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Abstract. The purpose of this paper is to establish some fixed point theorems for mappings involving rational 

expressions in the frame work of complete ordered dualistic partial metric spaces using a class of pairs of 

functions satisfying certain assumptions. These results unify, extend and generalize most of the existing relevant 

fixed point theorems from the literature. We give examples to explain our findings.  
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1. INTRODUCTION  

The Banach contraction principle is a classical and powerful tool in nonlinear analysis. 

Banach contraction principle has been generalized in various ways either by using contractive 

conditions or by imposing some additional conditions on the ambient spaces. Das and Gupta 

[7] were the pioneers in proving fixed point theorems using contractive conditions involving 

rational expressions. Following Das and Gupta [7], Cabrera et al. [5] proved a fixed point 
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theorem in the context of partially ordered metric spaces. For more fixed point results, see 

([9], [13], [24]). One of the most interesting and important space is partial metric space 

introduced by Matthews (see [12]) as a part of the study of denotational semantics of 

dataflow networks. In particular, he established the precise relationship between partial 

metric spaces and the so-called weightable quasi-metric spaces and proved a partial metric 

generalization of Banach contraction mapping theorem. After this remarkable contribution, 

many authors focused on partial metric spaces and its topological properties ([3], [10], [17], 

[22], [25], [26]). Ran-Reuring’s fixed point theorem [24] is a fixed point theorem in metric 

space with a partial order. Existence of fixed point in partially ordered metric spaces has been 

considered recently by many authors (see, [2], [5], [9], for example). In the same spirit, 

O'Neill [23] introduced the concept of dualistic partial metric, which is more general than 

partial metric and established a robust relationship between dualistic partial metric and quasi 

metric. Oltra and Valero [11] presented a Banach fixed point theorem on complete dualistic 

partial metric spaces. Valero also showed that the contractive condition in Banach fixed point 

theorem in complete dualistic partial metric spaces cannot be replaced by the contractive 

condition of Banach fixed point theorem for complete partial metric spaces. Following Oltra 

and Valero [22], Nazam et al. [3] established some fixed point results in dualistic partial 

metric spaces for Greghty [8] type contraction and monotone mappings and discussed an 

application of fixed point theorem to show the existence of solution of integral equation. For 

the fixed point results on dualistic partial metric spaces, the readers may refer to [14] 

[15],[18],[20],[21]. 

Recently, Nazam et al. [16] studied behavior of a rational type contraction in context of 

ordered dualistic partial metric spaces and investigated sufficient conditions for the existence 

of a fixed point in this space. The main purpose of this paper is to present some fixed point 

theorems for mappings involving rational expressions in the frame work of complete ordered 

dualistic partial metric spaces using a class of pairs of functions satisfying certain 

assumptions. We shall show that our results generalize Theorem 2 and Theorem 3 of Nazam 

et al. [16] in many ways. 

 

2. PRELIMINARIES  

Throughout this paper the letters ℝ0
+, ℝ and ℕ  will represent the set of nonnegative real 

numbers, set of real numbers and set of natural numbers, respectively. We recall some basics 

definitions and results to make this paper self-sufficient. 
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Definition 2.1 (see [12]) A partial metric on a non-empty set 𝔇 is a function 𝜂: 𝔇 × 𝔇 → ℝ0
+ 

complying with following axioms, for all 𝜎, 𝜍, 𝜈 ∈ 𝔇  

      (𝜂1) 𝜎 = 𝜍 ⟺ 𝜂(𝜎, 𝜍) = 𝜂(𝜎, 𝜎) = 𝜂(𝜍, 𝜍); 

      (𝜂2) 𝜂(𝜎, 𝜎) ≤ 𝜂(𝜎, 𝜍); 

      (𝜂3) 𝜂(𝜎, 𝜍) = 𝜂(𝜍, 𝜎); 

      (𝜂4) 𝜂(𝜎, 𝜍) ≤ 𝜂(𝜎, 𝜈) + 𝜂(𝜈, 𝜍) − 𝜂(𝜈, 𝜈) 

The pair (𝔇, 𝜂) is known as partial metric space. 

O'Neill [23] introduced the concept of dualistic partial metric as a generalization of partial 

metric in order to expand the connections between partial metrics and semantics via valuation 

spaces. He did one significant change to the partial metric 𝜂 by extending its range from ℝ0
+ 

to ℝ. The partial metric 𝜂 with extended range is called a dualistic partial metric, denoted 

by 𝜂∗. 

Definition 2.2 (see [23]) A dualistic partial metric on a non-empty set 𝔇  is a function 

𝜂∗: 𝔇 × 𝔇 → ℝ satisfying the following axioms, for all 𝜎, 𝜍, 𝜈 ∈ 𝔇 

      (𝜂1
∗) 𝜎 = 𝜍 ⟺ 𝜂∗(𝜎, 𝜍) = 𝜂∗(𝜎, 𝜎) = 𝜂∗(𝜍, 𝜍); 

      (𝜂2
∗) 𝜂∗(𝜎, 𝜎) ≤ 𝜂∗(𝜎, 𝜍); 

      (𝜂3
∗) 𝜂∗(𝜎, 𝜍) = 𝜂∗(𝜍, 𝜎); 

      (𝜂4
∗) 𝜂∗(𝜎, 𝜈) + 𝜂∗(𝜍, 𝜍) ≤ 𝜂∗(𝜎, 𝜍) + 𝜂∗(𝜍, 𝜈) 

The pair (𝔇, 𝜂∗) is called a dualistic partial metric space. 

Remark 2.3 Each partial metric is a dualistic partial metric but the converse is false. To 

prove this important fact, let 𝔇 = ℝ and define 𝜂∗ on 𝔇 as 𝜂∗(𝜎, 𝜍) = max{𝜎, 𝜍}, ∀𝜎, 𝜍 ∈ 𝔇. 

Clearly, 𝜂∗ satisfies (𝜂1
∗) − (𝜂4

∗) and hence 𝜂∗ is a dualistic partial metric on 𝔇. Refer that 𝜂∗ 

is not a partial metric on 𝔇 because 𝜂∗(𝜎, 𝜍) < 0 ∉ ℝ0
+ , ∀ 𝜎 < 0, 𝜍 < 0. Unlike other metrics, 

in dualistic partial metric 𝜂∗(𝜎, 𝜍) = 0  does not imply  𝜎 = 𝜍 . Indeed, 𝜂∗(−2,0) = 0  and 

−2 ≠ 0. The self-distance 𝜂∗(𝜎, 𝜎) is a feature utilized to describe the amount of information 

contained in 𝜎.The restriction of 𝜂∗ to ℝ0
+ is a partial metric. This situation creates a problem 

in obtaining a fixed point of a self-mapping in dualistic partial metric space. For the solution 

of this problem, Nazam [16] introduced concept of convergence comparison property 

(CCP) and established some fixed point by using CCP along with axioms (𝜂1
∗) and (𝜂2

∗). 

Definition 2.4 (see [16]) Let (𝔇, 𝜂∗) be a dualistic partial metric space and 𝒯  be a self-

mapping on 𝔇. We say that T has a convergence comparison property (CCP) if for every 

sequence {𝜈𝑛}𝑛∈ℕ in 𝔇 such that 𝜈𝑛 → 𝜈, 𝒯 satisfies 

                                                   𝜂∗(𝜈, 𝜈) ≤ 𝜂∗(𝒯𝜈, 𝒯𝜈).                                                  (2.1) 
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Example 2.5  

(1) Define 𝜂∗ as in Remark 2.3. Consider any sequence {𝜈𝑛} converging to 𝜈 in (𝔇, 𝜂∗). 

Consider { 𝜈𝑛 =
1−𝑛

𝑛
, 𝑛 ≥ 1}

𝑛∈ℕ
⊂ 𝔇 . We have lim

𝑛→∞
 𝜈𝑛 = −1 ∈ 𝔇 . Define a self-

map 𝒯 on 𝔇 by 𝒯𝜈 = exp 𝜈.  For such 𝜈 = −1, note that                

                                  𝜂∗(𝜈, 𝜈) = −1 ≤ exp(−1) = 𝜂∗(𝒯𝜈, 𝒯𝜈).  

Hence 𝒯 satisfies (CCP). 

(2) Let 𝔇 = (−∞, 0]  and define the mapping 𝜂∗  by 𝜂∗(𝜎, 𝜍) = |𝜎 − 𝜍|  if 𝜎 ≠ 𝜍  and 

𝜂∗(𝜎, 𝜍) = 𝜎 ∨ 𝜍 if 𝜎 = 𝜍, then, (𝔇, 𝜂∗) is a complete dualistic partial metric space. 

Define 𝒯: 𝔇 → 𝔇  by 𝒯𝜎 = −1  if 𝜎 ∈ (−∞, −4]  and 𝒯𝜎 = 0  if 𝜎 ∈ (−4,0] . Notice 

that 𝒯  has  (CCP) . Indeed, if  {𝜎𝑛 = −
(2𝑛+1)

𝑛
}

𝑛∈ℕ
⊂ 𝔇 .  Here lim

𝑛→∞
𝜎𝑛 = −2 ∈

𝔇. For such 𝜎 = −2, we have                 

          𝜂∗(−2, −2) = (−2) ∨ (−2) = −2 ≤ 0 = 𝜂∗(0,0) = 𝜂∗(𝒯(−2), 𝒯(−2)) 

We present some examples to explain dualistic partial metric. 

Example 2.6 (see [16], [23]) 

(a) If we take 𝜂∗(𝜎, 𝜍) = 𝑑(𝜎, 𝜍) + 𝑏, where 𝑑 is a metric on a nonempty set 𝔇 and 𝑏 ∈ ℝ 

is arbitrary constant, then it is easy to check that 𝜂∗ verifies axioms (𝜂1
∗) − (𝜂4

∗) and 

hence (𝔇, 𝜂∗) is a dualistic partial metric space. 

(b) Let 𝜂 be a partial metric defined on a non empty set 𝔇. The function 𝜂∗: 𝔇 × 𝔇 → ℝ 

defined by 𝜂∗(𝜎, 𝜍) = 𝜂(𝜎, 𝜍) − 𝜂(𝜎, 𝜎) − 𝜂(𝜍, 𝜍)  satisfies the axioms (𝜂1
∗) − (𝜂4

∗) 

and so it defines a dualistic partial metric on 𝔇. Note that 𝜂∗(𝜎, 𝜍) may have negative 

values. 

