ON THE HYPER-ZAGREB COINDEX OF SOME GRAPHS

MOHAMMED SAAD ALSHARAFI ${ }^{1, *}$, MAHIOUB MOHAMMED SHUBATAH ${ }^{2}$, ABDU QAID ALAMERI ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Education, Art and Science, University of Sheba Region, Yemen
${ }^{2}$ Department of Studies in Mathematics, Faculty of Science and Education, University of AL-Baida, Yemen
${ }^{3}$ Department of BME, Faculty of Engineering, University of Science and Technology, Yemen

Copyright © 2020 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A topological index is a numerical descriptor of a molecule, based on a certain topological feature of the corresponding molecular graph. In this paper some basic mathematical operation for the hyper Zagreb coindices of graph containing the tensor product $G_{1} \otimes G_{2}$, join $G_{1}+G_{2}$, strong product $G_{1} * G_{2}$, disjunction $G_{1} \vee G_{2}$ and symmetric difference $G_{1} \oplus G_{2}$ will be explained. Moreover we studied the expression for the hyper-Zagreb coindex of titania $\mathrm{TiO}_{2}[n, m]$ nanotubes and molecular graph of nanotorus have been derived. These explicit formulae can correlate the chemical structure of titania nanotubes and molecular graph of nanotorus to information about their physical structure.

Keywords: Zagreb index; Zagreb coindex; Hyper-Zagreb index; Hyper-Zagreb coindex; forgotten index; graph operation.

2010 AMS Subject Classification: 05C76.

1. Introduction

A topological index is a numerical value for correlation of chemical structure with various physical properties, chemical reactivity or biological activity. It is well known that many

[^0]graphs of general and in particular of chemical, interests arise from simpler graphs via various graph operations. Topological indices in isomer discrimination, structure-property relationship, structure-activity relationship and pharmaceutical drug design have been found to be very useful in chemistry, biochemistry and nanotechnology[9]. Throughout this paper, we consider a finite connected graph G that has no loops or multiple edges with vertex and edge sets $V(G)$, and $E(G)$, respectively. For a graph G, the degree of a vertex u is the number of edges incident to u, denoted by $\delta_{G}(u)$. The complement of G, denoted by \bar{G}, is a simple graph on the same set of vertices $V(G)$ in which two vertices u and v are adjacent, i.e., connected by an edge $u v$, if and only if they are not adjacent in G. Hence, $u v \in E(\bar{G})$, if and only if $u v \notin E(G)$. Obviously $E(G) \cup E(\bar{G})=E\left(K_{n}\right)$, and $\bar{m}=|E(\bar{G})|=\binom{n}{2}-m$, the degree of a vertex u in \bar{G}, is the number of edges incident to u , denoted by $\delta_{\bar{G}}(u)=n-1-\delta_{G}(u),[16]$. The first and second Zagreb indices have been introduced by Gutman and Trinajestic in 1972 [15]. They are respectively defined as:
$$
M_{1}(G)=\sum_{v \in V(G)} \delta_{G}^{2}(v)=\sum_{u v \in E(G)}\left[\delta_{G}(u)+\delta_{G}(v)\right], \quad M_{2}(G)=\sum_{u v \in E(G)} \delta_{G}(u) \delta_{G}(v),
$$

The first and second Zagreb coindices have been introduced by A.R. Ashrafi, T. Doslic, and A. Hamzeh in 2010 [5]. They are respectively defined as:

$$
\bar{M}_{1}(G)=\sum_{u v \notin E(G)}\left[\delta_{G}(u)+\delta_{G}(v)\right], \quad \bar{M}_{2}(G)=\sum_{u \vee \notin E(G)} \delta_{G}(u) \delta_{G}(v),
$$

In 2013, G.H. Shirdel, H. Rezapour and A.M. Sayadi [10] iintroduced distance-based of Zagreb indices named Hyper-Zagreb index which is defined as:

$$
H M(G)=\sum_{u v \in E(G)}\left[\delta_{G}(u)+\delta_{G}(v)\right]^{2}
$$

In 2016, Maryam Veylaki, et al [16] introduced distance-based of Zagreb indices named Hyper-Zagreb coindex which is defined as :

$$
\overline{H M}(G)=\sum_{u v \notin E(G)}\left[\delta_{G}(u)+\delta_{G}(v)\right]^{2}
$$

Furtula and Gutman in 2015 introduced forgotten index (F-index) [8] which defined as:

$$
F(G)=\sum_{u v \in E(G)}\left(\delta_{G}^{2}(u)+\delta_{G}^{2}(v)\right)
$$

N. De, S.M.A. Nayeem and A. Pal. in 2016 defined forgotten coindex (F-coindex)[9]. which defined as:

$$
\bar{F}(G)=\sum_{u \downarrow \notin E(G)}\left(\delta_{G}^{2}(u)+\delta_{G}^{2}(v)\right)
$$

Then, Veylaki et al.[16] and Basavanagoud et al. [7] computed the hyper Zagreb coindices of the Cartesian product and composition of two graphs. Here we continue this line of research by exploring the behavior of the hyper Zagreb coindices under several important operations such as disjunction, symmetric difference, join, tensor product and strong product. The results are applied to molecular graph of nanotorus and titania nanotubes. In recent years, there has been considerable interest in general problems of determining topological indices and them operations [1, 2, 3, 19, 20].

2. Preliminaries

In this section we give some basic and preliminary concepts which we shall use later.

Lemma 2.1:[4] Let G_{1} and G_{2} be two connected graphs with $\left|V\left(G_{1}\right)\right|=n_{1},\left|V\left(G_{2}\right)\right|=n_{2}$, $\left|E\left(G_{1}\right)\right|=m_{1}$, and $\left|E\left(G_{2}\right)\right|=m_{2}$. Then

1. $\left|V\left(G_{1} \times G_{2}\right)\right|=\left|V\left(G_{1} \vee G_{2}\right)\right|=\left|V\left(G_{1} \circ G_{2}\right)\right|=\left|V\left(G_{1} \otimes G_{2}\right)\right|=\left|V\left(G_{1} * G_{2}\right)\right|=$ $\left|V\left(G_{1} \oplus G_{2}\right)\right|=n_{1} n_{2},\left|V\left(G_{1}+G_{2}\right)\right|=n_{1}+n_{2}$,
2. $\left|E\left(G_{1} \times G_{2}\right)\right|=m_{1} n_{2}+n_{1} m_{2}, \quad\left|E\left(G_{1} * G_{2}\right)\right|=m_{1} n_{2}+n_{1} m_{2}+2 m_{1} m_{2}$,

$$
\begin{aligned}
& \left|E\left(G_{1}+G_{2}\right)\right|=m_{1}+m_{2}+n_{1} n_{2}, \quad\left|E\left(G_{1} \circ G_{2}\right)\right|=m_{1} n_{2}^{2}+m_{2} n_{1} \\
& \left|E\left(G_{1} \vee G_{2}\right)\right|=m_{1} n_{2}^{2}+m_{2} n_{1}^{2}-2 m_{1} m_{2}, \quad\left|E\left(G_{1} \otimes G_{2}\right)\right|=2 m_{1} m_{2}, \\
& \left|E\left(G_{1} \oplus G_{2}\right)\right|=m_{1} n_{2}^{2}+m_{2} n_{1}^{2}-4 m_{1} m_{2}
\end{aligned}
$$

3. $\delta_{G_{1} * G_{2}}(u, v)=\delta_{G_{1}}(u)+\delta_{G_{2}}(v)+\delta_{G_{1}}(u) \delta_{G_{2}}(v)$.

Corollary 2.2:[15] The first Zagreb index of some well-known graphs: For path graph P_{n} and cycle graph C_{n}, with $n: n \geq 3$ vertices :

$$
M_{1}\left(C_{n}\right)=4 n, \quad M_{1}\left(P_{n}\right)=4 n-6 .
$$

Corollary 2.3:[10, 6] The Hyper-Zagreb index of some well-known graphs: For path P_{n} and cycle graphs C_{n}, with $n, m \geq 3$ vertices :

$$
H M\left(C_{n}\right)=16 n, \quad H M\left(P_{n}\right)=16 n-30, \quad M\left(P_{n} \times C_{m}\right)=128 n m-150 m, \quad H M\left(C_{n} \times C_{m}\right)=128 n m .
$$

Corollary 2.4:[16] The Hyper-Zagreb coindex of path P_{n} and cycle graphs C_{n}, with $n: n \geq$ 3 vertices are:

$$
\overline{H M}\left(C_{n}\right)=8 n(n-3), \quad \overline{H M}\left(P_{n}\right)=8 n^{2}-38 n+46
$$

Corollary 2.5:[7] The Hyper-Zagreb coindex of some well-known graphs:
For a path graph and a cycle graph with $m, n \geq 3$, vertices :
(1) $\overline{H M}\left(P_{n} \times P_{m}\right)=$

$$
4(2 n m-n-m)^{2}+(n m-1)(16 n m-14 n-14 m+8)-144 n m+164 n+164 m-152,
$$

(2) $\overline{H M}\left(P_{n} \times C_{m}\right)=4(2 n m-m)^{2}+(n m-1)(16 n m-14 m)-144 n m+164 m$,
(3) $\overline{H M}\left(C_{n} \times C_{m}\right)=32 n m(n m-5$.

Proposition 2.6:[5] Let G be a simple graph on n vertices and m edges. Then.

$$
M_{1}(\bar{G})=M_{1}(G)+2(n-1)(\bar{m}-m), \quad \bar{M}_{1}(G)=2 m(n-1)-M_{1}(G), \quad \bar{M}_{1}(\bar{G})=2(n-1) \bar{m}-M_{1}(\bar{G}) .
$$

Theorem 2.7:[11] Let G be a simple graph on n vertices and m edges. Then.

$$
\begin{aligned}
H M(\bar{G}) & =4(n-1)^{2} \bar{m}-4(n-1) \bar{M}_{1}(G)+\overline{H M}(G), \\
\overline{H M}(G) & =(n-2) M_{1}(G)+4 m^{2}-H M(G) \\
& =H M(\bar{G})-4(n-1) M_{1}(\bar{G})+4 \bar{m}(n-1)^{2} \\
& =2 \bar{M}_{2}(G)+(n-1) M_{1}(G)-F(G), \\
\overline{H M}(\bar{G}) & =4 m(n-1)^{2}-4(n-1) M_{1}(G)+H M(G), \\
& =4 \bar{m}^{2}+(n-2) M_{1}(\bar{G})-H M(\bar{G})
\end{aligned}
$$

Proposition 2.8:[16] Let G_{1}, G_{2} be two simple graphs with n_{1}, n_{2} vertices and m_{1}, m_{2} edges, respectively, Then.

$$
\overline{H M}\left(G_{1}+G_{2}\right)=\overline{H M}\left(G_{1}\right)+\overline{H M}\left(G_{2}\right)+4\left(n_{1} \bar{M}_{1}\left(G_{2}\right)+n_{2} \bar{M}_{1}\left(G_{1}\right)\right)+4\left[n_{1}^{2} \bar{m}_{2}+n_{2}^{2} \bar{m}_{1}\right] .
$$

Proposition 2.9:[7] Let G_{1}, G_{2} be two simple graphs with n_{1}, n_{2} vertices and m_{1}, m_{2} edges, respectively, Then.

$$
\begin{aligned}
\overline{H M}\left(G_{1} \times G_{2}\right) & =2\left[2\left(n_{1} m_{2}+n_{2} m_{1}\right)^{2}-4 m_{1} m_{2}-n_{1} M_{2}\left(G_{2}\right)-n_{2} M_{2}\left(G_{1}\right)\right. \\
& \left.-\left[\left(3 m_{2}+(1 / 2) n_{2}\right) M_{1}\left(G_{1}\right)+\left(3 m_{1}+(1 / 2) n_{1}\right) M_{1}\left(G_{2}\right)\right]\right]+\left(n_{1} n_{2}-1\right)\left[n_{1} M_{1}\left(G_{2}\right)\right. \\
& \left.+n_{2} M_{1}\left(G_{1}\right)+8 m_{1} m_{2}\right]-\left[n_{2} F\left(G_{1}\right)+n_{1} F\left(G_{2}\right)+6 m_{2} M_{1}\left(G_{1}\right)+6 m_{1} M_{1}\left(G_{2}\right)\right], \\
\overline{H M}\left(G_{1} \circ G_{2}\right) & =2\left[2 m_{1} n_{2}^{2}\left(m_{1} n_{2}^{2}+2 m_{2} n_{1}\right)+2 m_{2}^{2} n_{1}^{2}-4 m_{1} m_{2}\left(n_{2}+m_{2}\right)\right. \\
& \left.-n_{2}^{2}\left(3 m_{2}+n_{2} / 2\right) M_{1}\left(G_{1}\right)-\left(n_{1} / 2+2 n_{2} m_{1}\right) M_{1}\left(G_{2}\right)-\left(n_{2}^{4} M_{2}\left(G_{1}\right)+n_{1} M_{2}\left(G_{2}\right)\right)\right] \\
& +\left(n_{1} n_{2}-1\right)\left[n_{2}^{3} M_{1}\left(G_{1}\right)+n_{1} M_{1}\left(G_{2}\right)+8 n_{2} m_{1} m_{2}\right]-\left[n_{2}^{4} F\left(G_{1}\right)+n_{1} F\left(G_{2}\right)\right. \\
& \left.+6 n_{2}^{2} m_{2} M_{1}\left(G_{1}\right)+6 n_{2} m_{1} M_{1}\left(G_{2}\right)\right] .
\end{aligned}
$$

3. Main Results

In this section, we study the Hyper-Zagreb coindex of various graph binary operations such as Cartesian product $G_{1} \times G_{2}$, composition $G_{1} \circ G_{2}$, disjunction $G_{1} \vee G_{2}$, symmetric difference $G_{1} \oplus G_{2}$, join $G_{1}+G_{2}$, tensor product $G_{1} \otimes G_{2}$, and strong product $G_{1} * G_{2}$, of graphs. We use the notation $V\left(G_{i}\right)$ for the vertex set, $E\left(G_{i}\right)$ for the edge set, n_{i} for the number of vertices and m_{i} for the number of edges of the graph G_{i} respectively. All graphs here offer are simple graphs.

Tensor product

The tensor product $G_{1} \otimes G_{2}$, of two simple and connected graphs G_{1} and G_{2} is the graph with vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $E\left(G_{1} \oplus G_{2}\right)=\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \mid u_{1} v_{1} \in E\left(G_{1}\right)$ and $u_{2} v_{2} \in E\left(G_{2}\right)$.

Theorem 3.1: Let G_{1}, G_{2} be two simple connected graphs with n_{1}, n_{2} vertices and m_{1}, m_{2} edges, respectively, Then.

$$
\overline{H M}\left(G_{1} \otimes G_{2}\right)=16 m_{1}^{2} m_{2}^{2}+\left(n_{1} n_{2}-2\right) M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)-F\left(G_{1}\right) F\left(G_{2}\right)-2 M_{2}\left(G_{1}\right) M_{2}\left(G_{2}\right) .
$$

Proof. By using Theorem 2.7. we have $\overline{H M}\left(G_{1} \otimes G_{2}\right)=\left(\left|V\left(G_{1} \otimes G_{2}\right)\right|-2\right) M_{1}\left(G_{1} \otimes\right.$ $\left.G_{2}\right)+4\left|E\left(G_{1} \otimes G_{2}\right)\right|^{2}-H M\left(G_{1} \otimes G_{2}\right)$, and since $M_{1}\left(G_{1} \otimes G_{2}\right)=M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)$, given in [12]. $H M\left(G_{1} \otimes G_{2}\right)=F\left(G_{1}\right) F\left(G_{2}\right)+2 M_{2}\left(G_{1}\right) M_{2}\left(G_{2}\right)$, given in [13].
$\left|E\left(G_{1} \otimes G_{2}\right)\right|=2 m_{1} m_{2}, \quad\left|V\left(G_{1} \otimes G_{2}\right)\right|=n_{1} n_{2}$ given in Lemma 2.1. which is complete the proof.

Proposition 3.2: Let G_{1}, G_{2} be two simple connected graphs with n_{1}, n_{2} vertices and m_{1}, m_{2} edges, respectively, Then.

$$
\begin{aligned}
\overline{H M}\left(\overline{G_{1} \otimes G_{2}}\right) & =8 m_{1} m_{2}\left(n_{1} n_{2}-1\right)^{2}-4\left(n_{1} n_{2}-1\right) M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+F\left(G_{1}\right) F\left(G_{2}\right) \\
& +2 M_{2}\left(G_{1}\right) M_{2}\left(G_{2}\right) .
\end{aligned}
$$

Join

The join $G_{1}+G_{2}$, of two simple and connected graphs G_{1} and G_{2} is a graph with vertex set $V\left(G_{1}+G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{1}\right) \cup\left\{u v \mid u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$.

Theorem 3.3: Let G_{1}, G_{2} be two simple connected graphs with n_{1}, n_{2} vertices and m_{1}, m_{2} edges, respectively, Then.

$$
\begin{aligned}
\overline{H M}\left(G_{1}+G_{2}\right) & =4\left[m_{1}+m_{2}+n_{1} n_{2}\right]^{2}+\left(n_{1}+n_{2}-2\right)\left[M_{1}\left(G_{1}\right)+M_{1}\left(G_{2}\right)+n_{1} n_{2}^{2}+n_{2} n_{1}^{2}\right. \\
& \left.+4 m_{1} n_{2}+4 m_{2} n_{1}\right]-\left[H M\left(G_{1}\right)+H M\left(G_{2}\right)+5\left(n_{1} M_{1}\left(G_{2}\right)+n_{2} M_{1}\left(G_{1}\right)\right)\right. \\
& \left.+8\left[n_{1}^{2} m_{2}+n_{2}^{2} m_{1}+m_{1} m_{2}\right]+n_{1} n_{2}\left[\left(n_{2}+n_{1}\right)^{2}+4\left(m_{1}+m_{2}\right)\right]\right] .
\end{aligned}
$$

Proof. By using Theorem 2.7. we have

$$
\overline{H M}\left(G_{1}+G_{2}\right)=\left(\left|V\left(G_{1}+G_{2}\right)\right|-2\right) M_{1}\left(G_{1}+G_{2}\right)+4\left|E\left(G_{1}+G_{2}\right)\right|^{2}-H M\left(G_{1}+G_{2}\right),
$$

and since $M_{1}\left(G_{1}+G_{2}\right)=M_{1}\left(G_{1}\right)+M_{1}\left(G_{2}\right)+n_{1} n_{2}^{2}+n_{2} n_{1}^{2}+4 m_{1} n_{2}+4 m_{2} n_{1}$, given in [12]. $H M\left(G_{1}+G_{2}\right)=H M\left(G_{1}\right)+H M\left(G_{2}\right)+5\left(n_{1} M_{1}\left(G_{2}\right)+n_{2} M_{1}\left(G_{1}\right)\right)+8\left[n_{1}^{2} m_{2}+n_{2}^{2} m_{1}+m_{1} m_{2}\right]+$ $n_{1} n_{2}\left[\left(n_{2}+n_{1}\right)^{2}+4\left(m_{1}+m_{2}\right)\right]$, given in [10]. $\left|E\left(G_{1}+G_{2}\right)\right|=m_{1}+m_{2}+n_{1} n_{2}, \quad\left|V\left(G_{1}+G_{2}\right)\right|=$ $n_{1}+n_{2}$ given in Lemma 2.1. which is complete the proof.

Proposition 3.4: Let G_{1}, G_{2} be two simple connected graphs with n_{1}, n_{2} vertices and m_{1}, m_{2} edges, respectively, Then.

$$
\begin{aligned}
\overline{H M}\left(\overline{G_{1}+G_{2}}\right) & =4\left(m_{1}+m_{2}+n_{1} n_{2}\right)\left(n_{1}+n_{2}-1\right)^{2}-4\left(n_{1}+n_{2}-1\right)\left[M_{1}\left(G_{1}\right)+M_{1}\left(G_{2}\right)+n_{1} n_{2}^{2}\right. \\
& \left.+n_{2} n_{1}^{2}+4 m_{1} n_{2}+4 m_{2} n_{1}\right]+H M\left(G_{1}\right)+H M\left(G_{2}\right)+5\left(n_{1} M_{1}\left(G_{2}\right)+n_{2} M_{1}\left(G_{1}\right)\right) \\
& +8\left[n_{1}^{2} m_{2}+n_{2}^{2} m_{1}+m_{1} m_{2}\right]+n_{1} n_{2}\left[\left(n_{2}+n_{1}\right)^{2}+4\left(m_{1}+m_{2}\right)\right] .
\end{aligned}
$$

Strong product

The strong product $G_{1} * G_{2}$, of two simple and connected graphs G_{1} and G_{2} is a graph with vertex set $V\left(G_{1} * G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and any two vertices $\left(\left(u_{1}, v_{1}\right)\right.$ and $\left(\left(u_{2}, v_{2}\right)\right.$ are adjacent if and only if $\left\{u_{1}=u_{2} \in V\left(G_{1}\right)\right.$ and $\left.v_{1} v_{2} \in E\left(G_{2}\right)\right\}$ or $\left\{v_{1}=v_{2} \in V\left(G_{2}\right)\right.$ and $\left.u_{1} u_{2} \in E\left(G_{1}\right)\right\}$.

Proposition 3.5: Let G_{1}, G_{2} be two simple connected graphs with n_{1}, n_{2} vertices and m_{1}, m_{2} edges, respectively, Then.

$$
M_{1}\left(G_{1} * G_{2}\right)=\left(n_{2}+6 m_{2}\right) M_{1}\left(G_{1}\right)+8 m_{2} m_{1}+\left(6 m_{1}+n_{1}\right) M_{1}\left(G_{2}\right)+2 M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)
$$

Proof. By Definitions of the Zagreb index,strong product $G_{1} * G_{2}$ and by Lemma 2.1.

$$
\begin{aligned}
& M_{1}\left(G_{1} * G_{2}\right) \\
= & \sum_{(a, c)(b, d) \in E\left(G_{1} * G_{2}\right)}\left[\delta_{G_{1} * G_{2}}(a, c)+\delta_{G_{1} * G_{2}}(b, d)\right] \\
= & \sum_{a b \in E\left(G_{1}\right)} \sum_{c=d \in V\left(G_{2}\right)}\left[\delta_{G_{1}}(a)+\delta_{G_{1}}(b)+\delta_{G_{1}}(a) \delta_{G_{2}}(c)+\delta_{G_{1}}(b) \delta_{G_{2}}(d)+\delta_{G_{2}}(c)+\delta_{G_{2}}(d)\right] \\
+ & \sum_{a=b \in V\left(G_{1}\right)} \sum_{c d \in E\left(G_{2}\right)}\left[\delta_{G_{1}}(a)+\delta_{G_{1}}(b)+\delta_{G_{1}}(a) \delta_{G_{2}}(c)+\delta_{G_{1}}(b) \delta_{G_{2}}(d)+\delta_{G_{2}}(c)+\delta_{G_{2}}(d)\right] \\
+ & \sum_{a b \in E\left(G_{1}\right)} \sum_{c d \in E\left(G_{2}\right)}\left[\delta_{G_{1}}(a)+\delta_{G_{1}}(b)+\delta_{G_{1}}(a) \delta_{G_{2}}(c)+\delta_{G_{1}}(b) \delta_{G_{2}}(d)+\delta_{G_{2}}(c)+\delta_{G_{2}}(d)\right] \\
= & \left(n_{2}+6 m_{2}\right) M_{1}\left(G_{1}\right)+8 m_{2} m_{1}+\left(6 m_{1}+n_{1}\right) M_{1}\left(G_{2}\right)+2 M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right) .
\end{aligned}
$$

Theorem 3.6: Let G_{1}, G_{2} be two simple connected graphs with n_{1}, n_{2} vertices and m_{1}, m_{2} edges, respectively, Then.

$$
\begin{aligned}
& \overline{H M}\left(G_{1} * G_{2}\right) \\
= & 4\left(m_{1} n_{2}+n_{1} m_{2}+2 m_{1} m_{2}\right)^{2}+\left(n_{1} n_{2}-2\right)\left[\left(n_{2}+6 m_{2}\right) M_{1}\left(G_{1}\right)+8 m_{2} m_{1}\right. \\
+ & \left.\left(6 m_{1}+n_{1}\right) M_{1}\left(G_{2}\right)+2 M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)\right]-\left[H M\left(G_{1}\right)+n_{1} H M\left(G_{2}\right)+5 n_{2} M_{1}\left(G_{1}\right)\right. \\
+ & \left.5 n_{1} M_{1}\left(G_{2}\right)+4 n_{2} m_{1}\left[2 n_{2}+1\right]+8 m_{2}\left[n_{1}+m_{1}\right]+n_{1} n_{2}\left(n_{2}^{3}+2 n_{2}+4 m_{2}\right)\right] .
\end{aligned}
$$

Proof. By using Theorem 2.7. we have $\overline{H M}\left(G_{1} * G_{2}\right)=\left(\left|V\left(G_{1} * G_{2}\right)\right|-2\right) M_{1}\left(G_{1} * G_{2}\right)+$ $4\left|E\left(G_{1} * G_{2}\right)\right|^{2}-H M\left(G_{1} * G_{2}\right)$, and since $M_{1}\left(G_{1} * G_{2}\right)=\left(n_{2}+6 m_{2}\right) M_{1}\left(G_{1}\right)+8 m_{2} m_{1}+\left(6 m_{1}+\right.$ $\left.n_{1}\right) M_{1}\left(G_{2}\right)+2 M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)$, given in Proposition 3.7. $H M\left(G_{1} * G_{2}\right)=H M\left(G_{1}\right)+n_{1} H M\left(G_{2}\right)+$ $5 n_{2} M_{1}\left(G_{1}\right)+5 n_{1} M_{1}\left(G_{2}\right)+4 n_{2} m_{1}\left[2 n_{2}+1\right]+8 m_{2}\left[n_{1}+m_{1}\right]+n_{1} n_{2}\left[n_{2}^{3}+2 n_{2}+4 m_{2}\right]$, given in [10]. $\left|E\left(G_{1} * G_{2}\right)\right|=m_{1} n_{2}+n_{1} m_{2}+2 m_{1} m_{2}, \quad\left|V\left(G_{1} * G_{2}\right)\right|=n_{1} n_{2}$ given in Lemma 2.1. which is complete the proof.

Proposition 3.7: Let G_{1}, G_{2} be two simple connected graphs with n_{1}, n_{2} vertices and m_{1}, m_{2} edges, respectively, Then.

$$
\begin{aligned}
\overline{H M}\left(\overline{G_{1} * G_{2}}\right) & =4\left(m_{1} n_{2}+n_{1} m_{2}+2 m_{1} m_{2}\right)\left(n_{1} n_{2}-1\right)^{2}-4\left(n_{1} n_{2}-1\right)\left[\left(n_{2}+6 m_{2}\right) M_{1}\left(G_{1}\right)\right. \\
& \left.+8 m_{2} m_{1}+\left(6 m_{1}+n_{1}\right) M_{1}\left(G_{2}\right)+2 M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)\right]+H M\left(G_{1}\right) \\
& +n_{1} H M\left(G_{2}\right)+5 n_{2} M_{1}\left(G_{1}\right)+5 n_{1} M_{1}\left(G_{2}\right)+4 n_{2} m_{1}\left[2 n_{2}+1\right]+8 m_{2}\left[n_{1}+m_{1}\right] \\
& +n_{1} n_{2}\left[n_{2}^{3}+2 n_{2}+4 m_{2}\right] .
\end{aligned}
$$

Cartesian product

The Cartesian product $G_{1} \times G_{2}$, of two simple and connected graphs G_{1} and G_{2} has the vertex $\operatorname{set} V\left(G_{1} \times G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $(a, x)(b, y)$ is an edge of $G_{1} \times G_{2}$ if $a=b$ and $x y \in E\left(G_{2}\right)$, or $a b \in E\left(G_{1}\right)$ and $x=y$.

