, \delta(\mu, \phi), 1, \delta(\mu, \phi)\right\}\right]^{\lambda}$
$\delta(\mu, \varphi) \leq[\{\delta(\mu, \varphi)\}]^{\lambda}$ which implies $\mu=\varphi$, where $\quad \lambda \in\left(0 . \frac{1}{3}\right)$

This assures the uniqueness of the common fixed point.
Now we substantiate our result with an example.

3.2 Example:

Suppose $\mathrm{X}=[0,1]$ with $\delta(\alpha, \beta)=\mathrm{e}^{|\alpha-\beta|}$ for all $\alpha, \beta \in \mathrm{X}$.
Define $G(\alpha)=H(\alpha)=\left\{\begin{array}{lc}\frac{3 \alpha+1}{3} & \text { if } \alpha \in\left[0, \frac{2}{3}\right) \\ \frac{2 \alpha+2}{5} & \text { if } \alpha \geq \frac{2}{3}\end{array}\right.$ and $I(\alpha)=J(\alpha)= \begin{cases}1-\alpha & \text { if } \alpha \in\left[0, \frac{2}{3}\right) \\ \alpha & \text { if } \alpha \geq \frac{2}{3}\end{cases}$
Then $\mathrm{G}(\mathrm{X})=\mathrm{H}(\mathrm{X})=\left[\frac{1}{3}, 1\right] \cup\left(\frac{2}{3}\right)$ while $\mathrm{I}(\mathrm{X})=\mathrm{J}(\mathrm{X})=\left[1, \frac{1}{3}\right) \cup\left(\frac{2}{3}\right)$
the condition $\mathrm{G}(\mathrm{X}) \subseteq \mathrm{J}(\mathrm{X})$ and $\mathrm{H}(\mathrm{X}) \subseteq \mathrm{I}(\mathrm{X}),(\mathrm{C} 1)$ is satisfied.
Take a sequence $\left\{\alpha_{\mathrm{k}}\right\}$ as $\alpha_{k}=\frac{1}{3}-\frac{1}{k}$ for $k \geq 0$.
Now
$G \alpha_{k}=G\left(\frac{1}{3}-\frac{1}{k}\right)=\frac{3\left(\frac{1}{3}-\frac{1}{k}\right)+1}{3}=\frac{\left(1-\frac{3}{k}\right)+1}{3}=\left(\frac{2}{3}-\frac{1}{k}\right)=\frac{2}{3}$ as $\mathrm{k} \rightarrow \infty$ and
$I \alpha_{k}=I\left(\frac{1}{3}-\frac{1}{k}\right)=\left(1-\left(\frac{1}{3}-\frac{1}{k}\right)=\left(\frac{2}{3}+\frac{1}{k}\right)=\frac{2}{3}\right.$ as $k \rightarrow \infty$.
This gives $G \alpha_{k}=I \alpha_{k}=\frac{2}{3}$ as $\mathrm{k} \rightarrow \infty$.
Similarly $H \alpha_{k}=J \alpha_{k}=\frac{2}{3}$ as $\mathrm{k} \rightarrow \infty$.
Hence the pairs (G,I),(H,J) satisfy EA- property.
Also
$G\left(\frac{2}{3}\right)=\frac{2\left(\frac{2}{3}\right)+2}{5}=\left(\frac{10}{15}\right)=\frac{2}{3}$ and $I\left(\frac{2}{3}\right)=\frac{2}{3}$ which implies $\mathrm{G}\left(\frac{2}{3}\right)=\mathrm{I}\left(\frac{2}{3}\right)$.
Simillarly $H\left(\frac{2}{3}\right)=\frac{2\left(\frac{2}{3}\right)+2}{5}=\left(\frac{10}{15}\right)=\frac{2}{3}$ and $J\left(\frac{2}{3}\right)=\frac{2}{3}$, which gives that $H\left(\frac{2}{3}\right)=J\left(\frac{2}{3}\right)$

$$
\begin{aligned}
& G I\left(\frac{2}{3}\right)=G\left(\frac{2}{3}\right)=\frac{2\left(\frac{2}{3}\right)+2}{5}=\frac{10}{15}=\frac{2}{3} \text { and } \\
& I G\left(\frac{2}{3}\right)=I \frac{2\left(\frac{2}{3}\right)+2}{5}=I\left(\frac{10}{15}\right)=I\left(\frac{2}{3}\right)=\frac{2}{3} .
\end{aligned}
$$

