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Abstract: In this paper, a space-time fractional partial differential equation, obtained from the standard partial 

differential equation by replacing the second order space-derivative by a fractional derivative of order β > 0 and the 

first order time-derivative by a fractional derivative of order α > 0 has been recently treated by a number of authors. 

A time fractional advection-dispersion equation is obtained from the standard advection-dispersion equation by 

replacing the first order derivative in time by a fractional derivative in time of order α (0 < α ≤ 1). In the present 

paper, the solution of the analytical dispersion equation is derived using Laplace-Adomian Decomposition Method 

(LADM). This method has higher convergences as the solutions both of fractional order and integral are obtained in 

the form of series. In this method the Caputo derivatives are used to define fractional order derivatives. To confirm 

validity of this method illustrative examples are given. 
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1. INTRODUCTION 

Most of the models in physics, biology and other physical processes can be expressed by 

fractional differential equations. There are various methods of solving these equations which do 

not have analytical solution. The Fractional Advection Dispersion equations (FADE) are special 

type of fractional partial differential equations and have been applied to many other problems. 

FADE are used to model transportation of passive tracer in porous medium whenever fluid flows 

through it. Many problems have been applied to this method [1-9], such as fractional iterative 

method [10], homotopy analysis method [11], homtopy perturbation method [12], Green function 

[13], and least square method [14]. 

If we consider one dimensional Advection Dispersion equation as in [9] given as 

𝐷𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2  - 
𝑉𝜕𝑢(𝑥,𝑡)

𝜕𝑥
 - 𝜆𝑅𝐶 =  

𝑅𝜕𝑐(𝑥,𝑡)

𝜕𝑡
 

Where D is dispersion coefficient and R is Retardation fraction. The solution of this problem has 

been given in [15] as it is of integer order. But in order to derive the solution of FADE then we 

have to know the concepts of fractional order derivatives that are given as under. 

 

2. FRACTIONAL CALCULUS 

Some definitions, lemmas and theorems related to fractional calculus is given as under 

Definition 1: Reimann –Liouville Fractional integral is given by 

𝐼𝑥
𝛼g(x) = {

𝑔(𝑥)                   𝑖𝑓 𝛼 = 0
1

𝛤(𝛼)
∫ (𝑥 − 𝑣)𝛼−1𝑥

0
 𝑔(𝑣)𝑑𝑣            𝑖𝑓 𝛼 > 0

 

Where Γ denotes the gamma function defined by  

Γ(z) = ∫ 𝑒−𝑥∞

0
𝑥𝑧−1𝑑𝑥,  z  𝜖 ∁ 

Definition 2: The Caputo operator of order 𝛼 for a fractional derivative is given by following 

mathematical expression foe n 𝜖N, x > 0, g 𝜖∁t,  t ≥  −1  

𝐷𝛼𝑔(𝑥) =  
𝜕𝛼𝑔(𝑥)

𝜕𝑡𝛼    = {
𝐼𝑛−𝛼  𝜕𝛼𝑔(𝑥)

𝜕𝑡𝛼
     𝑛 − 1 <  𝛼 <   𝑛, 𝑛 𝜖 𝑁 

𝜕𝛼𝑔(𝑥)

𝜕𝑡𝛼
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Hence, we require the related properties which are given in the next Lemma. 

Lemma 1:- If  𝑛 − 1 <  𝛼 <   𝑛, 𝑛 𝜖 𝑁  and g 𝜖∁t   with   t ≥  −1 , then  

𝐼𝛼𝐼𝑎g(x) = 𝐼𝛼+𝑎𝑔(𝑥)𝑎 , 𝛼 ≥ 0 

𝐼𝛼𝑥𝜆 = 
𝛤(𝜆+1)

𝛤(𝜆+𝛼+1)
𝑥𝛼+𝜆𝛼 > 0, 𝜆 >  −1  , 𝑥 > 0 

𝐼𝛼𝐷𝛼𝑔(𝑥) = 𝑔(𝑥) −  ∑ 𝑔𝑘𝑛−1
𝑥=0 (0+)

𝑥𝑘

𝑘!
     ,     𝑥 > 0 , 𝑛 − 1 < 𝛼 < 𝑛 

Due to some disadvantages in other fractional operators, the Caputo operator is given preference. 

Definition 3:- The Laplace transform of z (t), t > 0 is defined by [16] 

Z(s) = Ł [z (t)] = ