
Available online at http://scik.org

J. Math. Comput. Sci. 10 (2020), No. 5, 1987-2007

https://doi.org/10.28919/jmcs/4787

ISSN: 1927-5307

COMPRESSED INTERSECTION ANNIHILATOR GRAPH

MAYSSA SOLIMAN∗, NEFERTITI MEGAHED

Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt

Copyright © 2020 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. Let R be a commutative ring with a non-zero identity. In this paper, we define a new graph, the

compressed intersection annihilator graph, denoted by IA(R), and investigate some of its properties and its relation

with the structure of the ring. It is a generalization of the torsion graph ΓR(R) and has some advantages over

the torsion graph and some other graphs. We study classes of rings for which the equivalence between the set of

zero-divisors of R, Z(R), being an ideal and the completeness of IA(R) holds. We also study the relation between

ΓR(R) and IA(R). Besides, we show that if the compressed intersection annihilator graph of a ring R is finite, then

there exists a subring S of R such that IA(S)∼= IA(R). Also, we show that the compressed intersection annihilator

graph will never be a complete bipartite graph. Besides, we show that the graph IA(R) with at least three vertices

is connected and its diameter is less than or equal to three. Finally, we determine the properties of the graph in the

cases when R is the ring of integers modulo n, the direct product of integral domains, the direct product of Artinian

local rings and the direct product of two rings such that one of them is not an integral domain.
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1 INTRODUCTION AND PRELIMINARIES

The study of zero-divisors plays an important role in ring theory, for example, to find solu-

tions to equations. However, the set of zero-divisors lacks an algebraic structure. The set of
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zero-divisors of a ring R, denoted by Z(R), is always closed under multiplication but it is not al-

ways closed under addition. Besides, we assume throughout this paper that R is a commutative

ring with non-zero identity.

The interchange between ring theory and graph theory began from the work of I. Beck in [11]

(1988). He defined the zero-divisor graph Γ(R) as the undirected simple graph with vertices

represented by all elements of R and two distinct vertices are adjacent if their product is zero.

In 1999, D. F. Anderson and P. S. Livingston in [5] modified Beck’s graph by considering the

set of vertices to be only the set of non-zero zero-divisors of the ring R and the adjacency kept

as before. They were interested in determining some important properties of the graph and their

relation to R. Inspired by ideas of S. B. Mulay in [18], S. Spiroff and C. Wickham in [22]

(2011), modified again the set of vertices by introducing the concept of the compressed zero-

divisor graph denoted by ΓE(R). The set of vertices was constructed from equivalence classes

of zero-divisors determined by the following equivalence relation ∼ on R: x ∼ y if and only

if annR(x) = annR(y), for any x, y ∈ R, where annR(x) = {r ∈ R | rx = 0}. E. Lewis in [15]

showed that ∼ is a multiplicative congruence relation on R. By the definition of the relation,

we get [0]∼ = {x ∈ R | annR(x) = R}= {0}, [1]∼ = {x ∈ R | annR(x) = {0}} = R \ Z(R) and

thus we have [x]∼ ⊆ Z∗(R) = Z(R)\{0} for each x ∈ Z∗(R). She also showed that the set

R/∼ = {[x]∼ | x ∈ R} of all congruence classes with the well-defined multiplication, given

by [x]∼[y]∼ = [xy]∼ for all x,y ∈ R, is a commutative monoid with identity [1]∼ and zero [0]∼.

S. Spiroff and C. Wickham defined ΓE(R) as the undirected simple graph with the set of vertices

Z(R/∼)∗ = {[x]∼ | x ∈ Z∗(R)} and two distinct vertices [x]∼ and [y]∼ are adjacent if and only

if xy = 0. There are many different ways of generalizations of the zero-divisor graph, see for

example [2, 12, 21].

This is not the only way to associate a graph to a ring and vise versa. One of those important

ways introduced by D. F. Anderson and A. Badawi in [3] (2008), is the total graph of a com-

mutative ring denoted by T (Γ(R)). It is defined as the undirected simple graph with R as the

set of vertices and two distinct vertices are adjacent if and only if their sum is a zero-divisor.

They characterized the properties of the graph when Z(R) is an ideal and when it is not an
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ideal. In 2013, D. F. Anderson and A. Badawi in [4] generalized the total graph over a commu-

tative ring R with respect to a multiplicative prime subset H of R and there are other ways of

generalizations of the total graph. For surveys on this topic see also [9, 19].

Another way to associate a graph with a ring was given by A. Badawi in [8] (2014), where

he introduced the annihilator graph denoted by AG(R). The set of vertices is the same as the set

of vertices of zero-divisor graph Z∗(R), but two distinct vertices x and y are adjacent if and only

if annR(xy) 6= annR(x)∪ annR(y). It is obvious that annR(x)∪ annR(y) ⊂ annR(xy) but equality

does not hold in general. In 2018, Sh. Payrovi and S. Babaei in [20] generalized AG(R) to be

the compressed annihilator graph AGE(R). The set of vertices is the set of equivalent classes of

zero-divisors of R, Z(R/∼)∗, and two distinct vertices [x]∼ and [y]∼ are adjacent if and only if

annR(x)∪ annR(y)( annR(xy). For a survey related to this topic see [10].