(c) Define 𝜂∗: ℝ × ℝ → ℝ by 𝜂∗(𝜎, 𝜍) = |𝜎 − 𝜍| if 𝜎 ≠ 𝜍 and 𝜂∗(𝜎, 𝜍) = −𝛽 if 𝜎 = 𝜍 and 

𝛽 > 0. We can easily see that 𝜂∗ is a dualistic partial metric on ℝ.  

O’Neill [23] established that each dualistic partial metric 𝜂∗ on 𝔇 generates a 𝑇0  topology 

𝜏(𝜂∗ ) on 𝔇 having a base, the family of 𝜂∗-balls {ℬ𝜂∗ (𝜎, 𝜖)│𝜎 ∈ 𝔇, 𝜖 > 0}, where 

                                   ℬ𝜂∗ (𝜎, 𝜖) = {𝜍 ∈ 𝔇│𝜂∗(𝜎, 𝜍) < 𝜂∗(𝜎, 𝜎) + 𝜖}.                            

If (𝔇, 𝜂∗) is a dualistic partial metric space, then the function 𝑑𝜂∗ ∶  𝔇 ×  𝔇 → ℝ0
+,  defined 

by 

                                              𝑑𝜂∗(𝜎, 𝜍) = 𝜂∗(𝜎, 𝜍) − 𝜂∗(𝜎, 𝜎)                                         (2.2) 

defines a quasi metric on 𝔇 such that 𝜏(𝜂∗) = 𝜏(𝑑𝜂∗) and 

                                           𝑑𝜂∗
𝑠 (𝜎, 𝜍) = max{𝑑𝜂∗(𝜎, 𝜍), 𝑑𝜂∗(𝜍, 𝜎)}                                  (2.3) 
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defines a metric on 𝒜. 

Definition 2.7 (see [22]) Let (𝔇, 𝜂∗) be a dualistic partial metric space. 

1. A sequence {𝜎𝑛} ⊂ 𝔇 converges to a point 𝜎 ∈ 𝔇 if lim
𝑛→∞

𝜂∗(𝜎𝑛, 𝜎) = 𝜂∗(𝜎, 𝜎). 

2. A sequence {𝜎𝑛} ⊂ 𝔇 is called a Cauchy sequence if lim
𝑛,𝑚→∞

𝜂∗(𝜎𝑛, 𝜎𝑚)  exists and is 

finite. 

3. A dualistic partial metric space (𝔇, 𝜂∗)  is said to be complete if every Cauchy 

sequence {𝜎𝑛} ⊂ 𝔇  converges, with respect to 𝜏(𝜂∗ ) , to a point 𝜎 ∈ 𝔇  such that 

𝜂∗(𝜎, 𝜎) = lim
𝑛,𝑚→∞

𝜂∗(𝜎𝑛, 𝜎𝑚). 

Remark 2.8 For a sequence, convergence with respect to metric space may not imply 

convergence with respect to dualistic partial metric space. Indeed, if we take 𝛽 = 1 and 

{𝜎𝑛} ⊂ ℝ,  where 𝜎𝑛 =
1−𝑛

𝑛
 as in Example 2.6 (c). Mention that lim

𝑛→∞
𝑑(𝜎𝑛, −1) = −1  and 

therefore, 𝜎𝑛 → −1 with respect to 𝑑. On the other hand, we make a conclusion that 𝜎𝑛 ↛ −1 

with respect to 𝜂∗  because lim
𝑛→∞

𝜂∗(𝜎𝑛, −1) = lim
𝑛→∞

𝜂∗|𝜎𝑛 − (−1)| = lim
𝑛→∞

|
1−𝑛

𝑛
+ 1| = 0  and 

𝜂∗(−1, −1) = −1. 

Lemma 2.9 (see [22]) Let (𝔇, 𝜂∗) be a dualistic partial metric space. 

(1) Every Cauchy sequence in (𝔇, 𝑑𝜂∗
𝑠 ) is also a Cauchy sequence in (𝔇, 𝜂∗). 

(2) A dualistic partial metric (𝔇, 𝜂∗) is complete if and only if the induced metric space 

(𝔇, 𝑑𝜂∗
𝑠 ) is complete. 

(3) A sequence {𝜎𝑛} ⊂ 𝔇 converges to a point 𝜎 ∈ 𝔇 with respect to 𝜏(𝑑𝜂∗
𝑠 ) if and only if 

𝜂∗(𝜎, 𝜎) = lim
𝑛→∞

𝜂∗(𝜎𝑛, 𝜎) = lim
𝑛→∞

𝜂∗(𝜎𝑛, 𝜎𝑚). 

Definition 2.10 (see [16]) Let (𝔇, ⪯) be a partially ordered set and 𝒯: 𝔇 → 𝔇, we say that 

𝒯 is monotone non-decreasing if 𝜎, 𝜍 ∈ 𝔇, 𝜎 ≤ 𝜍 ⟹ 𝒯𝜎 ≤ 𝒯𝜍. 

Definition 2.11 (see [16]) Let (𝔇, ⪯) be a partially ordered set and (𝔇, 𝜂∗) be a dualistic 

partial metric space. A mapping 𝒯: 𝔇 → 𝔇 is said to be a dualistic contraction of rational 

type if there exist 𝛼, 𝛽 ≥ 0 with 𝛼 + 𝛽 <  1 such that: 

                              |𝜂∗(𝒯𝜎, 𝒯𝜍)| ≤ 𝛼 |
𝜂∗(𝜍,𝒯𝜍)(1+𝜂∗(𝜎,𝒯𝜎))

1+𝜂∗(𝜎,𝜍)
| + 𝛽|𝜂∗(𝜎, 𝜍)|                         (2.4) 

 ∀𝜎, 𝜍 ∈ ∆= {(𝜎, 𝜍) ∈ 𝔇 × 𝔇│𝜎 ⪯ 𝜍 ∧ 𝜂∗(𝜎, 𝜍) = −1}. 

The rational contractive condition (2.4) has some differences with rational contractive 

condition (1) of Cabrera et al. [5]. Indeed, for a metric 𝑑, 𝑑(𝜎, 𝜎) = 0, ∀𝜎 ∈ 𝔇, which ensures 

that condition (1) of [5] holds for all 𝜎  such that 𝒯𝜎 = 𝜎  and conversely. However, in 
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general, 𝜂∗(𝜎, 𝜎) ≠ 0 for any 𝜎 ∈ 𝔇 . For if 𝒯𝜎 = 𝜎,  then from (2.4) one can follow that 

𝜂∗(𝜎, 𝜎) = 0. So if 𝒯𝜎 = 𝜎 such that 𝜂∗(𝜎, 𝜎) ≠ 0, then but 𝜎 ⪯ 𝜎 does not satisfy (2.4). 

Nazam et al. [16] studied the following fixed point theorems on dualistic contraction of 

rational type. 

Theorem 2.12 (see [16]) Let (𝔇, ⪯) be a partially ordered set and (𝔇, 𝜂∗) be a complete 

dualistic partial metric space. If 𝒯: 𝔇 → 𝔇  is a non-decreasing, dualistic contraction of 

rational type satisfying the following conditions: 

(1) there exists 𝜎0 ∈ 𝔇 such that 𝜎0 ⪯ 𝒯𝜎0, 

(2) if {𝜎𝑛} ⊂ 𝔇 is non-decreasing sequence such that 𝜎𝑛 → 𝜈, then 𝜎𝑛 ⪯ 𝜈, ∀𝑛 ∈ ℕ.  

Then 𝒯 has a fixed point. 

Theorem 2.13 (see [16]) Let 𝒯: 𝔇 → 𝔇 be defined on (𝔇, 𝜂∗, ⪯) and satisfies conditions 

assumed in Theorem 2.12. If there exists an element 𝜔 ∈ 𝔇 such that it is comparable with 

every fixed point of 𝒯, then 𝒯 has a unique fixed point in 𝔇. 

One of the most important ingredients of a contractive condition is to study the kind of 

involved functions, like altering distance functions introduced by Khan et al. [11] as follows. 

Definition 2.14 (see [11]) A function 𝜑: ℝ0
+ → ℝ0

+ is said to be altering distance function if  

(a1) 𝜑 is monotone increasing and continuous,  

(a2) 𝜑(𝜅) = 0 ⟺ 𝜅 = 0. 

Definition 2.15 (see [4]) The pair  (𝜑, 𝜙) , where 𝜑, 𝜙: ℝ0
+ → ℝ0

+  is called a pair of 

generalized altering distance functions if 

(b1). 𝜑 is continuous; 

(b2). 𝜑 is non-decreasing; 

(b3).  lim
𝑛→∞

𝜙(𝜅𝑛) = 0 ⇒ lim
𝑛→∞

𝜅𝑛 = 0. 

The condition (b3) was introduced by Moradi and Farajzadeh [13]. The above conditions do 

not determine the values of 𝜑(0) and 𝜙(0). 

Definition 2.16 (see [1]) We will denote by ℱ  the family of all pairs (𝜑, 𝜙) , where 

𝜑, 𝜙: ℝ0
+ → ℝ0

+ are functions satisfying the following conditions. 

(F1). 𝜑 is non-decreasing; 

(F2).  if ∃ 𝜅0 ∈ ℝ0
+ such that 𝜙 (𝜅0) = 0, then 𝜅0 = 0 and 𝜑−1(0) = {0}. 

(F3). if {𝛼𝑛}, {𝛽𝑛} ⊂ ℝ0
+  such that , {𝛼𝑛} → 𝜆, {𝛽𝑛} → 𝜆  satisfying 𝜆 < {𝛽𝑛}  and 𝜑(𝛽𝑛) ≤

(𝜑 − 𝜙)(𝛼𝑛), ∀ 𝑛 ∈ ℕ, then 𝜆 = 0. 

Definition 2.17(see [27]) A pair of functions (𝜑, 𝜙) is said to belong to the class 𝔉, if they 

satisfy the following conditions:  
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(c1). 𝜑, 𝜙: ℝ0
+ → ℝ0

+; 

(c2). if 𝜅, 𝜇 ∈ ℝ0
+, 𝜑(𝜅) ≤ 𝜙(𝜇) then 𝜅 ≤ 𝜇; 

(c3). if {𝜅𝑛}, {𝜇𝑛} ⊂ ℝ0
+, lim

𝑛→∞
𝜅𝑛 = lim

𝑛→∞
𝜇𝑛 = 𝛿 and 𝜑(𝜅𝑛) ≤ 𝜙(𝜇𝑛), ∀ 𝑛 ∈ ℕ, then 𝛿 = 0. 

If (𝜑, 𝜙) satisfies (F1) and (F2), then (𝜑, 𝜙 = 𝜑 − 𝜙) satisfies (c1) and (c2). Furthermore, if 

(𝜑, 𝜙 = 𝜑 − 𝜙) satisfies (c3), then (𝜑, 𝜙) satisfies (F3). 

Remark 2.18 (see [27]) If (𝜑, 𝜙) ∈ 𝔉 and 𝜑(𝜅) ≤ 𝜙(𝜅), then 𝜅 = 0, since we can take 𝜅𝑛 =

𝜇𝑛 =  𝜅, ∀ 𝑛 ∈ ℕ and by (c3), we deduce 𝜅 = 0. 

Example 2.19 The conditions (c1)-(c3) of definition 2.17 are fulfilled for the functions 

𝜑, 𝜙: ℝ0
+ → ℝ0

+ defined by 

(1) 𝜑(𝜅) = ln (
5𝜅+1

12
)  and  𝜙(𝜅) = ln (

3𝜅+1

12
), ∀𝜅 ∈ ℝ0

+. 

(2) 𝜑(𝜅) = ln (
2𝜅+1

2
)  and  𝜙(𝜅) = ln (

𝜅+1

2
) , ∀𝜅 ∈ ℝ0

+ 

Example 2.20 (see [27]) Let 𝒮 = {ℓ: ℝ0
+ → ℝ0

+│ℓ(𝜅𝑛) → 1 ⇒  𝜅𝑛 → 0}. Consider the pairs 

of functions  (1ℝ0
+ , ℓ(1ℝ0

+)) , where ℓ ∈ 𝒮  and ℓ(1ℝ0
+)  is defined as (ℓ(1ℝ0

+)) (𝜅) =

ℓ(𝜅)𝜅, 𝜅 ∈ ℝ0
+.  It is easy to check that (1ℝ0

+ , ℓ(1ℝ0
+)) ∈ 𝔉. 

Example 2.21 (see [27]) Let 𝜑: ℝ0
+ → ℝ0

+ be a continuous and increasing function such that 

𝜑(𝜅) = 0 ⟺ 𝜅 = 0. Let 𝜙: [0, ∞)  → [0, ∞) be a non-decreasing function such that 𝜙(𝜅) =

0 ⟺ 𝜅 = 0 and 𝜙 ≤ 𝜑. We make a conclusion that (𝜑, 𝜑 − 𝜙) ∈ 𝔉.   

An interesting particular case is when 𝜑 is the identity mapping, 𝜑 =  1ℝ0
+ and 𝜙: ℝ0

+ → ℝ0
+ 

is a non-decreasing function such that 𝜙(𝜅) = 0 ⟺ 𝜅 = 0 and 𝜙(𝜅) ≤ 𝜅, ∀ 𝜅 ∈ ℝ0
+.  

Remark 2.22 (see [27]) Let ℊ ∶ ℝ0
+ → ℝ0

+  is an increasing function and  (𝜑, 𝜙) ∈ 𝔉 . 

Then (ℊ ∘ 𝜑, ℊ ∘ 𝜙) ∈ 𝔉.  

 

3. MAIN RESULTS 

We state our main result as follows:  

Theorem 3.1 Let (𝔇, ⪯) is a partially ordered set and suppose that (𝔇, 𝜂∗) is a complete 

dualistic partial metric space. Let 𝒯: 𝔇 → 𝔇 be a non-decreasing and satisfies (CCP) such 

that there exists a pair of functions (𝜑, 𝜙) ∈ 𝔉 satisfying 

                𝜑(|𝜂∗(𝒯𝜎, 𝒯𝜍)|) ≤ max {𝜙(|𝜂∗(𝜎, 𝜍)|), 𝜙 (|
𝜂∗(𝜍,𝒯𝜍)(1+𝜂∗(𝜎,𝒯𝜎))

1+𝜂∗(𝜎,𝜍)
|)}                 (3.1) 
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for all comparable elements 𝜎, 𝜍 ∈ ∆. Assume that either 𝒯 is continuous or if {𝜎𝑛} ⊂ 𝔇 is 

non-decreasing sequence such that 𝜎𝑛 → 𝜈, then 𝜎𝑛 ⪯ 𝜈, ∀𝑛 ∈ ℕ. If ∃ 𝜎0 ∈ 𝔇 such that 𝜎0 ⪯

𝒯𝜎0, then 𝒯 has a fixed point.  

Proof Let 𝜎0 ∈ 𝔇 be an initial element such that 𝜎0 ⪯ 𝒯𝜎0 and let us define Picard iterative 

sequence {𝜎𝑛} by 𝒯𝜎𝑛−1 = 𝜎𝑛, ∀𝑛 ∈ ℕ. If there exists a positive integer 𝑛0 such that 𝜎𝑛0
=

𝜎𝑛0+1 , then 𝜎𝑛0
= 𝜎𝑛0+1 = 𝒯𝜎𝑛0

. So 𝜎𝑛0
 is a fixed point of  𝒯 . In this case, the proof is 

complete. On the other hand, if 𝜎𝑛 ≠ 𝜎𝑛+1, ∀𝑛 ∈ ℕ, then 𝜎𝑛 ⪯ 𝜎𝑛+1. Indeed by 𝜎0 ⪯ 𝒯𝜎0, we 

obtain  𝜎0 ⪯ 𝜎1 . Since T is non-decreasing, 𝜎0 ⪯ 𝜎1  implies 𝒯𝜎0 ⪯ 𝒯𝜎1  and thus 𝜎1 ⪯ 𝜎2 . 

Continuing in this fashion, we get 

                                 𝜎0 ⪯ 𝜎1 ⪯ 𝜎2 ⪯ 𝜎3 ⪯ ⋯ ⪯ 𝜎𝑛−1 ⪯ 𝜎𝑛 ⪯ 𝜎𝑛+1 ⪯ ⋯                      (3.2) 

Since 𝜎𝑛 ⪯ 𝜎𝑛+1, applying contractive condition (3.1), we have 

    𝜑(|𝜂∗(𝜎𝑛+1, 𝜎𝑛)|) = 𝜑(|𝜂∗(𝒯𝜎𝑛, 𝒯𝜎𝑛−1)|) 

                                   ≤ max {𝜙(|𝜂∗(𝜎𝑛, 𝜎𝑛−1)|), 𝜙 (|
𝜂∗(𝜎𝑛−1,𝒯𝜎𝑛−1)(1+𝜂∗(𝜎𝑛,𝒯𝜎𝑛))

1+𝜂∗(𝜎𝑛,𝜎𝑛−1)
|)} 

                                = max {𝜙(|𝜂∗(𝜎𝑛, 𝜎𝑛−1)|), 𝜙 (|
𝜂∗(𝜎𝑛−1,𝜎𝑛)(1+𝜂∗(𝜎𝑛,𝜎𝑛+1))

1+𝜂∗(𝜎𝑛,𝜎𝑛−1)
|)}            (3.3) 

Now, we can distinguish two cases.  

Case 1. Consider 

        max {𝜙(|𝜂∗(𝜎𝑛, 𝜎𝑛−1)|), 𝜙 (|
𝜂∗(𝜎𝑛−1,𝜎𝑛)(1+𝜂∗(𝜎𝑛,𝜎𝑛+1))

1+𝜂∗(𝜎𝑛,𝜎𝑛−1)
|)} = 𝜙(|𝜂∗(𝜎𝑛, 𝜎𝑛−1)|)      (3.4) 

Due to inequality (3.3), we have 

                                           𝜑(|𝜂∗(𝜎𝑛+1, 𝜎𝑛)|) ≤ 𝜙(|𝜂∗(𝜎𝑛, 𝜎𝑛−1)|)                                (3.5) 

Since (𝜑, 𝜙) ∈ 𝔉, we deduce that 

                                              |𝜂∗(𝜎𝑛+1, 𝜎𝑛)| ≤ |𝜂∗(𝜎𝑛, 𝜎𝑛−1)| 

Case 2. If 

max {𝜙(|𝜂∗(𝜎𝑛, 𝜎𝑛−1)|), 𝜙 (|
𝜂∗(𝜎𝑛−1,𝜎𝑛)(1+𝜂∗(𝜎𝑛,𝜎𝑛+1))

1+𝜂∗(𝜎𝑛,𝜎𝑛−1)
|)} = 𝜙 (|

𝜂∗(𝜎𝑛−1,𝜎𝑛)(1+𝜂∗(𝜎𝑛,𝜎𝑛+1))

1+𝜂∗(𝜎𝑛−1,𝜎𝑛)
|)                                                                                                                                            

                                                                                                                                          (3.6) 

Then from (3.3), we have 

                            𝜑(|𝜂∗(𝜎𝑛+1, 𝜎𝑛)|) ≤ 𝜙 (|
𝜂∗(𝜎𝑛−1,𝜎𝑛)(1+𝜂∗(𝜎𝑛,𝜎𝑛+1))

1+𝜂∗(𝜎𝑛−1,𝜎𝑛)
|)                            (3.7) 

Since (𝜑, 𝜙) ∈ 𝔉 we get 

                                |𝜂∗(𝜎𝑛, 𝜎𝑛+1)| ≤ |
𝜂∗(𝜎𝑛−1,𝜎𝑛)(1+𝜂∗(𝜎𝑛,𝜎𝑛+1))

1+𝜂∗(𝜎𝑛−1,𝜎𝑛)
| 

which implies that 

|𝜂∗(𝜎𝑛+1, 𝜎𝑛)| ≤ |𝜂∗(𝜎𝑛, 𝜎𝑛−1)| 
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From both cases, we conclude that the sequence {|𝜂∗(𝜎𝑛+1, 𝜎𝑛)|} is a monotone and bounded 

below sequence of non-negative real numbers, it is convergent and converges to a point ℒ, i.e. 

lim
𝑛→∞

|𝜂∗(𝜎𝑛+1, 𝜎𝑛)| = ℒ ≥ 0 . If  ℒ = 0 . Then we have done. Let ℒ ≻ 0  and denote 𝐴 =

{𝑛 ∈ ℕ│𝑛 satisfies (3.4)} and 𝐵 = {𝑛 ∈ ℕ│𝑛 satisfies (3.6)}. Now, we make the following 

remark. 