Proposition 3.8: Let G_{1}, G_{2} be two simple connected graphs with n_{1}, n_{2} vertices and m_{1}, m_{2} edges, respectively, Then.

$$
\begin{aligned}
\overline{H M}\left(\overline{G_{1} \times G_{2}}\right) & =4\left(m_{1} n_{2}+m_{2} n_{1}\right)\left(n_{1} n_{2}-1\right)^{2}-4\left(n_{1} n_{2}-1\right)\left(n_{2} M_{1}\left(G_{1}\right)+n_{1} M_{1}\left(G_{2}\right)\right. \\
& \left.+8 m_{1} m_{2}\right)+n_{2} H M\left(G_{1}\right)+n_{1} \operatorname{HM}\left(G_{2}\right)+12 m_{1} M_{1}\left(G_{2}\right)+12 m_{2} M_{1}\left(G_{1}\right) .
\end{aligned}
$$

Composition

The composition $G_{1} \circ G_{2}$, of two simple and connected graphs G_{1} and G_{2} with disjoint vertex sets $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ and edge sets $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$ is the graph with vertex set $V\left(G_{1}\right) \times$ $V\left(G_{2}\right)$ and $u=\left(u_{1}, v_{1}\right)$ is adjacent with $v=\left(u_{2}, v_{2}\right)$ whenever $\left(u_{1}\right.$ is adjacent with $\left.u_{2}\right)$ or $\left\{u_{1}=u_{2}\right.$ and v_{1} is adjacent with $\left.v_{2}\right\}$.

Proposition 3.9: Let G_{1}, G_{2} be two simple connected graphs with n_{1}, n_{2} vertices and m_{1}, m_{2} edges, respectively, Then.

$$
\begin{aligned}
\overline{H M}\left(\overline{G_{1} \circ G_{2}}\right) & =4\left[m_{1} n_{2}^{2}+m_{2} n_{1}\right]\left(n_{1} n_{2}-1\right)^{2}-4\left(n_{1} n_{2}-1\right)\left[n_{2}^{3} M_{1}\left(G_{1}\right)+n_{1} M_{1}\left(G_{2}\right)+8 n_{2} m_{2} m_{1}\right] \\
& +n_{2}^{4} H M\left(G_{1}\right)+n_{1} H M\left(G_{2}\right)+12 n_{2}^{2} m_{2} M_{1}\left(G_{1}\right)+10 n_{2} m_{1} M_{1}\left(G_{2}\right)+8 m_{2} m_{1} .
\end{aligned}
$$

Disjunction

The disjunction $G_{1} \vee G_{2}$ of graphs G_{1} and G_{2} is the graph with vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $\left(u_{1}, v_{1}\right)$ is adjacent with $\left(u_{2}, v_{2}\right)$, whenever $\left(u_{1}, u_{2}\right) \in E\left(G_{1}\right)$ or $\left(v_{1}, v_{2}\right) \in E\left(G_{2}\right)$.
Theorem 3.10: Let G_{1}, G_{2} be two simple graphs with n_{1}, n_{2} vertices and m_{1}, m_{2} edges, respectively, Then.

$$
\begin{aligned}
\overline{H M}\left(G_{1} \vee G_{2}\right) & =4\left[m_{1} n_{2}^{2}+m_{2} n_{1}^{2}-2 m_{1} m_{2}\right]^{2}+\left(n_{1} n_{2}-2\right)\left[\left(n_{1} n_{2}^{2}-4 m_{2} n_{2}\right) M_{1}\left(G_{1}\right)\right. \\
& \left.+M_{1}\left(G_{2}\right) M_{1}\left(G_{1}\right)+\left(n_{2} n_{1}^{2}-4 m_{1} n_{1}\right) M_{1}\left(G_{2}\right)+8 m_{1} m_{2} n_{1} n_{2}\right] \\
& -\left[\left[n_{1}^{4}-2 n_{2}^{2} m_{2}\right] H M\left(G_{2}\right)+\left[n_{2}^{4}-2 n_{2}^{2} m_{2}\right] H M\left(G_{1}\right)+5 n_{1} M_{1}\left(G_{1}\right) F\left(G_{2}\right)\right. \\
& +5 n_{2} M_{1}\left(G_{2}\right) F\left(G_{1}\right)+10 n_{2}^{2} m_{2} n_{1} M_{1}\left(G_{1}\right)+10 n_{2} n_{1}^{2} m_{1} M_{1}\left(G_{2}\right) \\
& +8 n_{2}^{2} m_{2} m_{1}+8 n_{1}^{2} m_{1} m_{2}-8 n_{2} m_{1}^{2} M_{1}\left(G_{2}\right)-8 n_{1} m_{2}^{2} M_{1}\left(G_{1}\right) \\
& -4 n_{1}^{2} m_{1} F\left(G_{2}\right)-4 n_{2}^{2} m_{2} F\left(G_{1}\right)-8 n_{1}^{2} m_{1} M_{2}\left(G_{2}\right)-8 n_{2}^{2} m_{2} M_{2}\left(G_{1}\right) \\
& +8 m_{1} M_{2}\left(G_{2}\right)+8 m_{2} M_{2}\left(G_{1}\right)-8 n_{2} n_{1} M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+4 n_{2} M_{2}\left(G_{1}\right) M_{1}\left(G_{2}\right) \\
& \left.+4 n_{1} M_{2}\left(G_{2}\right) M_{1}\left(G_{1}\right)-2 F\left(G_{1}\right) F\left(G_{2}\right)-4 M_{2}\left(G_{1}\right) M_{2}\left(G_{2}\right)\right] .
\end{aligned}
$$

Proof. By Theorem 2.7. we have $\overline{H M}\left(G_{1} \vee G_{2}\right)=\left(\left|V\left(G_{1} \vee G_{2}\right)\right|-2\right) M_{1}\left(G_{1} \vee G_{2}\right)+4 \mid E\left(G_{1} \vee\right.$ $\left.G_{2}\right)\left.\right|^{2}-H M\left(G_{1} \vee G_{2}\right)$, and since $M_{1}\left(G_{1} \vee G_{2}\right)=\left(n_{1} n_{2}^{2}-4 m_{2} n_{2}\right) M_{1}\left(G_{1}\right)+M_{1}\left(G_{2}\right) M_{1}\left(G_{1}\right)+$
$\left(n_{2} n_{1}^{2}-4 m_{1} n_{1}\right) M_{1}\left(G_{2}\right)+8 m_{1} m_{2} n_{1} n_{2}$, given in [15]. And by [13] we have:

$$
\begin{aligned}
H M\left(G_{1} \vee G_{2}\right) & =\left[n_{1}^{4}-2 n_{2}^{2} m_{2}\right] H M\left(G_{2}\right)+\left[n_{2}^{4}-2 n_{2}^{2} m_{2}\right] H M\left(G_{1}\right)+5 n_{1} M_{1}\left(G_{1}\right) F\left(G_{2}\right) \\
& +5 n_{2} M_{1}\left(G_{2}\right) F\left(G_{1}\right)+10 n_{2}^{2} m_{2} n_{1} M_{1}\left(G_{1}\right)+10 n_{2} n_{1}^{2} m_{1} M_{1}\left(G_{2}\right) \\
& +8 n_{2}^{2} m_{2} m_{1}+8 n_{1}^{2} m_{1} m_{2}-8 n_{2} m_{1}^{2} M_{1}\left(G_{2}\right)-8 n_{1} m_{2}^{2} M_{1}\left(G_{1}\right) \\
& -4 n_{1}^{2} m_{1} F\left(G_{2}\right)-4 n_{2}^{2} m_{2} F\left(G_{1}\right)-8 n_{1}^{2} m_{1} M_{2}\left(G_{2}\right)-8 n_{2}^{2} m_{2} M_{2}\left(G_{1}\right) \\
& +8 m_{1} M_{2}\left(G_{2}\right)+8 m_{2} M_{2}\left(G_{1}\right)-8 n_{2} n_{1} M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+4 n_{2} M_{2}\left(G_{1}\right) M_{1}\left(G_{2}\right) \\
& +4 n_{1} M_{2}\left(G_{2}\right) M_{1}\left(G_{1}\right)-2 F\left(G_{1}\right) F\left(G_{2}\right)-4 M_{2}\left(G_{1}\right) M_{2}\left(G_{2}\right) .
\end{aligned}
$$

$\left|E\left(G_{1} \vee G_{2}\right)\right|=m_{1} n_{2}^{2}+m_{2} n_{1}^{2}-2 m_{1} m_{2}, \quad\left|V\left(G_{1} \vee G_{2}\right)\right|=n_{1} n_{2}$ given in Lemma 2.1. which is complete the proof.

Proposition 3.11: Let G_{1}, G_{2} be two simple connected graphs with n_{1}, n_{2} vertices and m_{1}, m_{2} edges, respectively, Then.

$$
\begin{aligned}
\overline{H M}\left(\overline{G_{1} \vee G_{2}}\right) & =4\left[m_{1} n_{2}^{2}+m_{2} n_{1}^{2}-2 m_{1} m_{2}\right]\left(n_{1} n_{2}-1\right)^{2} \\
& -4\left(n_{1} n_{2}-1\right)\left[\left(n_{1} n_{2}^{2}-4 m_{2} n_{2}\right) M_{1}\left(G_{1}\right)+M_{1}\left(G_{2}\right) M_{1}\left(G_{1}\right)\right. \\
& \left.+\left(n_{2} n_{1}^{2}-4 m_{1} n_{1}\right) M_{1}\left(G_{2}\right)+8 m_{1} m_{2} n_{1} n_{2}\right]+\left[\left[n_{1}^{4}-2 n_{2}^{2} m_{2}\right] H M\left(G_{2}\right)\right. \\
& +\left[n_{2}^{4}-2 n_{2}^{2} m_{2}\right] H M\left(G_{1}\right)+5 n_{1} M_{1}\left(G_{1}\right) F\left(G_{2}\right)+5 n_{2} M_{1}\left(G_{2}\right) F\left(G_{1}\right) \\
& +10 n_{2}^{2} m_{2} n_{1} M_{1}\left(G_{1}\right)+10 n_{2} n_{1}^{2} m_{1} M_{1}\left(G_{2}\right)+8 n_{2}^{2} m_{2} m_{1}+8 n_{1}^{2} m_{1} m_{2} \\
& -8 n_{2} m_{1}^{2} M_{1}\left(G_{2}\right)-8 n_{1} m_{2}^{2} M_{1}\left(G_{1}\right)-4 n_{1}^{2} m_{1} F\left(G_{2}\right)-4 n_{2}^{2} m_{2} F\left(G_{1}\right) \\
& -8 n_{1}^{2} m_{1} M_{2}\left(G_{2}\right)-8 n_{2}^{2} m_{2} M_{2}\left(G_{1}\right)+8 m_{1} M_{2}\left(G_{2}\right)+8 m_{2} M_{2}\left(G_{1}\right) \\
& -8 n_{2} n_{1} M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+4 n_{2} M_{2}\left(G_{1}\right) M_{1}\left(G_{2}\right)+4 n_{1} M_{2}\left(G_{2}\right) M_{1}\left(G_{1}\right) \\
& \left.-2 F\left(G_{1}\right) F\left(G_{2}\right)-4 M_{2}\left(G_{1}\right) M_{2}\left(G_{2}\right)\right] .
\end{aligned}
$$

Symmetric difference

The symmetric difference $G_{1} \oplus G_{2}$, of two simple and connected graphs G_{1} and G_{2} is the graph with vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $E\left(G_{1} \oplus G_{2}\right)=\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \mid u_{1} v_{1} \in E\left(G_{1}\right)$ or $u_{2} v_{2} \in E\left(G_{2}\right)$ but not both.

Theorem 3.12: Let G_{1}, G_{2} be two simple connected graphs with n_{1}, n_{2} vertices and m_{1}, m_{2} edges, respectively, Then.

$$
\begin{aligned}
\overline{H M}\left(G_{1} \oplus G_{2}\right) & =4\left[m_{1} n_{2}^{2}+m_{2} n_{1}^{2}-4 m_{1} m_{2}\right]^{2}+\left(n_{1} n_{2}-2\right)\left[\left(n_{1} n_{2}^{2}-8 m_{2} n_{2}\right) M_{1}\left(G_{1}\right)\right. \\
& \left.+4 M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+\left(n_{2} n_{1}^{2}-8 m_{1} n_{1}\right) M_{1}\left(G_{2}\right)+8 m_{1} m_{2} n_{1} n_{2}\right] \\
& -\left[\left[n_{1}^{4}-4 n_{2}^{2} m_{2}\right] H M\left(G_{2}\right)+\left[n_{2}^{4}-4 n_{2}^{2} m_{2}\right] H M\left(G_{1}\right)+20 n_{1} M_{1}\left(G_{1}\right) F\left(G_{2}\right)\right. \\
& +20 n_{2} M_{1}\left(G_{2}\right) F\left(G_{1}\right)+10 n_{2}^{2} m_{2} n_{1} M_{1}\left(G_{1}\right)+10 n_{2} n_{1}^{2} m_{1} M_{1}\left(G_{2}\right) \\
& +8 n_{2}^{2} m_{2} m_{1}-16 n_{2} m_{1}^{2} M_{1}\left(G_{2}\right)-16 n_{1} m_{2}^{2} M_{1}\left(G_{1}\right)-8 n_{1}^{2} m_{1} F\left(G_{2}\right) \\
& -8 n_{2}^{2} m_{2} F\left(G_{1}\right)-16 n_{1}^{2} m_{1} M_{2}\left(G_{2}\right)-16 n_{2}^{2} m_{2} M_{2}\left(G_{1}\right)+32 m_{1} M_{2}\left(G_{2}\right) \\
& +32 m_{2} M_{2}\left(G_{1}\right)-16 n_{2} n_{1} M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+16 n_{2} M_{2}\left(G_{1}\right) M_{1}\left(G_{2}\right) \\
& \left.+16 n_{1} M_{2}\left(G_{2}\right) M_{1}\left(G_{1}\right)-16 F\left(G_{1}\right) F\left(G_{2}\right)-32 M_{2}\left(G_{1}\right) M_{2}\left(G_{2}\right)\right]
\end{aligned}
$$