There are also generalizations of graphs over modules. One of those graphs associated with a

module, the torsion graph, denoted by ΓR(M), was introduced by P. Malakooti Rad, S. Yassemi,

Sh. Ghalandarzadeh and P. Safari in [17], with an R-module M. The set of vertices of ΓR(M) is

the set of non-zero torsion elements T (M)∗, where T (M)∗ = {m ∈M | annR(m) 6= {0}}. Two

distinct vertices x and y are adjacent if and only if annR(x)∩ annR(y) 6= {0}. In their work,

they studied in which case ΓR(M) is connected with diam(ΓR(M)) less than or equal to three,

the relationship between the diameter of ΓR(M) and ΓR(R), and proved that the girth of ΓR(M)

belongs to {3,∞}. Note that, ΓR(R) is a special case of the torsion graph ΓR(M) when we

consider R as an R-module. For other graphs over modules see also, [1, 12, 13, 16, 23]

In this work, we define a new graph, which we call the compressed intersection annihilator

graph IA(R), as the undirected graph whose set of vertices is Z(R/ ∼)∗ = Z(R/ ∼) \ {[0]∼}

and two distinct vertices [x]∼ and [y]∼ are adjacent if and only if annR(x)∩ annR(y) 6= {0} for

some representatives x and y. This graph is a generalization of the graph ΓR(R). Note that if

r ∈ annR(x)∩ annR(y) for some x and y, then r ∈ annR(x+ y). Thus if [x]∼ is adjacent to [y]∼

A non-empty proper subset H of R is said to be a multiplicative-prime subset of R if it satisfies the following

two conditions:

(1) ab ∈ H for every a ∈ H and b ∈ R,

(2) if ab ∈ H for a,b ∈ R, then either a ∈ H or b ∈ H.

As an example of a multiplicative-prime subset, we take H = Z(R).
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in IA(R), then x is adjacent to y in T (Γ(R)) for all representatives x and y. Therefore we may

consider IA(R) as a way to compress the total graph T (Γ(R)). The compressed intersection

annihilator graph has some advantages over the torsion graph and some other graphs. In many

cases, the compressed intersection annihilator graph is finite when the torsion graph is infinite.

To find finite non-empty torsion graphs, we have to restrict ourselves to the class of finite rings;

but there is a wide class of rings for which a finite compressed intersection annihilator graph

can be found when other approaches might fail. It is known that different elements from the

ring may give the same annihilator ideal. The equivalence class of all vertices of the torsion

graph that give the same non-zero annihilator ideal represents one vertex in IA(R). Then the

compressed intersection annihilator graph helps us to illuminate the structure of annihilator

ideals and the relation between them. The adjacency relation is always symmetric and reflexive

but is not usually transitive. So the compressed intersection annihilator graph measures this

lack of transitivity. Indeed, the adjacency relation is transitive if and only if the graph IA(R)

is complete. This study illustrates a more brief description of the annihilator ideals. Another

essential point of this graph is its connection to the associated primes of the ring. For instance,

in Noetherian rings, Z(R) is the union of the associated primes. Specifically, we have a nat-

ural injective map from the set of associated primes to the set of vertices of the compressed

intersection annihilator graph.

The second section is divided into four subsections. In the first subsection, we study classes

of rings for which the equivalence between Z(R) being an ideal and the completeness of IA(R)

holds. Besides, we show that if the compressed intersection annihilator graph of a ring R is

finite, then there exists a subring S of R such that IA(S)∼= IA(R). In the second subsection, we

generalize some results from [17]. Besides, we show that the graph IA(R) with at least three

vertices is connected and its diameter is less than or equal to three. Also, we show that the

compressed intersection annihilator graph will never be a complete bipartite graph. Addition-

ally, we study the relation between ΓR(R) and IA(R). In the third subsection, we investigate the

properties of the graph when R = Zn and show that if n is divisible by at least three primes, then

the graph IA(Zn) is connected and determine its diameter and girth. In the last subsection, we

study the graph when R is the finite direct product of integral domains with non-zero identities.
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This case shows an example of a finite graph of an infinite ring and is an example of isomorphic

graphs of non-isomorphic rings. Also, we show that the graph is connected with a diameter

equal to two and girth equal to three when R is the direct product of Artinian local rings with

non-zero identities. Finally, we show that the graph IA(R) is connected and not complete with

a diameter less than or equal to three when R is the direct product of two rings such that one of

them is not an integral domain.

Let G be a simple undirected graph. We use V (G) and E(G) to denote the set of vertices and

set of edges of G respectively. We also use x− y to denote the adjacency between two vertices

x and y. Two vertices in G are said to be connected if there is a path between them. If every

two vertices in G are connected, then G is said to be connected. A complete bipartite graph

is a graph whose set of vertices can be divided into two disjoint sets, say V1 and V2, in which

every vertex in V1 is adjacent to every vertex in V2 and no vertices within V1 or V2 are adjacent.

Such a graph is denoted by Km,n, where |V1| = m and |V2| = n. A complete graph is a graph

such that every two different vertices are adjacent. It is denoted by Kn, where n is the number

of vertices. G is said to be totally disconnected if there are no adjacent vertices. The distance,

d(x,y), between two vertices x and y in G is the length of the shortest path from x to y, if there

is a path, d(x,x) = 0 and d(x,y) = ∞, if x and y are not connected. The diameter of G is defined

by diam(G) = sup{d(x,y) | x,y ∈ V (G)}. A cycle is a closed path consisting of more than or

equal to three vertices that starts and ends at the same vertex. The length of the shortest cycle

in G is said to be the girth of G, denoted by gr(G) (gr(G) = ∞ if G has no cycles).

An element x ∈ R is said to be a nilpotent element if there is an integer n≥ 2 such that xn = 0

and xn−1 6= 0. Clearly, any nilpotent element is a zero divisor. An element a∈R is an idempotent

element if a2 = a. R is called a local ring if it has a unique maximal ideal. R is called a von

Neumann regular ring if for every element x ∈ R there exists a ∈ R such that x = x2a. R is said

to be a Noetherian ring if it satisfies the ascending chain condition on ideals. This means that

there is no infinite ascending sequence of ideals. R is said to be an Artinian ring if it satisfies the

descending chain condition on ideals. This means that there is no infinite descending sequence

of ideals. Note that any Artinian ring is a Noetherian ring, but the converse is not generally true.
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R is said to have a finite Goldie dimension if it does not contain infinite direct sums of non-zero

ideals.