(1) If Card 𝐴 = ∞, then from (3.3), we can find infinitely natural numbers 𝑛 satisfying 

inequality (3.5) and since lim
𝑛→∞

|𝜂∗(𝜎𝑛+1, 𝜎𝑛)| = lim
𝑛→∞

|𝜂∗(𝜎𝑛, 𝜎𝑛−1)| = ℒ and (𝜑, 𝜙) ∈

𝔉, we deduce that ℒ = 0.  

 

(2) If Card 𝐵 = ∞,  then from (3.3), we can find infinitely many 𝑛 ∈ ℕ  satisfying 

inequality (3.7). Since (𝜑, 𝜙) ∈ 𝔉 and using the similar argument to the one used in 

case 2, we obtain |𝜂∗(𝜎𝑛, 𝜎𝑛+1)| ≤ |
𝜂∗(𝜎𝑛−1,𝜎𝑛)(1+𝜂∗(𝜎𝑛,𝜎𝑛+1))

1+𝜂∗(𝜎𝑛−1,𝜎𝑛)
|for infinitely many 𝑛 ∈

ℕ. On letting the limit as n → ∞ and taking into account that  lim
𝑛→∞

|𝜂∗(𝜎𝑛+1, 𝜎𝑛)| = ℒ, 

we deduce that ℒ ≤
ℒ(1+ℒ)

1+ℒ
 and consequently, we obtain ℒ = 0. 

Therefore, in both cases we have 

                          lim
𝑛→∞

|𝜂∗(𝜎𝑛+1, 𝜎𝑛)| = 0 and then lim
𝑛→∞

𝜂∗(𝜎𝑛+1, 𝜎𝑛) = 0                        (3.8) 

We use (3.1) to find the self distance 𝜂∗(𝜎𝑛, 𝜎𝑛), as follows: 

   𝜑(|𝜂∗(𝜎𝑛, 𝜎𝑛)|) = 𝜑(|𝜂∗(𝒯𝜎𝑛−1, 𝒯𝜎𝑛−1)|) 

                             ≤ max {𝜙(|𝜂∗(𝜎𝑛−1, 𝜎𝑛−1)|), 𝜙 (|
𝜂∗(𝜎𝑛−1,𝒯𝜎𝑛−1)(1+𝜂∗(𝜎𝑛−1,𝒯𝜎𝑛−1))

1+𝜂∗(𝜎𝑛−1,𝜎𝑛−1)
|)} 

                             = max {𝜙(|𝜂∗(𝜎𝑛−1, 𝜎𝑛−1)|), 𝜙 (|
𝜂∗(𝜎𝑛−1,𝜎𝑛)(1+𝜂∗(𝜎𝑛−1,𝜎𝑛))

1+𝜂∗(𝜎𝑛−1,𝜎𝑛−1)
|)}            (3.9) 

Put 

            𝐶 = {𝑛 ∈ ℕ│𝜑(|𝜂∗(𝜎𝑛, 𝜎𝑛)|) ≤ 𝜙(|𝜂∗(𝜎𝑛−1, 𝜎𝑛−1)|)} 

            𝐷 = {𝑛 ∈ ℕ│𝜑(|𝜂∗(𝜎𝑛, 𝜎𝑛)|) ≤ 𝜙 (|
𝜂∗(𝜎𝑛−1,𝜎𝑛)(1+𝜂∗(𝜎𝑛−1,𝜎𝑛))

1+𝜂∗(𝜎𝑛−1,𝜎𝑛−1)
|)} 

By (3.9), we have Card 𝐶 = ∞ or Card 𝐷 = ∞. If Card 𝐶 = ∞, then there exists infinitely 

many 𝑛 ∈ ℕ satisfying 

                                      𝜑(|𝜂∗(𝜎𝑛, 𝜎𝑛)|) ≤ 𝜙(|𝜂∗(𝜎𝑛−1, 𝜎𝑛−1)|)                                     (3.10) 

and since (𝜑, 𝜙) ∈ 𝔉, we have 

                                            |𝜂∗(𝜎𝑛, 𝜎𝑛)| ≤ |𝜂∗(𝜎𝑛−1, 𝜎𝑛−1)| 
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Thus, {|𝜂∗(𝜎𝑛+1, 𝜎𝑛)|} is a non-increasing sequence of positive real numbers and arguing like 

case of (3.8), we have lim
𝑛→∞

|𝜂∗(𝜎𝑛, 𝜎𝑛)| = 0. On the other hand, if Card 𝐷 = ∞, then we can 

find infinitely many 𝑛 ∈ ℕ satisfying 

                             𝜑(|𝜂∗(𝜎𝑛, 𝜎𝑛)|) ≤ 𝜙 (|
𝜂∗(𝜎𝑛−1,𝜎𝑛)(1+𝜂∗(𝜎𝑛−1,𝜎𝑛))

1+𝜂∗(𝜎𝑛−1,𝜎𝑛−1)
|)                             (3.11) 

and since (𝜑, 𝜙) ∈ 𝔉, we infer  

                                    |𝜂∗(𝜎𝑛, 𝜎𝑛)| ≤ |
𝜂∗(𝜎𝑛−1,𝜎𝑛)(1+𝜂∗(𝜎𝑛−1,𝜎𝑛))

1+𝜂∗(𝜎𝑛−1,𝜎𝑛−1)
|                                   (3.12) 

taking the lim
𝑛→∞

 on (3.12) and using (3.8), we obtain that lim
𝑛→∞

|𝜂∗(𝜎𝑛, 𝜎𝑛)| ≤ 0  and then 

lim
𝑛→∞

|𝜂∗(𝜎𝑛, 𝜎𝑛)| = 0. Thus, in both cases, we infer that lim
𝑛→∞

|𝜂∗(𝜎𝑛, 𝜎𝑛)| = 0 and then 

                                              lim
𝑛→∞

𝜂∗(𝜎𝑛, 𝜎𝑛) = 0                                                           (3.13) 

We deduce from (2.2) that 

                                     𝑑𝜂∗(𝜎𝑛, 𝜎𝑛+1) = 𝜂∗(𝜎𝑛, 𝜎𝑛+1) − 𝜂∗(𝜎𝑛, 𝜎𝑛) 

So using (3.8) and (3.13), we get 

                                              lim
𝑛→∞

𝑑𝜂∗(𝜎𝑛, 𝜎𝑛+1) = 0                                                     (3.14) 

Next step is to show that {𝜎𝑛} is a Cauchy sequence in (𝔇, 𝑑𝜂∗
𝑠 ). For this we have to show 

that  

lim
𝑚,𝑛→∞

𝑑𝜂∗
𝑠 (𝜎𝑛, 𝜎𝑚) = lim

𝑚,𝑛→∞
max{𝑑𝜂∗(𝜎𝑛, 𝜎𝑚), 𝑑𝜂∗(𝜎𝑚, 𝜎𝑛)} = 0 

Suppose on contrary that {𝜎𝑛} is not a Cauchy sequence, that is lim
𝑚,𝑛→∞

𝑑𝜂∗(𝜎𝑛, 𝜎𝑚) ≠ 0. Then 

given 𝜖 > 0, we will construct a pair of subsequences {𝜎𝑛𝑘
} and {𝜎𝑚𝑘

} of {𝜎𝑛} such that 𝑛𝑘 is 

smallest index for which for all 𝑛𝑘 > 𝑚𝑘 > 𝑘, where 𝑘 ∈ ℕ   

                                                           𝑑𝜂∗(𝜎𝑛𝑘
, 𝜎𝑚𝑘

) ≥ 𝜖                                               (3.15) 

It follows directly that 

                                                         𝑑𝜂∗(𝜎𝑛𝑘−1, 𝜎𝑚𝑘
) < 𝜖                                             (3.16) 

By (3.15) and (3.16), we have 

                                         𝜖 ≤ 𝑑𝜂∗(𝜎𝑛𝑘
, 𝜎𝑚𝑘

) 

                                            ≤ 𝑑𝜂∗(𝜎𝑛𝑘
, 𝜎𝑛𝑘−1) + 𝑑𝜂∗(𝜎𝑛𝑘−1, 𝜎𝑚𝑘

) 

                                            < 𝑑𝜂∗(𝜎𝑛𝑘
, 𝜎𝑛𝑘−1) + 𝜖                                                                                                    

Taking lim
𝑘→∞

on both sides in above inequality and from (3.14), we obtain 

                                          lim
𝑘→∞

𝑑𝜂∗(𝜎𝑛𝑘
, 𝜎𝑚𝑘

) = 𝜖                                                        (3.17) 

Using triangle inequality, we have 
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                        𝑑𝜂∗(𝜎𝑛𝑘
, 𝜎𝑚𝑘

) ≤ 𝑑𝜂∗(𝜎𝑛𝑘
, 𝜎𝑛𝑘−1) + 𝑑𝜂∗(𝜎𝑛𝑘−1, 𝜎𝑚𝑘

) 

                                               ≤ 𝑑𝜂∗(𝜎𝑛𝑘
, 𝜎𝑛𝑘−1) + 𝑑𝜂∗(𝜎𝑛𝑘−1, 𝜎𝑚𝑘−1) + 𝑑𝜂∗(𝜎𝑚𝑘−1, 𝜎𝑚𝑘

) 

and 

                𝑑𝜂∗(𝜎𝑛𝑘−1, 𝜎𝑚𝑘−1) ≤ 𝑑𝜂∗(𝜎𝑛𝑘−1, 𝜎𝑛𝑘
) + 𝑑𝜂∗(𝜎𝑛𝑘

, 𝜎𝑚𝑘−1) 