Hence $G I\left(\frac{2}{3}\right)=I G\left(\frac{2}{3}\right)$ and $H J\left(\frac{2}{3}\right)=J H\left(\frac{2}{3}\right)$ which gives $(\mathrm{G}, \mathrm{I}),(\mathrm{H}, \mathrm{J})$ are weakly compatible mappings.
${\text { But } G I \alpha_{k}}=G I\left(\frac{1}{3}-\frac{1}{k}\right)=G\left(1-\left(\frac{1}{3}-\frac{1}{k}\right)=G\left(\frac{2}{3}+\frac{1}{k}\right)=\frac{2\left(\frac{2}{3}+\frac{1}{k}\right)+2}{5}=\left(\frac{10}{15}+\frac{2}{5 k}\right)=\frac{2}{3} \quad\right.$ as $\mathrm{k} \rightarrow \infty$.
and $I G \alpha_{k}=I G\left(\frac{1}{3}-\frac{1}{k}\right)=\mathrm{I}\left[\frac{3\left(\frac{1}{3}-\frac{1}{k}\right)+1}{3}\right]=\mathrm{I}\left(\frac{2}{3}-\frac{1}{k}\right)=1-\left(\frac{2}{3}-\frac{1}{k}\right)=\frac{1}{3}$ as $\mathrm{k} \rightarrow \infty$.
Therefore
$\lim _{k \rightarrow \infty} \delta\left(G I \alpha_{k}, I G \alpha_{k}\right)=\delta\left(\frac{2}{3}, \frac{1}{3}\right) \neq 1$, similarly $\lim _{k \rightarrow \infty} \delta\left(H J \alpha_{k}, J H \alpha_{k}\right)=\delta\left(\frac{2}{3}, \frac{1}{3}\right) \neq 1$.
Showing that the compatibility condition is not fulfilled.
We now establish that the mappings G,H,I and J satisfy the Condition(C2) .
Case (i):
If $\alpha, \beta \in\left[0, \frac{2}{3}\right)$ then we have $\delta(G \alpha, H \beta)=e^{|G \alpha-H \beta|}$

Putting $\alpha=\frac{1}{3}$ and $\beta=\frac{1}{2}$, then the inequality (C2) gives
$d\left(\frac{2}{3}, \frac{5}{6}\right) \leq\left[\max \left\{\frac{d\left(\frac{2}{3}, \frac{2}{3}\right) d\left(\frac{5}{6}, \frac{1}{2}\right)}{1+d\left(\frac{2}{3}, \frac{1}{2}\right)}, \frac{d\left(\frac{2}{3}, \frac{1}{2}\right) d\left(\frac{2}{3}, \frac{5}{6}\right)}{1+d\left(\frac{2}{3}, \frac{1}{2}\right)}, \frac{d\left(\frac{2}{3}, \frac{1}{2}\right) d\left(\frac{5}{6}, \frac{1}{2}\right)}{1+d\left(\frac{2}{3}, \frac{1}{2}\right)}, \frac{d\left(\frac{2}{3}, \frac{2}{3}\right) d\left(\frac{5}{6}, \frac{2}{3}\right)}{1+d\left(\frac{2}{3}, \frac{1}{2}\right)}\right\}\right]^{\lambda}$
$e^{0.16} \leq\left[\max \left\{\frac{e^{0} e^{0.33}}{1+e^{0.16}}, \frac{e^{0.16} e^{0.16}}{1+e^{0.16}}, \frac{e^{0.38} e^{0.33}}{1+e^{0.16}}, \frac{e^{0} e^{0.16}}{1+e^{0.16}}\right\}\right]^{\lambda}$
$e^{0.16} \leq\left[\max \left\{\frac{e^{0.33}}{1+e^{0.16}}, \frac{e^{0.32}}{1+e^{0.16}}, \frac{e^{0.71}}{1+e^{0.16}}, \frac{e^{0.16}}{1+e^{0.16}}\right\}\right]^{\lambda}$
$e^{0.16} \leq\left[\max \left\{e^{0.17}, e^{0.16}, e^{0.55}, e^{0}\right\}\right]^{\lambda}$
$e^{0.16} \leq e^{0.55 \lambda}$
Thus we have $e^{0.16} \leq e^{0.55 \lambda} \Rightarrow \lambda=0.3$, where $\lambda \in\left(0, \frac{1}{3}\right)$.
Hence the condition (C2) is satisfied.
Case (ii):
If $\alpha, \beta \in\left[\frac{2}{3}, 1\right]$ then we have $\delta(G \alpha, H \beta)=e^{|G \alpha-H \beta|}$
putting $\alpha=\frac{4}{5}$ and $\beta=1$, in the inequality ($\mathrm{C}-2$) gives
$\delta\left(\frac{18}{25}, \frac{4}{5}\right) \leq\left[\max \left\{\frac{\delta\left(\frac{18}{25}, \frac{4}{5}\right) \delta\left(\frac{4}{5}, 1\right)}{1+\delta\left(\frac{4}{5}, 1\right)}, \frac{\delta\left(\frac{18}{25}, 1\right) \delta\left(\frac{4}{5}, \frac{4}{5}\right)}{1+\delta\left(\frac{4}{5}, 1\right)}, \frac{\delta\left(\frac{18}{25}, 1\right) \delta\left(\frac{4}{5}, 1\right)}{1+\delta\left(\frac{4}{5}, 1\right)}, \frac{\delta\left(\frac{18}{25}, \frac{4}{5}\right) \delta\left(\frac{4}{5}, \frac{4}{5}\right)}{1+\delta\left(\frac{4}{5}, 1\right)}\right\}\right]^{\lambda}$
$e^{0.08} \leq\left[\max \left\{\frac{e^{0.08} e^{0.2}}{1+e^{0.2}}, \frac{e^{0.28} e^{0}}{1+e^{0.2}}, \frac{e^{0.28} e^{0.2}}{1+e^{0.2}}, \frac{e^{0.08} e^{0}}{1+e^{0.2}}\right\}\right]^{\lambda}$
$e^{0.08} \leq\left[\max \left\{\frac{e^{0.28}}{1+e^{0.2}}, \frac{e^{0.28}}{1+e^{0.2}}, \frac{e^{0.48}}{1+e^{0.2}}, \frac{e^{0.08}}{1+e^{0.2}}\right\}\right]^{\lambda}$
$e^{0.08} \leq\left[\max \left\{e^{0.08}, e^{0.08}, e^{0.28}, e^{-0.12}\right\}\right]^{\lambda}$
$e^{0.08} \leq e^{0.28 \lambda}$.
Therefore $e^{0.08} \leq e^{0.28 \lambda} \Rightarrow \lambda=0.28$, where $\lambda \in\left(0, \frac{1}{3}\right)$.
Hence the condition (C2) is satisfied.
Similarly we can prove other cases.