2 MAIN RESULTS

2.1 Compressed intersection annihilator graph

Let∼ be the multiplicative congruence relation defined on R by x∼ y if and only if annR(x) =

annR(y). Let [x1]∼ = [x2]∼ and [y1]∼ = [y2]∼, which means that annR(x1) = annR(x2) and

annR(y1) = annR(y2). If r ∈ annR(x1)∩ annR(y1), then r ∈ annR(x2)∩ annR(y2). This shows

that the adjacency is well defined in the following

Definition 2.1. The compressed intersection annihilator graph, denoted by IA(R), is a simple

undirected graph, where the set of vertices is Z(R/∼)∗ = Z(R/∼)\{[0]∼} and the adjacency

between any two different vertices [x]∼ and [y]∼, [x]∼− [y]∼, if and only if annR(x)∩annR(y) 6=

{0}.

Note that if r ∈ annR(x)∩annR(y) for some x and y, then r ∈ annR(x+y). The converse is not

always true. Consider the ring R = Z6. We have that 4+ 5 = 3 ∈ Z∗(R) and 2 ∈ annR(4+ 5).

But 2 /∈ annR(4) and 2 /∈ annR(5). It follows that, if [x]∼ is adjacent to [y]∼ in IA(R), then x

is adjacent to y in T (Γ(R)) for all representatives x and y. We can find injective maps from

V (IA(R)) to V (T (Γ(R))) and from E(IA(R)) to E(T (Γ(R))). For example, let f : V (IA(R))→

V (T (Γ(R))) defined by [x]∼ 7→ x for some representative x and define the map g f : E(IA(R))→

E(T (Γ(R))) by {[x]∼, [y]∼} 7→ { f (x), f (y)}.

Example 1. Figure 1 represents the graph IA(R), where R=Z3×Z3. Figure 2 shows the graph

IA(R), for R = Z12. In the latter case, we can easily check that annR(2) = annR(10), annR(3) =

annR(9) and annR(4) = annR(8). Thus the set of vertices is Z(R/∼)∗= {[2]∼, [3]∼, [4]∼, [6]∼}.

[(0,1)]∼ [(1,0)]∼

FIGURE 1. IA(R)

R = Z3×Z3

[2]∼

[3]∼

[4]∼

[6]∼

FIGURE 2. IA(R), R = Z12
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We notice from the definition of the graph IA(R) that it is an empty graph if and only if

Z(R) = {0}. Clearly, for the extreme case, if annR(R) 6= {0}, then IA(R) is complete. But the

converse is not always true.

We study an essential property to a ring R when the set of its zero divisors is an ideal of

R. This gives us a lot of information about the total graph T (Γ(R)) since D. F. Anderson and

A. Badawi in [3], breaks its study into two cases depending on whether Z(R) is an ideal or not.

In the next theorem, we show that if the graph IA(R) is complete, then Z(R) is an ideal. In

theorem 2.2 and theorem 2.4, we show that the converse is true when any one of the following

two conditions holds:

(1) The set of zero-divisors Z(R) has a non-zero annihilator.

(2) R has a finite Goldie dimension.

Theorem 2.1. If the graph IA(R) is complete, then Z(R) is an ideal.

Proof. Assume that IA(R) is a complete graph. Let x, y ∈ Z(R). We have two cases, the

first one when [x]∼ and [y]∼ are two elements in Z(R/ ∼)∗, then there is r 6= 0 such that

r ∈ annR(x)∩ annR(y). So, r(x + y) = 0. Therefore x + y ∈ Z(R). In the second case, we

have either [x]∼ or [y]∼ is zero, and thus x+ y ∈ Z(R). Therefore Z(R) is an ideal. �

The last theorem implies, from [3], that if the graph IA(R) is complete, then T (Γ(R)) is a

disconnected graph that breaks into two components. Those components are the complete in-

duced subgraph Z(Γ(R)) of T (Γ(R)) with vertices Z(R) and the induced subgraph Reg(Γ(R))

of T (Γ(R)) with vertices Reg(R) = R\Z(R), the set of regular elements of R. Also, they char-

acterize the graph Reg(Γ(R)) depending on whether 2 is an element in Z(R) or not.

Theorem 2.2. If Z(R) has a non-zero annihilator, then IA(R) is a complete graph.

Proof. Let a ∈ annR(Z(R)) for some a 6= 0. Let x, y ∈ Z∗(R) be such that [x]∼ 6= [y]∼. Then

xa = 0 and ya = 0. Thus [x]∼ is adjacent to [y]∼ which implies the completeness of IA(R). �

Recall from [7], that Z(R) is an ideal if and only if Z(R) is a prime ideal. Specifically, when

R is an Artinian ring, we have the following results:



1994 MAYSSA SOLIMAN, NEFERTITI MEGAHED

• Every prime ideal is a maximal ideal which is a minimal prime ideal. Besides, each

minimal prime ideal in a Noetherian ring has a non-zero annihilator. Therefore, each

prime ideal of R has a non-zero annihilator.

• Each non-unit of R is nilpotent if and only if R is local.

Moreover, as we know for the Artinian local ring R, Z(R) is the maximal ideal, and it is an

annihilator ideal. Therefore, from the previous theorem, IA(R) is complete.

Theorem 2.4 is a direct result from theorem 2.3, which was proved by M. Filipowicz and

M. Kȩpczyk in [14].

Theorem 2.3 (Theorem 3.4, [14]). If a proper ring R has a finite Goldie dimension, then every

finitely generated ideal of R, consisting of zero-divisors, has a non-zero annihilator.

One interpretation of theorem 2.3 is the following statement:

“If a proper ring R has a finite Goldie dimension and Z(R) is an ideal of R, then

every finite set of zero divisors of R has a non-zero annihilator”.