                                               ≤ 𝑑𝜂∗(𝜎𝑛𝑘−1, 𝜎𝑛𝑘
) + 𝑑𝜂∗(𝜎𝑛𝑘

, 𝜎𝑚𝑘
) + 𝑑𝜂∗(𝜎𝑚𝑘

, 𝜎𝑚𝑘−1) 

Taking the limit as 𝑘 → ∞ in the above two inequalities and using (3.14) and (3.17), we get 

                                            lim
𝑘→∞

𝑑𝜂∗(𝜎𝑛𝑘−1, 𝜎𝑚𝑘−1) = 𝜖                                                    (3.18) 

Now applying contractive condition (3.1), for 𝜎𝑛𝑘
≠ 𝜎𝑚𝑘

, we have 

             𝜑(|𝜂∗(𝜎𝑛𝑘
, 𝜎𝑚𝑘

)|) = 𝜑(|𝜂∗(𝒯𝜎𝑛𝑘−1, 𝒯𝜎𝑚𝑘−1)|) 

                     ≤ max {𝜙(|𝜂∗(𝜎𝑛𝑘−1, 𝜎𝑚𝑘−1)|), 𝜙 (|
𝜂∗(𝜎𝑛𝑘−1,𝒯𝜎𝑛𝑘−1)(1+𝜂∗(𝜎𝑚𝑘−1,𝒯𝜎𝑚𝑘−1))

1+𝜂∗(𝜎𝑛𝑘−1,𝜎𝑚𝑘−1)
|)} 

                    = max {𝜙(|𝜂∗(𝜎𝑛𝑘−1, 𝜎𝑚𝑘−1)|), 𝜙 (|
𝜂∗(𝜎𝑛𝑘−1,𝜎𝑛𝑘

)(1+𝜂∗(𝜎𝑚𝑘−1,𝜎𝑚𝑘
))

1+𝜂∗(𝜎𝑛𝑘−1,𝜎𝑚𝑘−1)
|)}    (3.19) 

Let us put 

            𝐸 = {𝑘 ∈ ℕ│𝜑(|𝜂∗(𝜎𝑛𝑘
, 𝜎𝑚𝑘

)|) ≤ 𝜙(|𝜂∗(𝜎𝑛𝑘−1, 𝜎𝑚𝑘−1)|)} 

            𝐹 = {𝑘 ∈ ℕ│𝜑(|𝜂∗(𝜎𝑛𝑘
, 𝜎𝑚𝑘

)|) ≤ 𝜙 (|
𝜂∗(𝜎𝑛𝑘−1,𝜎𝑛𝑘

)(1+𝜂∗(𝜎𝑚𝑘−1,𝜎𝑚𝑘
))

1+𝜂∗(𝜎𝑛𝑘−1,𝜎𝑚𝑘−1)
|)} 

By (3.19), we have Card 𝐸 = ∞ or Card 𝐹 = ∞. Let us suppose that Card 𝐸 = ∞, then there 

exists infinitely many 𝑘 ∈ ℕ satisfying 

                                      𝜑(|𝜂∗(𝜎𝑛𝑘
, 𝜎𝑚𝑘

)|) ≤ 𝜙(|𝜂∗(𝜎𝑛𝑘−1, 𝜎𝑚𝑘−1)|)                          (3.20) 

and since (𝜑, 𝜙) ∈ 𝔉, by letting the limit as 𝑘 → ∞, we have 

lim
𝑘→∞

|𝜂∗(𝜎𝑛𝑘
, 𝜎𝑚𝑘

)| ≤ lim
𝑘→∞

|𝜂∗(𝜎𝑛𝑘−1, 𝜎𝑚𝑘−1)| 

In the view of (3.17) and (3.18), we get 𝜖 = 0 a contradiction. On the other hand, if Card 𝐹 =

∞, then we can find infinitely many 𝑘 ∈ ℕ satisfying 

                          𝜑(|𝜂∗(𝜎𝑛𝑘
, 𝜎𝑚𝑘

)|) ≤ 𝜙 (|
𝜂∗(𝜎𝑛𝑘−1,𝜎𝑛𝑘

)(1+𝜂∗(𝜎𝑚𝑘−1,𝜎𝑚𝑘
))

1+𝜂∗(𝜎𝑛𝑘−1,𝜎𝑚𝑘−1)
|)                 (3.21) 

and since (𝜑, 𝜙) ∈ 𝔉, we infer  

                           |𝜂∗(𝜎𝑛𝑘
, 𝜎𝑚𝑘

)| ≤ |
𝜂∗(𝜎𝑛𝑘−1,𝜎𝑛𝑘

)(1+𝜂∗(𝜎𝑚𝑘−1,𝜎𝑚𝑘
))

1+𝜂∗(𝜎𝑛𝑘−1,𝜎𝑚𝑘−1)
| 

Taking the limit as 𝑘 → ∞ and in the view of (3.14) and (3.17), it follows that 𝜖 ≤ 0 and we 

reach a contradiction. Therefore, in both the possibilities, we reach a contradiction and 
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therefore lim
𝑚,𝑛→∞

𝑑𝜂∗(𝜎𝑛, 𝜎𝑚) = 0. Similarly we can prove that lim
𝑚,𝑛→∞

𝑑𝜂∗(𝜎𝑚, 𝜎𝑛) = 0. Hence 

lim
𝑚,𝑛→∞

𝑑𝜂∗
𝑠 (𝜎𝑛, 𝜎𝑚) = 0, which ensures that {𝜎𝑛} is a Cauchy sequence in (𝔇, 𝑑𝜂∗

𝑠 ) . Since 

(𝔇, 𝜂∗) is a complete dualistic partial metric space, by Lemma 2.9(2), (𝔇, 𝑑𝜂∗
𝑠 ) is a complete 

metric space. Thus, there exists 𝜈 ∈ (𝔇, 𝑑𝜂∗
𝑠 )  such that 𝜎𝑛 → 𝜈  as  𝑛 → ∞ , that is 

lim
𝑛→∞

𝑑𝜂∗(𝜎𝑛, 𝜈) = 0 and by Lemma 2.9 (3), we know that 

                            𝜂∗(𝜈, 𝜈) = lim
𝑛→∞

𝜂∗(𝜎𝑛, 𝜈) = lim
𝑛→∞

𝜂∗(𝜎𝑛, 𝜎𝑚)                                         (3.22) 

Since, lim
𝑛→∞

𝑑𝜂∗(𝜎𝑛, 𝜈) = 0, by (2.2) and (3.12), we have 

                           𝜂∗(𝜈, 𝜈) = lim
𝑛→∞

𝜂∗(𝜎𝑛, 𝜈) = lim
𝑛→∞

𝜂∗(𝜎𝑛, 𝜎𝑚) = 0                                  (3.23) 

This shows that {𝜎𝑛} is a Cauchy sequence converging to 𝜈 ∈ (𝔇, 𝜂∗). We are left to prove 

that 𝜈 is a fixed point of 𝒯. We have to deal with two cases: 

Case 1. If 𝒯 is continuous, then 

                        𝜈 = lim
𝑛→∞

𝜎𝑛 = lim
𝑛→∞

𝒯𝜎𝑛−1 = 𝒯 ( lim
𝑛→∞

𝜎𝑛−1) = 𝒯𝜈                                  (3.24) 

Hence 𝒯𝜈 = 𝜈 that is 𝜈 is fixed point of 𝒯. 

Case 2. If {𝜎𝑛} ⊂ 𝔇 is non-decreasing sequence such that 𝜎𝑛 → 𝜈, then 𝜎𝑛 ⪯ 𝜈, ∀𝑛 ∈ ℕ. Now 

applying (3.1), we have 

              𝜑(|𝜂∗(𝒯𝜈, 𝒯𝜎𝑛)|) ≤ max {𝜙(|𝜂∗(𝜈, 𝜎𝑛)|), 𝜙 (|
𝜂∗(𝜎𝑛,𝒯𝜎𝑛)(1+𝜂∗(𝜈,𝒯𝜈))

1+𝜂∗(𝜎𝑛,𝜈)
|)}           (3.25) 

Denote 

            𝐺 = {𝑛 ∈ ℕ│𝜑(|𝜂∗(𝒯𝜈, 𝒯𝜎𝑛)|) ≤ 𝜙(|𝜂∗(𝜈, 𝜎𝑛)|)} 

            𝐻 = {𝑛 ∈ ℕ│𝜑(|𝜂∗(𝒯𝜈, 𝒯𝜎𝑛)|) ≤ 𝜙 (|
𝜂∗(𝜎𝑛,𝒯𝜎𝑛)(1+𝜂∗(𝜈,𝒯𝜈))

1+𝜂∗(𝜎𝑛,𝜈)
|)} 

We have Card 𝐺 = ∞ or Card 𝐻 = ∞. If Card 𝐺 = ∞, then there exists infinitely many  𝑛 ∈

ℕ such that 

                                                𝜑(|𝜂∗(𝒯𝜈, 𝒯𝜎𝑛)|) ≤ 𝜙(|𝜂∗(𝜈, 𝜎𝑛)|)                                (3.26) 

and since (𝜑, 𝜙) ∈ 𝔉, by taking the limit as 𝑛 → ∞, we have 

lim
𝑛→∞

|𝜂∗(𝒯𝜈, 𝒯𝜎𝑛)| ≤ lim
𝑛→∞

|𝜂∗(𝜈, 𝜎𝑛)| 

To simplify our consideration, we will denote the subsequence by the same symbol {𝒯𝜎𝑛}. 