Proof. Using a similar method, as in Theorem 3.10.
Proposition 3.13: Let G_{1}, G_{2} be two simple connected graphs with n_{1}, n_{2} vertices and m_{1}, m_{2} edges, respectively, Then.

$$
\begin{aligned}
\overline{H M}\left(\overline{G_{1} \oplus G_{2}}\right) & =4\left[m_{1} n_{2}^{2}+m_{2} n_{1}^{2}-4 m_{1} m_{2}\right]\left(n_{1} n_{2}-1\right)^{2}-4\left(n_{1} n_{2}-1\right)\left[\left(n_{1} n_{2}^{2}-8 m_{2} n_{2}\right) M_{1}\left(G_{1}\right)\right. \\
& \left.+4 M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+\left(n_{2} n_{1}^{2}-8 m_{1} n_{1}\right) M_{1}\left(G_{2}\right)+8 m_{1} m_{2} n_{1} n_{2}\right] \\
& +\left[n_{1}^{4}-4 n_{2}^{2} m_{2}\right] H M\left(G_{2}\right)+\left[n_{2}^{4}-4 n_{2}^{2} m_{2}\right] H M\left(G_{1}\right)+20 n_{1} M_{1}\left(G_{1}\right) F\left(G_{2}\right) \\
& +20 n_{2} M_{1}\left(G_{2}\right) F\left(G_{1}\right)+10 n_{2}^{2} m_{2} n_{1} M_{1}\left(G_{1}\right)+10 n_{2} n_{1}^{2} m_{1} M_{1}\left(G_{2}\right) \\
& +8 n_{2}^{2} m_{2} m_{1}-16 n_{2} m_{1}^{2} M_{1}\left(G_{2}\right)-16 n_{1} m_{2}^{2} M_{1}\left(G_{1}\right)-8 n_{1}^{2} m_{1} F\left(G_{2}\right) \\
& -8 n_{2}^{2} m_{2} F\left(G_{1}\right)-16 n_{1}^{2} m_{1} M_{2}\left(G_{2}\right)-16 n_{2}^{2} m_{2} M_{2}\left(G_{1}\right)+32 m_{1} M_{2}\left(G_{2}\right) \\
& +32 m_{2} M_{2}\left(G_{1}\right)-16 n_{2} n_{1} M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+16 n_{2} M_{2}\left(G_{1}\right) M_{1}\left(G_{2}\right) \\
& +16 n_{1} M_{2}\left(G_{2}\right) M_{1}\left(G_{1}\right)-16 F\left(G_{1}\right) F\left(G_{2}\right)-32 M_{2}\left(G_{1}\right) M_{2}\left(G_{2}\right) .
\end{aligned}
$$

4. Application

TiO_{2} is one of the most studied compounds in materials science. Owing to some outstanding properties it is used for instance in photocatalysis, dye-sensitized solar cells, and biomedical devices [18]. In chemical graph theory, topological indices provide an important tool to quantify the molecular structure and it is found that there is a strong correlation between the properties of chemical compounds and their molecular structure [17]. Among different topological indices, degree-based topological indices are most studied and have some important applications. In this section, hyper-Zagreb coindex have been investigated for titania TiO_{2} nanotubes and molecular graph of nanotorus .

Corollary 4.1: The hyper-Zagreb coindex of $\mathrm{TiO}_{2}[n, m]$ nanotube Fig.1. is given by $\overline{H M}\left(\mathrm{TiO}_{2}[n, m]\right)=856 m^{2} n^{2}+1064 m n^{2}+352 n^{2}-732 m n-380 n$.

Proof. By using Theorem 2.7. we have
$\overline{\mathrm{HM}}\left(\mathrm{TiO}_{2}[n, m]\right)=\left(\left|V\left(\mathrm{TiO}_{2}\right)\right|-2\right) M_{1}\left(\mathrm{TiO}_{2}[n, m]\right)+4\left|E\left(\mathrm{TiO}_{2}\right)\right|^{2}-\mathrm{HM}\left(\mathrm{TiO}_{2}[n, m]\right)$, and since $M_{1}\left(\mathrm{TiO}_{2}[n, m]\right)=76 m n+48 n$, given in [14]. $\mathrm{HM}\left(\mathrm{TiO}_{2}[n, m]\right)=580 m n+284 n$, given in [17]. and The partitions of the vertex set and edge set $\mathrm{V}\left(\mathrm{TiO}_{2}\right), E\left(\mathrm{TiO}_{2}\right)$, of $\mathrm{TiO}_{2}[n, m]$ nanotubes are given in Table 1. and Table 2., respectively. We have

Figure 1. The molecular graph of $\mathrm{TiO}_{2}[n, m]$ nanotube.

Table 1. The vertex partition of $\mathrm{TiO}_{2}[n, m]$ nanotubes.

Vertex partition	v_{2}	v_{3}	v_{4}	v_{5}
Cardinality	$2 m n+4 n$	$2 m n$	$2 n$	$2 m n$

TAble 2. The edge partition of $\mathrm{TiO}_{2}[n, m]$ nanotubes.

Edge partition	$E_{6}=E_{8}^{*}$	$E_{7}=E_{10}^{*} \cup E_{12}^{*}$	$E_{8}=E_{15}^{*}$	E_{12}^{*}	E_{10}^{*}
Cardinality	$6 n$	$4 m n+4 n$	$6 m n-2 n$	$4 m n+2 n$	$2 n$

$$
\begin{aligned}
& \overline{\mathrm{HM}}\left(\mathrm{TiO}_{2}[n, m]\right) \\
&=\left(\bigcup V\left(\mathrm{TiO}_{2}[n, m]\right)-2\right) M_{1}\left(\mathrm{TiO}_{2}[n, m]\right) \\
&+4\left(\bigcup E\left(\mathrm{TiO}_{2}[n, m]\right)^{2}-\mathrm{HM}\left(\mathrm{TiO}_{2}[n, m]\right)\right. \\
&=\left(\sum\left|V\left(\mathrm{TiO}_{2}[n, m]\right)\right|-2\right) M_{1}\left(\mathrm{TiO}_{2}[n, m]\right) \\
&+4\left(\sum\left|E\left(\mathrm{TiO}_{2}[n, m]\right)\right|^{2}-H M\left(\mathrm{TiO}_{2}[n, m]\right)\right. \\
&=(6 m n+6 n-2)(76 m n+48 n)+4\left[\left|E_{8}^{*}\right|+\left|E_{10}^{*} \cup E_{12}^{*}\right|+\left|E_{15}^{*}\right|\right]^{2} \\
&-580 m n-284 n \\
&=856 m^{2} n^{2}+1064 m n^{2}+352 n^{2}-732 m n-380 n .
\end{aligned}
$$

Corollary 4.2: Let P_{n} and C_{m} be path and cycle graphs with n, m vertices, respectively, such that $m, n \geq 3$. Then

1. $\overline{H M}\left(C_{n} * C_{m}\right)=133 n^{2} m^{2}-14 m^{2} n-n m^{4}-214 n m-16 n$.
2. $\overline{H M}\left(P_{n} * C_{m}\right)=4 m^{2}(4 n-3)^{2}+2 m(n m-2)(48 n-61)-[16 n-30+72 n m-38 m+$ $\left.4 m(n-1)(2 m+1)+n m^{2}\left(m^{2}+6\right)\right]$.
3. $\overline{H M}\left(P_{n}+C_{m}\right)=4[(n-1)+m+n m]^{2}+(n m-2)\left[4 n-6+n m^{2}+m n^{2}+8 n m\right]-[16 n-$ $\left.38+44 n m-22 m+12 n^{2} m+12 m^{2} n+n m(m+n)^{2}\right]$.
4. $\overline{H M}\left(C_{n}+C_{m}\right)=4[(n-1)+m+n m]^{2}+(n m-2)\left[4 n-6+n m^{2}+m n^{2}+8 n m\right]-[16 n-$ $\left.38+44 n m-22 m+12 n^{2} m+12 m^{2} n+n m(m+n)^{2}\right]$.