The following theorem is a consequence of theorems 2.3 and 2.1 and the definition of the graph.

Theorem 2.4. Let R be a ring with finite Goldie dimension. Z(R) is an ideal if and only if IA(R)

is a complete graph.

It is clear that theorem 2.4 holds for Noetherian rings as they have a finite Goldie dimension.

The following theorem shows that we may consider only Noetherian rings to find all finite

compressed intersection annihilator graphs. The proof is analogous to the proof of theorem 3.3

in [6].

Theorem 2.5. If IA(R) is a finite graph, then there exists a Noetherian subring S of R such that

IA(S)∼= IA(R).

Proof. Assume that IA(R) is finite. Let |V (IA(R))| = n < ∞ and V (IA(R)) = Z(R/ ∼)∗ =

{[xi]∼|xi ∈ Z∗(R), 1 ≤ i ≤ n}. Then annR(xi) 6= annR(x j) for all i 6= j, 1 ≤ i, j ≤ n. Hence for

every i 6= j, 1≤ i, j ≤ n, there exist yi j ∈ annR(xi) and yi j /∈ annR(x j) or yi j /∈ annR(xi) and yi j ∈

annR(x j). However, annR(yi j) = annR(xk) for some k. So we can choose yi j ∈ {xl|1 ≤ l ≤ n}.
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Let S be the subring generated by {xl|1≤ l ≤ n}∪{1}. Then S is Noetherian. Clearly, [xi]∼ =

[x j]∼ if and only if i = j. Then V (IA(S)) = Z(S/ ∼)∗ = {[xi]∼|1 ≤ i ≤ n} = V (IA(R)). Also,

for all i and j, annS(xi)∩ annS(x j) 6= {0} if and only if annR(xi)∩ annR(x j) 6= {0}. Therefore,

IA(S)∼= IA(R). �

The next theorem shows that the compressed intersection annihilator graph cannot be a com-

plete bipartite graph for any ring.

Theorem 2.6. The compressed intersection annihilator graph cannot be a complete bipartite

graph for any ring, i.e. IA(R) 6= Km,n for all m,n > 1.

Proof. For the sake of contradiction, suppose that there is R such that IA(R) = Km,n for some

m,n > 1. Let A = {[ai]∼|1 ≤ i ≤ m} and B = {[bi]∼|1 ≤ i ≤ n} such that Z(R/ ∼)∗ = A∪B

and A∩B = /0. Since that every element in A is adjacent to every element in B, then annR(a1)∩

annR(b1) 6= {0}. Hence a1 + b1 ∈ Z(R). If a1 + b1 = 0, then a1 = −b1 which implies that

annR(a1) = annR(b1) and this is a contradiction. It follows that [a1 + b1]∼ ∈ Z(R/ ∼)∗. Then

[a1+b1]∼ ∈A or [a1+b1]∼ ∈B. Assume that [a1+b1]∼ ∈A. Then [a1+b1]∼= [ai]∼ for some i.

Since IA(R) is a complete bipartite graph, then there is r 6= 0 such that r ∈ annR(b1)∩annR(a1).

Thus r ∈ annR(ai). Therefore i= 1 which means that [a1+b1]∼= [a1]∼. Since there exists s 6= 0

such that s ∈ annR(b2)∩ annR(a1), then sb2 = 0 and 0 = sa1 = s(a1 + b1) = sa1 + sb1 = sb1.

Therefore [b1]∼ is adjacent to [b2]∼ and this is a contradiction. Similarly, we can treat the case

when [a1 +b1]∼ ∈ B. So IA(R) 6= Km,n for all m,n > 1. �

2.2 Diameter and girth

In this subsection, we determine the diameter and girth of the compressed intersection an-

nihilator graph. If we consider R as an R-module in the graph ΓR(R), then the following the-

orems 2.7, 2.8, and corollary 2.9 are generalizations of parts 2, 3 of theorems 3.1, 4.1, and

corollary 4.2 from [17] respectively, with analogous proofs. We have to replace T (M)∗ by

Z(R/∼)∗, Ann(x) by annR(x), and the vertices in ΓR(M) by the vertices in IA(R). Theorem 2.7

shows that if either the ring R is a von Neumann regular ring and R � annR(x)⊕ annR(y) for

any two distinct x, y ∈ Z∗(R) or Nil(R) 6= {0}, then IA(R) is connected with a diameter less
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than or equal to three. The proof of the theorem depends on an equivalent definition of the von

Neumann regular ring, namely every principal ideal is generated by an idempotent element.

Theorem 2.7. IA(R) is connected with diam(IA(R))≤ 3 if any one of the following conditions

holds:

(1) R is a von Neumann regular ring and R� annR(x)⊕ annR(y) for any two distinct x, y ∈

Z∗(R).

(2) Nil(R) 6= {0} (i.e. R is not reduced).

The following theorem shows that the girth of the graph IA(R) belongs to {3, ∞}. In corol-

lary 2.9, we show that if IA(R) is a connected graph with more than or equal to three vertices,

then IA(R) contains a cycle.

Theorem 2.8. If IA(R) contains a cycle, then gr(IA(R)) = 3.

Corollary 2.9. If IA(R) is a connected graph with | Z(R/∼)∗ |> 2, then IA(R) contains a cycle

and gr(IA(R)) = 3.

The following theorem shows that the graph IA(R) with at least three vertices is connected,

and its diameter is less than or equal to three. It follows from the previous corollary that its girth

is equal to three.

Theorem 2.10. Let | Z(R/∼)∗ |> 2. Then IA(R) is connected and diam(IA(R))≤ 3.

Proof. Let [x]∼ and [y]∼ be two distinct non-adjacent vertices in Z(R/∼)∗. Let [z]∼ ∈ Z(R/∼)∗

such that [z]∼ 6= [x]∼ and [z]∼ 6= [y]∼. If [z]∼ is adjacent to both [x]∼ and [y]∼, then d(x,y) = 2.