Since 𝒯𝜎𝑛 = 𝜎𝑛+1  and 𝜎𝑛 → 𝜈 ∈ 𝔇,  this means that lim sup
𝑛→∞

𝜂∗(𝜈, 𝜎𝑛) = 0  and 

consequently lim
𝑛→∞

𝜎𝑛+1 = 𝜈. We infer |𝜂∗(𝒯𝜈, 𝜈)| ≤ 0 and then |𝜂∗(𝒯𝜈, 𝜈)| = 0.On the other 

hand, if Card 𝐻 = ∞, then we can find infinitely many 𝑛 ∈ ℕ such that 
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                               𝜑(|𝜂∗(𝒯𝜈, 𝒯𝜎𝑛)|) ≤ 𝜙 (|
𝜂∗(𝜈,𝒯𝜈)(1+𝜂∗(𝜎𝑛,𝒯𝜎𝑛))

1+𝜂∗(𝜎𝑛,𝜈)
|)                               (3.27) 

Since (𝜑, 𝜙) ∈ 𝔉, 𝒯𝜎𝑛 = 𝜎𝑛+1 and lim
𝑛→∞

𝜎𝑛 = 𝜈, on letting limit as 𝑛 → ∞, we have  

                              lim
𝑛→∞

|𝜂∗(𝒯𝜈, 𝜎𝑛+1)| ≤ lim
𝑛→∞

|
𝜂∗(𝜎𝑛,𝒯𝜎𝑛)(1+𝜂∗(𝜈,𝒯𝜈))

1+𝜂∗(𝜎𝑛,𝜈)
|                              (3.28) 

In the view of (3.8), arguing like above, we conclude that |𝜂∗(𝒯𝜈, 𝜈)| = 0. Therefore, in both 

the cases, we obtain |𝜂∗(𝒯𝜈, 𝜈)| = 0 and then 𝜂∗(𝒯𝜈, 𝜈) = 0. Since 𝒯 has (𝐶𝐶𝑃), we get  

                                             0 = 𝜂∗(𝜈, 𝜈) ≤ 𝑘𝜂∗(𝒯𝜈, 𝒯𝜈).                                             (3.29) 

On the other hand, by axiom (𝜂4
∗) we have 𝜂∗(𝜈, 𝜈) ≤ 𝜂∗(𝜈, 𝒯𝜈) + 𝜂∗(𝒯𝜈, 𝜈) − 𝜂∗(𝒯𝜈, 𝒯𝜈)                      

which implies that 

                                                      𝜂∗(𝒯𝜈, 𝒯𝜈) ≤ 0                                                          (3.30) 

The inequalities (3.29) and (3.30) imply that 𝜂∗(𝒯𝜈, 𝒯𝜈) = 0. Thus 

                                         𝜂∗(𝒯𝜈, 𝒯𝜈) = 𝜂∗(𝜈, 𝜈) = 𝜂∗(𝜈, 𝒯𝜈)                                       (3.31) 

By using axiom (𝜂1
∗), we have 𝒯𝜈 = 𝜈 and hence 𝜈 is a fixed point of 𝒯. This finishes the 

proof. 

Note that in the above result fixed point may not be unique, in order to prove uniqueness of 

the fixed point, we need some more conditions and for this purpose, we have following 

Theorem. 

Theorem 3.2 Let (𝔇, 𝜂∗, ⪯)  be an ordered complete dualistic partial metric space. Let 

𝒯: 𝔇 → 𝔇 be a mapping satisfying all the conditions of Theorem 3.1. Besides, if for each 

𝜎, 𝜍 ∈ 𝔇, there exists 𝜔 ∈ 𝔇 which is comparable to both 𝜎 and 𝜍. Then 𝒯 has a unique fixed 

point. 

Proof Following the proof of Theorem 3.1, we are only left to prove the uniqueness of the 

fixed point. Let 𝜈∗ be another fixed point of 𝒯,  then  𝒯𝜈∗ = 𝜈∗  and  𝜂∗(𝜈∗, 𝜈∗) = 0 . We 

distinguish two cases: 

Case 1. 𝜈 and 𝜈∗ are comparable.  

Suppose 𝜈 ⪯ 𝜈∗(the same argument works for 𝜈∗ ⪯ 𝜈). By applying the contractive condition 

(3.1), we get 

                    𝜑(|𝜂∗(𝜈, 𝜈∗)|) = 𝜑(|𝜂∗(𝒯𝜈, 𝒯𝜈∗)|) 

                                            ≤ max {𝜙(|𝜂∗(𝜈, 𝜈∗)|), 𝜙 (|
𝜂∗(𝜈∗,𝒯𝜈∗)(1+𝜂∗(𝜈,𝒯𝜈))

1+𝜂∗(𝜈,𝜈∗)
|)} 

                                            = max {𝜙(|𝜂∗(𝜈, 𝜈∗)|), 𝜙 (|
𝜂∗(𝜈∗,𝜈∗)(1+𝜂∗(𝜈,𝜈))

1+𝜂∗(𝜈,𝜈∗)
|)} 

                                            = max{𝜙(|𝜂∗(𝜈, 𝜈∗)|), 𝜙(0)}                                           (3.32) 
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If max{𝜙(|𝜂∗(𝜈, 𝜈∗)|), 𝜙(0)} = 𝜙(|𝜂∗(𝜈, 𝜈∗)|),  in this case from (3.32), 𝜑(|𝜂∗(𝜈, 𝜈∗)|) ≤

𝜙(|𝜂∗(𝜈, 𝜈∗)|) . Since (𝜑, 𝜙) ∈ 𝔉  and by Remark 2.18, we deduce that  |𝜂∗(𝜈, 𝜈∗)| = 0 . 

Similarly, if max{𝜙(|𝜂∗(𝜈, 𝜈∗)|), 𝜙(0)} = 𝜙(0),  then from (3.32), 𝜑(|𝜂∗(𝜈, 𝜈∗)|) ≤ 𝜙(0) . 

We infer that |𝜂∗(𝜈, 𝜈∗)| ≤ 0  and then |𝜂∗(𝜈, 𝜈∗)| = 0 . Hence in the both possibilities, 

|𝜂∗(𝜈, 𝜈∗)| = 0  and then 𝜂∗(𝜈, 𝜈∗) = 0 .  Thus 𝜂∗(𝜈, 𝜈∗) = 𝜂∗(𝜈, 𝜈) = 𝜂∗(𝜈∗, 𝜈∗),  by using 

axiom  (𝜂1
∗), we have 𝜈 = 𝜈∗ and hence 𝜈 is a unique fixed point of 𝒯. 

Case 2. 𝜈 and 𝜈∗ are not comparable.  

Then there exists 𝜔 ∈ 𝔇 which is comparable to both 𝜈 and 𝜈∗, that is, 𝜔 ⪯ 𝜈 and 𝜔 ⪯ 𝜈∗. 

Since 𝜔 ⪯ 𝜈, the non-decreasing character of 𝒯 gives us 𝒯𝑛𝜔 ⪯ 𝒯𝑛𝜈 = 𝜈, ∀ 𝑛 ∈ ℕ. By using 

(3.1), we have 

  𝜑(|𝜂∗(𝒯𝑛𝜔, 𝜈)|) = 𝜑(|𝜂∗(𝒯𝑛𝜔, 𝒯𝑛𝜈)|) 

                             ≤ max {𝜙(|𝜂∗(𝒯𝑛−1𝜔, 𝒯𝑛−1𝜈)|), 𝜙 (|
𝜂∗(𝒯𝑛−1𝜈,𝒯𝑛𝜈)(1+𝜂∗(𝒯𝑛−1𝜔,𝒯𝑛𝜔))

1+𝜂∗(𝒯𝑛−1𝜔,𝒯𝑛−1𝜈)
|)}        

                             = max {𝜙(|𝜂∗(𝒯𝑛−1𝜔, 𝜈)|), 𝜙 (|
𝜂∗(𝜈,𝜈)(1+𝜂∗(𝒯𝑛−1𝜔,𝒯𝑛𝜔))

1+𝜂∗(𝒯𝑛−1𝜔,𝜈)
|)}     

                             = max{𝜙(|𝜂∗(𝒯𝑛−1𝜔, 𝜈)|), 𝜙(0)}                                                     (3.33) 

Suppose  

             𝐼 = {𝑛 ∈ ℕ│𝜑(|𝜂∗(𝜈, 𝒯𝑛𝜔)|) ≤ 𝜙(|𝜂∗(𝜈, 𝒯𝑛−1𝜔)|)} 

             𝐽 = {𝑛 ∈ ℕ│𝜑(|𝜂∗(𝒯𝑛𝜔, 𝜈)|) ≤ 𝜙(0)} 

We have Card 𝐼 = ∞ or Card 𝐽 = ∞. If Card 𝐼 = ∞, then there exists infinitely many  𝑛 ∈ ℕ 

such that 𝜑(|𝜂∗(𝒯𝑛𝜔, 𝜈)|) ≤ 𝜙(|𝜂∗(𝒯𝑛−1𝜔, 𝜈)|)  and since (𝜑, 𝜙) ∈ 𝔉 , we have 

𝜂∗(𝒯𝑛𝜔, 𝜈) ≤ |𝜂∗(𝒯𝑛−1𝜔, 𝜈)| . On letting limit as 𝑛 → ∞  and by (3.26), we have 

lim
𝑛→∞

|𝜂∗(𝒯𝑛𝜔, 𝜈)| = 0 . If  Card 𝐽 = ∞,  then there exists infinitely many  𝑛 ∈ ℕ  such that 

𝜑(|𝜂∗(𝒯𝑛𝜔, 𝜈)|) ≤ 𝜙(0). Since (𝜑, 𝜙) ∈ 𝔉, taking lim
𝑛→∞

 and by Remark 2.18, we infer that 

lim
𝑛→∞

|𝜂∗(𝒯𝑛𝜔, 𝜈)| = 0 . In both cases, we have lim
𝑛→∞

|𝜂∗(𝒯𝑛𝜔, 𝜈)| = 0  and then 

lim
𝑛→∞

𝜂∗(𝒯𝑛𝜔, 𝜈) = 0. Similarly, we can show that lim
𝑛→∞

𝜂∗(𝒯𝑛𝜔, 𝜈∗) = 0. By axiom (𝜂4
∗) we 

have  

    𝜂∗(𝜈, 𝜈∗) ≤ 𝜂∗(𝜈, 𝒯𝑛𝜔) + 𝜂∗(𝒯𝑛𝜔, 𝜈∗) − 𝜂∗(𝒯𝑛𝜔, 𝒯𝑛𝜔)     

                    ≤ 𝜂∗(𝜈, 𝒯𝑛𝜔) + 𝜂∗(𝒯𝑛𝜔, 𝜈∗) − 𝜂∗(𝒯𝑛𝜔, 𝜈) − 𝜂∗(𝜈, 𝒯𝑛𝜔) + 𝜂∗(𝜈, 𝜈)    (3.34)  

Letting 𝑛 → ∞, we obtain that 𝜂∗(𝜈, 𝜈∗) ≤ 0. Again by axiom (𝜂4
∗), we have  

                                0 = 𝜂∗(𝜈, 𝜈) ≤ 𝜂∗(𝜈, 𝜈∗) + 𝜂∗(𝜈∗, 𝜈) − 𝜂∗(𝜈∗, 𝜈∗)                         (3.35)  
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which implies that 𝜂∗(𝜈, 𝜈∗) ≥ 0 . We infer that 𝜂∗(𝜈, 𝜈∗) = 0 . Therefore 𝜂∗(𝜈, 𝜈∗) =

𝜂∗(𝜈, 𝜈) = 𝜂∗(𝜈∗, 𝜈∗) and by using axiom (𝜂1
∗), we have 𝜈 = 𝜈∗. This completes the proof. 