Corollary 4.3: Let $T=T[p, q]$ be the molecular graph of a nanotorus such that $|V(T)|=p q$, $|E(T)|=\frac{3}{2} p q$, Fig. 2. Then:

$$
\text { a. } \overline{H M}(T[p, q])=18 p^{2} q^{2}-72 p q .
$$

$$
\text { b. } \overline{H M}\left(P_{n} \times T\right)=50 n^{2} p^{2} q^{2}-38 n p^{2} q^{2}+4 p^{2} q^{2}-300 n p q-150 p q .
$$

Proof. To proof (a), by using Theorem 2.7. we have

$$
\overline{H M}(T[p, q])=(|V(T[p, q])|-2) M_{1}(T[p, q])+4|E(T[p, q])|^{2}-H M(T[p, q])
$$

And since $H M(T[p, q])=54 p q$ by [13]. $M_{1}(T)=9 p q$ by [12]. Then

$$
\overline{H M}(T[p, q])=9 p q(p q-2)+4\left[\frac{3}{2} p q\right]^{2}-54 p q=18 p^{2} q^{2}-72 p q
$$

To proof (b), by [13] $H M\left(P_{n} \times T\right)=250 n p q-186 p q$, and by [12] $M_{1}\left(P_{n} \times T\right)=p q(25 n-18)$, and by using Lemma 2.1. $\left|E\left(P_{n} \times T\right)\right|=(n-1) p q+\frac{3}{2} n p q=p q\left(\frac{5}{2} n-1\right),\left|V\left(P_{n} \times T\right)\right|=n p q$, and by using Theorem 2.7. we get

$$
\begin{aligned}
& \overline{H M}\left(P_{n} \times T\right) \\
&=\left(\left|V\left(P_{n} \times T\right)\right|-2\right) M_{1}\left(P_{n} \times T\right)+4\left|E\left(P_{n} \times T\right)\right|^{2}-H M\left(P_{n} \times T\right) \\
&=p q(n p q-2)(25 n-18)+4\left[p q\left(\frac{5}{2} n-1\right)\right]^{2}-250 n p q-186 p q \\
&=50 n^{2} p^{2} q^{2}-38 n p^{2} q^{2}+4 p^{2} q^{2}-300 n p q-150 p q .
\end{aligned}
$$

Figure 2. molecular graph of a nanotorus

5. Conclusion

The present study has investigated some of the basic mathematical properties of the HyperZagreb coindex and obtained explicit formula for their values under several graph operations. and we studied the Hyper-Zagreb coindex of molecular graph of nanotorus and titania nanotubes $\mathrm{TiO}_{2}[n, m]$.

Conflict of Interests

The author(s) declare that there is no conflict of interests.

References

[1] A. Alameria, N. Al-Naggara, M. Al-Rumaima, M. Alsharafi, Y-index of some graph operations, Int. J. Appl. Eng. Res. 15 (2) (2020), 173-179.
[2] A. Alameri,, New Binary operations on Graphs, J. Sci. Technol. 21 (2016), 1607-2073.
[3] A. Ayache, A. Alameri., Topological indices of the mk-graph, J. Assoc. Arab Univ. Basic Appl. Sci. 24 (2017), 283-291.
[4] A. Behmaram, H. Yousefi-Azari, A. Ashrafi, Some New Results on Distance-Based Polynomials, Commun. Math. Comput. Chem. 65 (2011), 39-50.
[5] A. Ashrafi, T. Doslic, A. Hamzeh, , The Zagreb coindices of graph operations, Discret. Appl.Math, 158 (2010), 1571-1578 .
[6] B. Basavanagoud, S. Patil, A Note on Hyper-Zagreb Index of Graph Operations, Iran. J. Math. Chem. 7 (1) (2016), 89-92.
[7] B. Basavanagoud, S. Patil, A note on hyper-Zagreb coindex of graph operations, J. Appl. Math. Comput, 53 (2017), 647-655.
[8] B. Furtula and I. Gutman., A forgotten topological index, J. Math. Chem. 53 (4) (2015), 1184-1190.
[9] De, Nilanjan, Sk Md Abu Nayeem, and Anita Pal. , The F-coindex of some graph operations, SpringerPlus. 5 (2016), 221.
[10] G.H. Shirdel, H. Rezapour and A.M. Sayadi, The hyper-Zagreb index of graph operations, Iran. J. Math. Chem. 4 (2) (2013), 213-220.
[11] I. Gutman, On Hyper-Zagreb index and coindex, Bulletin T. CL de l'Academie serbe des sciences et des arts. 42 (2017), 1-8.
[12] K. Kiruthika, Zagreb indices and Zagreb coindices of some graph operations, Int. J. Adv. Res. Eng. Technol. 7 (3) (2016), 25-41.
[13] M.Al-Sharafi, M. Shubatah, On the Hyper-Zagreb index of some Graph Binary Operations, Asian Res. J. Math. 16 (4) (2020), 12-24.
[14] M. Ali Malik and M. Imran, On Multiple Zagreb Indices of TiO_{2} Nanotubes, Acta Chim. Slov. 62 (2015), 973-976.
[15] M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, The first and second Zagreb indices of some graph operations, Discr. Appl. Math. 157 (2009), 804-811.
[16] M. Veylaki, M.J. Nikmehr and H. A.Tavallaee, The third and hyper-Zagreb coindices of some graph operations, J. Appl. Math. Comput. 50 (2016), 315-325.
[17] N.De,, On Molecular Topological Properties of TiO_{2} Nanotubes, J. Nanosci. 2016 (2016), Article ID 1028031.
[18] P. Roy, S. Berger, P. Schmuki, TiO_{2} nanotubes: synthesis and applications, Angew. Chem. Int. Ed. 50 (13) (2011), 2904-2939.
[19] A. Alameri, M. Shubatah, M. Alsharafi, Zagreb indices, Hyper Zagreb indices and Redefined Zagreb indices of conical graph, Advances in Mathematics: Scientific Journal, 9(6), (2020), 3643-3652.
[20] M. Alsharafi, M. Shubatah, A. Alameri, The hyper-Zagreb index of some complement graphs, Advances in Mathematics: Scientific Journal, 9(6), (2020), 3631-3642.

[^0]: *Corresponding author
 E-mail address: alsharafi205010@gmail.com
 Received June 24, 2020