If [z]∼ is not adjacent to [y]∼ and it is adjacent to [x]∼ (or the other way round), then there

is t ∈ Z∗(R) such that tz = 0, tx = 0 and ty 6= 0 and we have two cases. First case if there is

r∈ annR(x) and r /∈ annR(z) (since [x]∼ 6= [z]∼) and since ry 6= 0, hence [x]∼−[rz]∼−[ry]∼−[y]∼

is a path between [x]∼ and [y]∼. Then d(x,y)≤ 3. Similarly, we can treat the second case when

there is r ∈ annR(z) and r /∈ annR(x). If [z]∼ is neither adjacent to [x]∼ nor [y]∼, then there is

t ∈ Z∗(R) such that tz = 0, tx 6= 0 and ty 6= 0. So [x]∼− [tx]∼− [ty]∼− [y]∼ is a path between

[x]∼ and [y]∼. Thus d(x,y)≤ 3. Therefore, IA(R) is connected and diam(IA(R))≤ 3. �
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Remark 1.

• If | Z(R/ ∼)∗ |= 2, then we have two cases. Firstly, if Z(R) is not an ideal, then from

theorem 2.1, IA(R) is not a complete graph which means that IA(R) is totally discon-

nected graph. Secondly, suppose that Z(R) is an ideal and Z(R/ ∼)∗ = {[a]∼, [b]∼}.

Then a+b ∈ Z(R). If [a+b]∼ = [0]∼, then a+b = 0. Thus annR(a) = annR(b) and this

is a contradiction. Therefore, [a+b]∼ = [a]∼ or [a+b]∼ = [b]∼. If [a+b]∼ = [a]∼, then

for all r ∈ annR(a) \ {0}, 0 = ra = r(a+ b) = ra+ rb = rb. Thus r ∈ annR(b). In the

same way, the case [a+b]∼ = [b]∼ can be treated. Hence IA(R) is complete.

• If | Z(R/ ∼)∗ |= 3, then the graph IA(R) is connected. Therefore from corollary 2.9,

gr(IA(R)) = 3. It follows that IA(R) is complete and diam(IA(R)) = 1.

The following theorem shows that ΓR(R) is complete if and only if IA(R) is complete. Theo-

rem 2.12 shows that ΓR(R) is connected if and only if IA(R) is connected. Moreover, they have

the same diameters.

Theorem 2.11. ΓR(R) is complete if and only if IA(R) is complete.

Proof. Assume that ΓR(R) is complete. Let [x]∼, [y]∼ ∈ Z(R/ ∼)∗ be two distinct vertices.

Then x, y ∈ Z∗(R) = T (R)∗ for any representative x, y. Hence there is r 6= 0 such that r ∈

annR(x)∩ annR(y). Therefore IA(R) is complete.

For the converse, let x, y ∈ T (R)∗ = Z∗(R). If annR(x) = annR(y), then x− y. If annR(x) 6=

annR(y), then [x]∼ and [y]∼ are two distinct vertices in IA(R). Since IA(R) is complete, then

there is r ∈ Z∗(R) such that r ∈ annR(x)∩ annR(y). So x− y. Therefore ΓR(R) is complete. �

Theorem 2.12. ΓR(R) is connected if and only if IA(R) is connected. Moreover, if |Z(R/∼)∗|> 1,

then diam(ΓR(R)) = diam(IA(R)).

Proof. Assume that ΓR(R) is connected. Let [x]∼, [y]∼ ∈ Z(R/ ∼)∗ be two distinct vertices in

IA(R). Then there is a path between x and y. Let r0 = x−r1− ....−rn−1−y = rn be the shortest

path of length n between x and y, i.e. d(x,y) = n. If annR(ri) = annR(ri+1) for some i ≥ 1,

and since annR(ri−1)∩ annR(ri) 6= {0}, then ri−1− ri+1. We can collapse the path into r0 = x−

r1− ...− ri−1− ri+1− ...− rn−1− y = rn, i.e. d(x,y) < n, which is a contradiction. Therefore
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annR(ri) 6= annR(ri+1) for all 0 ≤ i ≤ n−1. Thus [ri]∼ 6= [ri+1]∼ and annR(ri)∩ annR(ri+1) 6=

{0} for all 0≤ i≤ n−1. It follows that [r0]∼ = [x]∼− [r1]∼− ....− [rn−1]∼− [y]∼ = [rn]∼ is a

path in IA(R) between [x]∼ and [y]∼. Hence IA(R) is connected and d([x]∼, [y]∼)≤ n = d(x,y).

So diam(IA(R))≤ diam(ΓR(R)).

For the converse, assume that IA(R) is connected. Let x, y∈Z∗(R). If [x]∼= [y]∼ i.e. d([x]∼, [y]∼)=

0, then x− y is in the graph ΓR(R) which means that d(x,y)= 1. If [x]∼ 6= [y]∼. Let [s0]∼ = [x]∼−

[s1]∼− ....− [sm−1]∼− [y]∼ = [sm]∼ be the shortest path between [x]∼ and [y]∼ of length m≥ 1,

i.e. d([x]∼, [y]∼) = m. It follows that annR(si) 6= annR(si+1) and annR(si)∩ annR(si+1) 6= {0}

for all 0 ≤ i ≤ m−1. Therefore s0 = x− s1 − ...− sm−1 − y = sm is a path in ΓR(R) be-

tween x and y. Then ΓR(R) is connected and d(x,y) ≤ m = d([x]∼, [y]∼). It follows that

diam(ΓR(R))≤ diam(IA(R)).

From the two parts of the proof, it follows that if |Z(R/∼)∗|> 1, then diam(IA(R))= diam(ΓR(R)).