From Theorem 3.1 and Theorem 3.2, we obtain the following corollaries. 

Corollary 3.3 Let (𝔇, ⪯) is a partially ordered set and suppose that (𝔇, 𝜂∗) is a complete 

dualistic partial metric space. Let 𝒯: 𝔇 → 𝔇 be a non-decreasing mapping and satisfies (CCP) 

such that there exists a pair of functions (𝜑, 𝜙) ∈ 𝔉 satisfying 

                                            𝜑(|𝜂∗(𝒯𝜎, 𝒯𝜍)|) ≤ 𝜙(|𝜂∗(𝜎, 𝜍)|)                                       (3.36) 

for all comparable elements 𝜎, 𝜍 ∈ 𝔇. Assume that either 𝒯 is continuous or if {𝜎𝑛} ⊂ 𝔇 is 

non-decreasing sequence such that 𝜎𝑛 → 𝜈, then 𝜎𝑛 ⪯ 𝜈, ∀𝑛 ∈ ℕ. If ∃ 𝜎0 ∈ 𝔇 such that 𝜎0 ⪯

𝒯𝜎0 , then 𝒯  has a fixed point. Besides, if for each 𝜎, 𝜍 ∈ 𝔇, there exists 𝜔 ∈ 𝔇 which is 

comparable to both 𝜎 and 𝜍. Then 𝒯 has a unique fixed point. 

Corollary 3.4 Let (𝔇, ⪯) is a partially ordered set and suppose that (𝔇, 𝜂∗) is a complete 

dualistic partial metric space. Let 𝒯: 𝔇 → 𝔇 be a non-decreasing mapping and satisfies (CCP) 

such that there exists a pair of functions (𝜑, 𝜙) ∈ 𝔉 satisfying 

                                      𝜑(|𝜂∗(𝒯𝜎, 𝒯𝜍)|) ≤ 𝜙 (|
𝜂∗(𝜍,𝒯𝜍)(1+𝜂∗(𝜎,𝒯𝜎))

1+𝜂∗(𝜎,𝜍)
|)                            (3.37) 

for all comparable elements 𝜎, 𝜍 ∈ 𝔇. Assume that either 𝒯 is continuous or if {𝜎𝑛} ⊂ 𝔇 is 

non-decreasing sequence such that 𝜎𝑛 → 𝜈, then 𝜎𝑛 ⪯ 𝜈, ∀𝑛 ∈ ℕ. If ∃ 𝜎0 ∈ 𝔇 such that 𝜎0 ⪯

𝒯𝜎0 , then 𝒯 has a fixed point.  Besides, if for each 𝜎, 𝜍 ∈ 𝔇, there exists 𝜔 ∈ 𝔇 which is 

comparable to both 𝜎 and 𝜍. Then 𝒯 has a unique fixed point. 

Taking into account Example 2.21, we have the following corollary. 

Corollary 3.5 Let (𝔇, ⪯) is a partially ordered set and suppose that (𝔇, 𝜂∗) is a complete 

dualistic partial metric space. Let 𝒯: 𝔇 → 𝔇 be a non-decreasing mapping and satisfies (CCP) 

such that there exists two functions 𝜑, 𝜙: ℝ0
+ → ℝ0

+ satisfying 

𝜑(|𝜂∗(𝒯𝜎, 𝒯𝜍)|) ≤ max {𝜑(|𝜂∗(𝜎, 𝜍)| − 𝜙(|𝜂∗(𝜎, 𝜍)|)), 𝜑 (|
𝜂∗(𝜍,𝒯𝜍)(1+𝜂∗(𝜎,𝒯𝜎))

1+𝜂∗(𝜎,𝜍)
| −

𝜙 (|
𝜂∗(𝜍,𝒯𝜍)(1+𝜂∗(𝜎,𝒯𝜎))

1+𝜂∗(𝜎,𝜍)
|))}                                                                                               (3.38) 

for all comparable elements 𝜎, 𝜍 ∈ ∆,  where 𝜑  is an increasing function and 𝜙  is a non-

decreasing function and they satisfy 𝜑(𝜅) = 𝜙(𝜅) = 0  if and only if 𝜅 = 0  and ' is 

continuous with 𝜙 ≤ 𝜑. Assume that either 𝒯 is continuous or if {𝜎𝑛} ⊂ 𝔇 is non-decreasing 

sequence such that 𝜎𝑛 → 𝜈, then 𝜎𝑛 ⪯ 𝜈, ∀𝑛 ∈ ℕ. If ∃ 𝜎0 ∈ 𝔇 such that 𝜎0 ⪯ 𝒯𝜎0, then 𝒯 has 

a fixed point. Besides, if for each 𝜎, 𝜍 ∈ 𝒜, there exists 𝜔 ∈ 𝔇 which is comparable to both 𝜎 

and 𝜍. Then 𝒯 has a unique fixed point. 
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Corollary 3.5 has the following consequences. 

Corollary 3.6 Let (𝔇, ⪯) is a partially ordered set and suppose that (𝔇, 𝜂∗) is a complete 

dualistic partial metric space. Let 𝒯: 𝔇 → 𝔇 be a non-decreasing mapping and satisfies (CCP) 

such that there exists two functions 𝜑, 𝜙: ℝ0
+ → ℝ0

+  satisfying the same conditions as in 

Corollary 3.6 such that 

                             𝜑(|𝜂∗(𝒯𝜎, 𝒯𝜍)|) ≤ 𝜑(|𝜂∗(𝜎, 𝜍)| − 𝜙(|𝜂∗(𝜎, 𝜍)|))                            (3.39) 

for all comparable elements 𝜎, 𝜍 ∈ 𝔇. Assume that either 𝒯 is continuous or if {𝜎𝑛} ⊂ 𝔇 is 

non-decreasing sequence such that 𝜎𝑛 → 𝜈, then 𝜎𝑛 ⪯ 𝜈, ∀𝑛 ∈ ℕ. If ∃ 𝜎0 ∈ 𝔇 such that 𝜎0 ⪯

𝒯𝜎0 , then 𝒯  has a fixed point. Besides, if for each 𝜎, 𝜍 ∈ 𝔇, there exists 𝜔 ∈ 𝔇 which is 

comparable to both 𝜎 and 𝜍. Then 𝒯 has a unique fixed point. 

Corollary 3.7 Let (𝔇, ⪯) is a partially ordered set and suppose that (𝔇, 𝜂∗) is a complete 

dualistic partial metric space. Let 𝒯: 𝔇 → 𝔇 be a non-decreasing mapping and satisfies (CCP) 

such that there exists two functions 𝜑, 𝜙: ℝ0
+ → ℝ0

+  satisfying the same conditions as in 

Corollary 3.6 such that 

          𝜑(|𝜂∗(𝒯𝜎, 𝒯𝜍)|) ≤ 𝜑 (|
𝜂∗(𝜍,𝒯𝜍)(1+𝜂∗(𝜎,𝒯𝜎))

1+𝜂∗(𝜎,𝜍)
| − 𝜙 (|

𝜂∗(𝜍,𝒯𝜍)(1+𝜂∗(𝜎,𝒯𝜎))

1+𝜂∗(𝜎,𝜍)
|))           (3.40) 

for all comparable elements 𝜎, 𝜍 ∈ ∆. Assume that either 𝒯 is continuous or if {𝜎𝑛} ⊂ 𝔇 is 

non-decreasing sequence such that 𝜎𝑛 → 𝜈, then 𝜎𝑛 ⪯ 𝜈, ∀𝑛 ∈ ℕ. If ∃ 𝜎0 ∈ 𝔇 such that 𝜎0 ⪯

𝒯𝜎0 , then 𝒯  has a fixed point. Besides, if for each 𝜎, 𝜍 ∈ 𝔇, there exists 𝜔 ∈ 𝔇 which is 

comparable to both 𝜎 and 𝜍. Then 𝒯 has a unique fixed point. 