E.A PROPERTY ON MULTIPLICATIVE METRIC SPACE

It can be observed that $\frac{2}{3}$ is the common unique fixed point for the four self mappings $\mathrm{H}, \mathrm{G}, \mathrm{I}$ and J.

CONCLUSION

In this paper we established a result in multiplicative metric space using the set of conditions weakly compatible mappings and EA-property and also an example is given to justify our theorem.

CONFLICT OF InTERESTS

The authors declare that there is no conflict of interests.

REFERENCES

[1] A.E. Bashirov, E.M. Kurpınar, A. Özyapıcı, Multiplicative calculus and its applications, J. Math. Anal. Appl. 337 (2008), 36-48.
[2] M. Aamri, D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. 270 (2002), 181-188.
[3] A.A.N. Abdou, Common fixed point results for compatible-type mappings in multiplicative metric spaces, J. Nonlinear Sci. Appl. 9 (2016), 2244-2257.
[4] V. Srinivas, K. Mallaiah, A result on multiplicative metric space, J. Math. Comput. Sci. 10 (2020), 1384-1398
[5] M. Abbas, B. Ali, Y.I. Suleiman, Common Fixed Points of Locally Contractive Mappings in Multiplicative Metric Spaces with Application, International Journal of Mathematics and Mathematical Sciences. 2015 (2015), 218683.
[6] R.P. Agarwal, E. Karapınar, B. Samet, An essential remark on fixed point results on multiplicative metric spaces, Fixed Point Theory Appl. 2016 (2016), 21.
[7] M. Özavşar, A.C. Çevikel, Fixed point of multiplicative contraction mappings on multiplicative metric spaces (2012). arXiv:1205.5131v1 [math.GM].
[8] B. Vijayabaskerreddy, V. Srinivas, Fixed Point Results on Multiplicative Semi-Metric Space, J. Sci. Res. 12 (2020), 341-348.
[9] P. Nagpal, S.M. Kang, S.K. Garg, S. Kumar, Several fixed point theorems for expansive mappings in multiplicative metric spaces, Int. J. Pure Appl. Math. 107 (2016), 357-369.
[10]G. Jungck, B. E. Rhoades, Fixed point for set valued functions without continuity, Indian. J. Pure Appl. Math. 29 (1998), 227-238.

[^0]: *Corresponding author
 E-mail address: srinivasmaths4141@gmail.com