�

2.3 Compressed intersection annihilator graph of Zn

Throughout this subsection, we assume that R = Zn for some integer n > 1. The follow-

ing two lemmas identify which elements in R are zero divisors, and when they have the same

annihilators.

Lemma 2.13. Let k and n be integers with 1 < k < n. Then k ∈ Z∗(R) if and only if g.c.d(k,n) 6=

1.

Proof. Let k ∈ Z∗(R). Then there is l ∈ Z∗(R), l < n such that kl = 0(modn). Hence for some

positive integer m, kl = mn. If g.c.d(k,n) = 1, so n/l. This is a contradiction with l < n.

For the converse, assume that g.c.d(k,n) = r, r 6= 1. Then there are integers l 6= 0, m 6= 0 such

that n = rl and k = rm. Hence kl = rml = nm, i.e. kl = 0(modn). Therefore k ∈ Z∗(R). �

Lemma 2.14. Let k ∈ R and k 6= 0. If g.c.d(k,n) = l with l 6= 1, then annR(k) = annR(l).

Proof. Let g.c.d(k,n) = l, l 6= 1. Then there exist non-zero r, s ∈ N such that k = rl, n = sl

with g.c.d(r,s) = 1. It is clear that, annR(l) ⊂ annR(k). Now, we want to show that annR(k) ⊂
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annR(l). Let h ∈ annR(k), h 6= 0. Then hk = qn for non-zero integer q ∈ N. By substitution,

hrl = qsl. By cancellation of l 6= 0, we have hr = qs but g.c.d(r,s) = 1. Therefore s must

divide h, then sl must divide hl, which means that hl is a multiple of n. Thus hl = 0(modn) and

therefore h ∈ annR(l), and annR(k)⊂ annR(l). Thus annR(k) = annR(l). �

Corollary 2.15. Let [k]∼ ∈ Z(R/∼)∗. Then for some representative l, [k]∼ = [l]∼ and l/n.

Proof. From lemma 2.13, k ∈ Z∗(R) implies that g.c.d(k,n) 6= 1 say, g.c.d(k,n) = l. Thus, from

lemma 2.14, annR(k) = annR(l). This means that [k]∼ = [l]∼ and l/n as required. �

In the previous corollary, we identify the vertices Z(R/∼)∗ of IA(R) in view of properties of

R, then we use it in proving the following two lemmas. In the next lemma, we determine when

the vertices of the graph IA(R) are adjacent.

Lemma 2.16. Let [k]∼, [l]∼ ∈ Z(R/∼)∗ such that [k]∼ 6= [l]∼. Then g.c.d(k, l) 6= 1 if and only

if [k]∼ is adjacent to [l]∼.

Proof. Let [k]∼, [l]∼ ∈ Z(R/∼)∗, where [k]∼ 6= [l]∼. Without any loss of generality, we assume

k/n and l/n.

Assume that g.c.d(k, l) = r with r 6= 1. Then there are non-zero q, p ∈N such that k = qr, and

l = pr. Since k/n, and l/n, so that r/n, then there is a positive integer m such that n = mr. By

substitution,

mk = mqr = qn = 0( modn)

ml = mpr = pn = 0( modn)

i.e. m ∈ annR(k)∩ annR(l). Therefore [k]∼ is adjacent to [l]∼.

For the converse, assume that [k]∼ is adjacent to [l]∼. Then there is h ∈ Z∗(R) such that

h ∈ annR(k)∩ annR(l). Thus from corollary 2.15 there is m ∈ Z∗(R) such that [h]∼ = [m]∼ and

m/n, which implies that m ∈ annR(k)∩ annR(l). Hence mk = 0(modn), and ml = 0(modn).

Then there are positive integers p, q such that mk = pn and ml = qn. Since m/n, then there

is a positive integer r 6= 1 such that n = rm. It follows that mk = prm, and ml = qrm. By

cancellation of m 6= 0; k = pr, l = qr, and r 6= 1. Therefore g.c.d(k, l) 6= 1. �
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In the next lemma, we show that if n is divisible by at least three primes, then the graph IA(R)

is always connected, and its diameter is less than or equal to two. Therefore it has a cycle of

length three.

Lemma 2.17. Let n = ∏
m
i=1 pi, where m ≥ 3 and pi’s are prime numbers. Then IA(R) is a

connected graph with diam(IA(R))≤ 2 and gr(IA(R)) = 3.

Proof. Let [v1]∼, [v2]∼ ∈ Z∗(R/∼) such that [v1]∼ 6= [v2]∼. Then by corollary 2.15, there exist

k, l ∈ Z∗(R) such that [k]∼ = [v1]∼ and [l]∼ = [v2]∼ with k/n and l/n. We have two cases: if

g.c.d(k, l) 6= 1, then by lemma 2.16, [k]∼ is adjacent to [l]∼. It follows that d(k, l) = d(v1, v2) =

1. If g.c.d(k, l) = 1, let k = ∏
r
i=1 pti and l = ∏

s
i=1 p ji , where the set {pti}r

i=1 ⊂ {pi}m
i=1 is

distinct from the set {p ji}s
i=1⊂{pi}m

i=1 and r, s<m. Let u= p j f ptg for some p j f ∈ {p ji}s
i=1 and

ptg ∈ {pti}r
i=1. Then [u]∼ 6= [k]∼, [u]∼ 6= [l]∼ and [u]∼ 6= [0]∼. By lemma 2.16, [k]∼− [u]∼− [l]∼.

Thus d(k, l) = d(v1, v2) = 2. It follows that IA(R) is connected and diam(IA(R)) ≤ 2. From

corollary 2.9, gr(IA(R)) = 3. �

Example 2. Let p, q and r be distinct prime numbers. Then we have the following three cases:

(1) Let R =Zpq. From corollary 2.15, Z(R/∼)∗ = {[p]∼, [q]∼}. Since g.c.d(p,q) = 1, then

from Lemma 2.16, the graph IA(R) is a totally disconnected graph as shown in figure 3.