Remark 3.8 The main result of [16] is Theorem 2.12. Notice that the rational contractive 

condition appearing in this theorem 

                              |𝜂∗(𝒯𝜎, 𝒯𝜍)| ≤ 𝛼 |
𝜂∗(𝜍,𝒯𝜍)(1+𝜂∗(𝜎,𝒯𝜎))

1+𝜂∗(𝜎,𝜍)
| + 𝛽|𝜂∗(𝜎, 𝜍)|  

for any 𝜎, 𝜍 ∈ 𝔇, where 𝛼, 𝛽 ≥ 0 and 𝛼 + 𝛽 <  1 implies that 

                         |𝜂∗(𝒯𝜎, 𝒯𝜍)| ≤ (𝛼 + 𝛽) max {|
𝜂∗(𝜍,𝒯𝜍)(1+𝜂∗(𝜎,𝒯𝜎))

1+𝜂∗(𝜎,𝜍)
| , |𝜂∗(𝜎, 𝜍)|}  

                                               ≤ max {(𝛼 + 𝛽) |
𝜂∗(𝜍,𝒯𝜍)(1+𝜂∗(𝜎,𝒯𝜎))

1+𝜂∗(𝜎,𝜍)
| , (𝛼 + 𝛽)|𝜂∗(𝜎, 𝜍)|} 

This condition is a particular case of the contractive condition appearing in Theorem 3.1 with 

the pair of functions (𝜑, 𝜙) ∈ 𝔉  given by 𝜑 = 1ℝ0
+  and 𝜙 = (𝛼 + 𝛽)1ℝ0

+ . Therefore, 

Theorem 2.12 is a particular case of the following corollary and considered as an extension 

and generalizations of Theorem 2.12 in the setting of complete dualistic partial metric spaces. 
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Corollary 3.9 Let (𝔇, ⪯) is a partially ordered set and suppose that (𝔇, 𝜂∗) is a complete 

dualistic partial metric space. Let 𝒯: 𝔇 → 𝔇 be a non-decreasing mapping and satisfies (CCP) 

such that  

           |𝜂∗(𝒯𝜎, 𝒯𝜍)| ≤ max {(𝛼 + 𝛽) |
𝜂∗(𝜍,𝒯𝜍)(1+𝜂∗(𝜎,𝒯𝜎))

1+𝜂∗(𝜎,𝜍)
| , (𝛼 + 𝛽)|𝜂∗(𝜎, 𝜍)|}             (3.41) 

for all comparable elements 𝜎, 𝜍 ∈ ∆, where 𝛼, 𝛽 ≥ 0 and 𝛼 + 𝛽 <  1 Assume that either 𝒯 is 

continuous or if {𝜎𝑛} ⊂ 𝔇 is non-decreasing sequence such that 𝜎𝑛 → 𝜈, then 𝜎𝑛 ⪯ 𝜈, ∀𝑛 ∈

ℕ. If ∃ 𝜎0 ∈ 𝔇 such that 𝜎0 ⪯ 𝒯𝜎0, then 𝒯 has a fixed point. Besides, if for each 𝜎, 𝜍 ∈ 𝔇, 

there exists 𝜔 ∈ 𝔇which is comparable to both 𝜎 and 𝜍. Then 𝒯 has a unique fixed point. 

Observations 3.10                                           

1. If in Corollary 3.9, we put 𝛼 + 𝛽 = 𝑐  and max {|
𝜂∗(𝜍,𝒯𝜍)(1+𝜂∗(𝜎,𝒯𝜎))

1+𝜂∗(𝜎,𝜍)
| , |𝜂∗(𝜎, 𝜍)|} =

|𝜂∗(𝜎, 𝜍)|, then we get Corollary 1 of Nazam et al. [16] and Theorem 2.3 of Oltra and 

Valero [22]. 

2. Usually the range of a dualistic partial metric 𝜂∗ is ℝ but if we replace ℝ by ℝ0
+, then 

𝜂∗ is identical to a partial metric 𝜂 and hence Theorem 3.1 is applicable in the setting 

of partial metric space. The Theorems 3.1 and 3.2 also generalizes the results in [18] 

and [27]. 

3. If we set 𝜂∗(𝜎, 𝜎) = 0 in Theorems 3.1 and 3.2, we retrieve corresponding theorems 

in metric spaces (see [2], [5], [7], [8], [26]). 

 

Taking into account Example 2.20, we have the following corollary. 

Corollary 3.11 Let (𝔇, ⪯) is a partially ordered set and suppose that (𝔇, 𝜂∗) is a complete 

dualistic partial metric space. Let 𝒯: 𝔇 → 𝔇 be a non-decreasing mapping and satisfies (CCP) 

such that there exist ℓ ∈ 𝒮 (see Example 2.20) satisfying 

𝜑(|𝜂∗(𝒯𝜎, 𝒯𝜍)|) ≤

max {ℓ(|𝜂∗(𝜎, 𝜍)|)|𝜂∗(𝜎, 𝜍)|, ℓ (|
𝜂∗(𝜍,𝒯𝜍)(1+𝜂∗(𝜎,𝒯𝜎))

1+𝜂∗(𝜎,𝜍)
|) |

𝜂∗(𝜍,𝒯𝜍)(1+𝜂∗(𝜎,𝒯𝜎))

1+𝜂∗(𝜎,𝜍)
|}                   (3.42) 

for all comparable elements 𝜎, 𝜍 ∈ ∆. Assume that either 𝒯 is continuous or if {𝜎𝑛} ⊂ 𝔇 is 

non-decreasing sequence such that 𝜎𝑛 → 𝜈, then 𝜎𝑛 ⪯ 𝜈, ∀𝑛 ∈ ℕ. If ∃ 𝜎0 ∈ 𝔇 such that 𝜎0 ⪯

𝒯𝜎0 , then 𝒯  has a fixed point. Besides, if for each 𝜎, 𝜍 ∈ 𝔇, there exists 𝜔 ∈ 𝔇 which is 

comparable to both 𝜎 and 𝜍. Then 𝒯 has a unique fixed point. 

Following Corollary is a generalization of Theorem 2.3 of Oltra and Valero [22], Corollary 

2.9 of Nazam et al. [15] and main result of Geraghty [8].  
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Corollary 3.12 Let (𝔇, ⪯) is a partially ordered set and suppose that (𝔇, 𝜂∗) is a complete 

dualistic partial metric space. Let 𝒯: 𝔇 → 𝔇 be a non-decreasing mapping and satisfies (CCP) 

such that there exist ℓ ∈ 𝒮 (see Example 2.20) satisfying 

                                         𝜑(|𝜂∗(𝒯𝜎, 𝒯𝜍)|) ≤ ℓ(|𝜂∗(𝜎, 𝜍)|)|𝜂∗(𝜎, 𝜍)|                           (3.43) 

for all comparable elements 𝜎, 𝜍 ∈ 𝔇. Assume that either 𝒯 is continuous or if {𝜎𝑛} ⊂ 𝔇 is 

non-decreasing sequence such that 𝜎𝑛 → 𝜈, then 𝜎𝑛 ⪯ 𝜈, ∀𝑛 ∈ ℕ. If ∃ 𝜎0 ∈ 𝔇 such that 𝜎0 ⪯

𝒯𝜎0 , then 𝒯  has a fixed point. Besides, if for each 𝜎, 𝜍 ∈ 𝔇, there exists 𝜔 ∈ 𝔇 which is 

comparable to both 𝜎 and 𝜍. Then 𝒯 has a unique fixed point. 

 

4. EXAMPLES 

In this section, we give an example in support of our main result. 

Example 4.1 Define 𝜂∗  on (−∞, 0]2
 as 𝜂∗(𝑥, 𝑦) = max{𝜎1, 𝜍1}, where 𝑥 = (𝜎1, 𝜍1) and 𝑦 =

(𝜎2, 𝜍2). It is easy to check that ((−∞, 0]2
, 𝜂∗) is a complete dualistic partial metric space. 

Define 𝒯: (−∞, 0]2
→ (−∞, 0]2

 as 𝒯𝑥 =
𝑥

2
, ∀ 𝑥 ∈ (−∞, 0]2

. In (−∞, 0]2
, we define the 

relation ⪯ in the following way: 𝑥 ⪯ 𝑦 if and only if 𝜎1 ≤ 𝜍1 , where 𝑥 = (𝜎1, 𝜍1) and 𝑦 =

(𝜎2, 𝜍2). Obviously, ⪯ is a partial order on (−∞, 0]2
 and 𝒯  is a non-decreasing mapping. 

Moreover, 𝜎0 = (−1,0) ∈ (−∞, 0]2
 and 𝜎0 ⪯ 𝜎0. Since 

                  max{𝜎1, 𝜍1} ≤ max {
𝜎1

2
,

𝜍1

2
} ⟹ 𝜂∗(𝑥, 𝑦) ≤ 𝜂∗(𝒯𝑥, 𝒯𝑦), ∀ 𝑥, 𝑦 ∈ (−∞, 0]2

    

Hence 𝒯 satisfies (CCP) with respect to ⪯. Define the function 𝜑, 𝜙: ℝ0
+ → ℝ0

+ as follows:       

                            𝜑(𝜅) = ln (
5𝜅+1

12
)  and  𝜙(𝜅) = ln (

3𝜅+1

12
), ∀𝜅 ∈ ℝ0

+.  

Clearly, (𝜑, 𝜙) ∈ 𝔉. We shall show that for all 𝑥, 𝑦 ∈ (−∞, 0]2
 with 𝑥 ⪯ 𝑦, (3.1) is satisfied. 

For this, consider ∀ 𝜎1 ≤ 𝜍1, 

               𝜑(|𝜂∗(𝒯𝑥, 𝒯𝑦)|) = ln (
5|𝜂∗(𝒯𝑥,𝒯𝑦)|+1

12
) = ln (

5|
𝜍1
2

|+1

12
) = ln (

5

24
|𝜍1| +

1

12
) 

On the other hand,  

                  𝜙(|𝜂∗(𝑥, 𝑦)|) = ln (
3|𝜂∗(𝑥,𝑦)|+1

12
) = ln (

3|𝜍1|+1

12
) = ln (

3

12
|𝜍1| +

1

12
) 

                  𝜙 (|
𝜂∗(𝑦,𝒯𝑦)(1+𝜂∗(𝑥,𝒯𝑥))

1+𝜂∗(𝑥,𝑦)
|) = 𝜙 (|

𝜍1
2

(1+
𝜎1
2

)

1+𝜍1
|) = 𝜙 (|

𝜍1(2+𝜎1)

4(1+𝜍1)
|) 

                                                          = ln (
3|

𝜍1(2+𝜎1)

4(1+𝜍1)
|+1

12
) = ln (

3|𝜍1(2+𝜎1)|+4|1+𝜍1|

24
) 

Combining the observations above, we get 
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               𝜑(|𝜂∗(𝒯𝑥, 𝒯𝑦)|) = ln (
5

24
|𝜍1| +

1

12
) ≤ ln (

3

12
|𝜍1| +

1

12
) 

                                           ≤ max {ln (
3

12
|𝜍1| +

1

12
) , ln (

3|𝜍1(2+𝜎1)|+4|1+𝜍1|

24
)} 

                                           = max {𝜙(|𝜂∗(𝑥, 𝑦)|), 𝜙 (|
𝜂∗(𝑦,𝒯𝑦)(1+𝜂∗(𝑥,𝒯𝑥))

1+𝜂∗(𝑥,𝑦)
|)} 

Thus all the conditions of Theorem 3.1 are satisfied. Hence 𝒯 has a fixed point, indeed 𝜈 =

(0,0) is a fixed point. 
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