[p]∼ [q]∼

FIGURE 3. IA(R), R = Zpq

(2) Let R = Zpqr. From corollary 2.15, the set of vertices is

Z(R/∼)∗ = {[p]∼, [q]∼, [r]∼, [pq]∼, [pr]∼, [qr]∼}.

Then the graph is connected, diam(IA(R)) = 2 and gr(IA(R)) = 3 as shown in figure 4.
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[p]∼

[pr]∼
[r]∼

[pq]∼ [qr]∼

[q]∼

FIGURE 4. IA(R), R = Zpqr

(3) Let R = Zpm for a positive integer m. In that case, Z(R/∼)∗ = {[pi]∼|1≤ i < m}, and

all vertices are adjacent. So, it is a complete graph with (m− 1)-vertices. This means

that IA(R) = Km−1.

Remark 2.

• Under the condition of lemma 2.17, if there is at least one distinct prime, then the graph

is connected and diam(IA(R)) = 2. If there is no distinct primes, then this is the case in

part 3 of example 2.

• From 3 in example 2, all complete graphs of m-vertices may be realized as IA(R) = Km.

For instance, we can take R = Zpm+1 .

2.4 Compressed intersection annihilator graph of a finite product of rings

In this subsection, we study the properties of the graph IA(R) when the ring R is one of the

following:

• The finite direct product of two or more integral domains with non-zero identities.

• The finite product of Artinian local rings.

• The direct product of two rings such that one of them is not an integral domain.

Now, we investigate the case when R is the finite direct product of two or more integral domains

with non-zero identities. We notice that the graph of an integral domain is empty.

Theorem 2.18. Let R = A×B where A and B are integral domains with non-zero identities.

Then IA(R) is a totally disconnected graph.
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Proof. We need to determine the set of vertices Z(R/ ∼)∗. Let (x, y) ∈ Z∗(R), then there is

(h, k) ∈ Z∗(R) such that (h, k)(x, y) = (0A, 0B). Hence hx = 0A and ky = 0B and since A, B are

integral domains, then x = 0A or h = 0A and y = 0B or k = 0B. Therefore, the set of zero divisors

without the zero element (0A, 0B) may be partitioned into two disjoint sets, VA = {(a,0B) ∈

R |a∈ A\{0A}} and VB = {(0A,b)∈ R |b∈ B\{0B}}. Thus Z∗(R) =VA∪VB. But we can easily

show that annR(u) = VB for all u ∈ VA and similarly, annR(v) = VA for all v ∈ VB. Therefore

VA ⊆ [(1A, 0B)]∼ and VB ⊆ [(0A, 1B)]∼. Thus Z(R/∼)∗ = {[(1A, 0B)]∼, [(0A, 1B)]∼}. Since

|Z(R/∼)∗| = 2 and Z(R) is not an ideal, then from remark 1, IA(R) is a totally disconnected

graph with two vertices. �

Example 3. Let R = Zp×Zq, where p and q are any two primes. Then

Z(R/ ∼)∗ = {[(1,0)]∼, [(0, 1)]∼} and the graph IA(R) is a disconnected graph as shown in

figure 5.

[(1, 0)]∼ [(0, 1)]∼

FIGURE 5. IA(R), R = Zp×Zq

Theorem 2.19. Let {Ai}n
i=1 be a set of integral domains with non-zero identities and n > 2. If

R = ∏
n
i=1 Ai, then IA(R) is connected with diam(IA(R)) = 2 and gr(IA(R)) = 3.

Proof. Let X , Y ∈ Z∗(R), X = (a1, a2, ..., an) and Y = (b1, b2, ..., bn), where ai, bi ∈ Ai with

ak = 0Ak and bl = 0Al for some 1 ≤ k, l ≤ n. Let [X ]∼ 6= [Y ]∼ and annR(X)∩ annR(Y ) = {0}.

Let Z = (c1, c2, ..., cn) ∈ Z∗(R) with ck = 0Ak and cl = 0Al . Define for any 1 ≤ j ≤ n, IA j =

(u1, u2, ..., un) with u j = 1A j and ui = 0Ai for all 1≤ i≤ n and i 6= j. Then we can easily check

that IAkX = 0, IAkZ = 0, IAlY = 0 and IAl Z = 0. So that, there is an edge between [X ]∼ and [Z]∼

and an edge between [Z]∼ and [Y ]∼. Therefore there is a path between [X ]∼ and [Y ]∼. Thus

IA(R) is connected. Moreover, diam(IA(R))≤ 2 and there are vertices which are not adjacent.

For, W = (1A1, 1A2, ....1An−1, 0An) ∈ R and V = (0A1 , 1A2, ..., 1An) ∈ R to find an element to

annihilate V and W together it must be 0 = (0A1, ..., 0An) ∈ R. It follows that diam(IA(R)) = 2.

From corollary 2.9, gr(IA(R)) = 3. �

Remark 3.
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(1) One can easily check that for the ring R, defined in theorem 2.19, |Z∗(R/∼)|= 2n−2.

(2) In the proofs of theorems 2.18 and 2.19 we used only that Z(Ai) = {0}, for all 1 ≤ i ≤

n. In fact the compressed intersection annihilator graph for a finite direct product of

n integral domains is isomorphic to the compressed intersection annihilator graph of

a finite direct product of n fields which are Artinian rings. Namely, different graphs

constructed in that way, for a given n, would be isomorphic. Theorem 2.20 below is, in

some sense, a generalization of theorem 2.19.

Example 4. Graph 6 below represents the following two very different cases:

(1) Let p, q, r be three prime numbers and R = Zp×Zq×Zr. Then

Z(R/∼)∗ = {[(0, 0, 1)]∼, [(0, 1, 0)]∼, [(1, 0, 0)]∼, [(0, 1, 1)]∼, [(1, 0, 1)]∼, [(1, 1, 0)]∼}.

(2) Let R = Z×Z×Z. Then the set of vertices is

Z(R/∼)∗ = {[(0, 0, 1)]∼, [(0, 1, 0)]∼, [(1, 0, 0)]∼, [(0, 1, 1)]∼, [(1, 0, 1)]∼, [(1, 1, 0)]∼}.

[(0, 1, 1)]∼

[(0, 1, 0)]∼
[(1, 1, 0)]∼

[(0, 0, 1)]∼ [(1, 0, 0)]∼

[(1, 0, 1)]∼

FIGURE 6. IA(R), R = Zp×Zq×Zr & R = Z×Z×Z

Remark 4.

• From the two parts in example 4, we notice that we may have isomorphic graphs for

non-isomorphic rings and from part 2, we may have a finite graph for an infinite ring.

• Let p, q and r be three distinct primes. The graph IA(R) when R = Zp ×Zq ×Zr

is isomorphic to the graph IA(R), when R = Zpqr as shown in figures 4 and 6. The

condition that p, q, and r are distinct is essential, since for example, IA(Z2×Z2) is not

isomorphic to IA(Z4).
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Now, we investigate the properties of the compressed intersection annihilator graph IA(R),

when the ring R is a finite direct product of Artinian local rings with non-zero identities. Notice

that the graph of an Artinian local ring is complete since the set of zero divisors is an annihilator

ideal. In the next theorem, we show that the graph IA(R) is connected and compute its diameter.

Theorem 2.20. Let {Ri}n
i=1 be a set of Artinian local rings with non-zero identities and n≥ 2.

Assume that ai ∈ annR(Mi) for some non-zero nilpotent element ai, where Mi = Z(Ri) is the

unique maximal ideal of Ri for each 1≤ i≤ n and let R = ∏
n
i=1 Ri. Then IA(R) is a connected

graph with diam(IA(R)) = 2.

Proof. Let X , Y ∈ R be two non-zero zero-divisors such that [X ]∼ 6= [Y ]∼. Then for each i,

1 ≤ i ≤ n, there exist xi, yi ∈ Ri, such that X = (x1, ..., xn) and Y = (y1, ..., yn) with xk ∈ Mk

and yl ∈Ml for some 1 ≤ k, l ≤ n. Let Z = (z1, ..., zn) with zk = ak, zl = al and zi ∈ Ri for all

i 6= k and i 6= l. Define IR j = (u1, ..., un) where u j = a j and ui = 0Ri for all i 6= j. By properties

of nilpotent elements and ai ∈ annR(Mi), we can easily show that IRkX = 0, IRkZ = 0, IRl Z = 0

and IRlY = 0. It follows that, there is an edge between [X ]∼ and [Z]∼ and thus, there is an

edge between [Z]∼ and [Y ]∼. Therefore, there is a path between [X ]∼ and [Y ]∼. This means

that IA(R) is connected and also diam(IA(R)) ≤ 2. However, there are vertices which are not

adjacent. For instance, let W = (1R1, 1R2, ....1Rn−1, 0Rn) ∈ R and V = (0R1, 1R2, ..., 1Rn) ∈ R.

To find an element that annihilates V and W together it must be 0 = (0R1, ..., 0Rn) ∈ R. So

diam(IA(R)) = 2. �

Example 5. Let R = Z4×Z4. Then the set of vertices is

Z(R/∼)∗ = {[(0, 1)]∼, [(1, 0)]∼, [(0, 2)]∼, [(2, 0)]∼, [(2, 2)]∼, [(2, 1)]∼, [(1, 2)]∼}

and the graph IA(R) is represented in figure 7.
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[(0, 2)]∼

[(2, 2)]∼

[(2, 0)]∼

[(0, 1)]∼ [(1, 0)]∼

[(2, 1)]∼ [(1, 2)]∼

FIGURE 7. IA(R), R = Z4×Z4

In the next theorem, we show that if R is a finite direct product of two rings such that one

of them is not an integral domain, then IA(R) is connected, but not a complete graph with

diam(IA(R))≤ 3 and gr(IA(R)) = 3

Theorem 2.21. Let R1 and R2 be two commutative rings with non-zero identities such that

Z∗(R1) 6= φ or Z∗(R2) 6= φ and R = R1×R2. Then IA(R) is connected, but not a complete

graph with diam(IA(R))≤ 3 and gr(IA(R)) = 3.

Proof. Assume that Z∗(R1) 6= φ . Then there is x∈ Z∗(R1) such that rx = 0 for some r ∈ Z∗(R1).

We claim that we have three different vertices in Z(R/ ∼)∗ namely, [(1R1,0R2)]∼, [(0R1 ,1R2)]∼

and [(x,0R2)]∼. It would follow by theorem 2.10, IA(R) is connected and diam(IA(R)) ≤ 3

and by corollary 2.9, gr(IA(R)) = 3. The vertices are distinct, since clearly [(1R1,0R2)]∼ 6=

[(0R1,1R2)]∼. On the other hand, (r,0R2) ∈ ann(x,0R2) and (r,0R2) /∈ ann(1R1,0R2). Then

[(x,0R2)]∼ 6= [(1R1 ,0R2)]∼. Besides, (0R1 ,1R2) ∈ ann(x,0R2) and (0R1,1R2) /∈ ann(0R1,1R2).

Thus [(x,0R2)]∼ 6= [(0R1,1R2)]∼. To show that IA(R) is not a complete graph, it is easy to

verify that [(1R1,0R2)]∼ and [(0R1,1R2)]∼ are not adjacent. Similarly, if Z∗(R2) 6= φ , then IA(R)

is connected, but not a complete graph with diam(IA(R))≤ 3 and gr(IA(R)) = 3. �
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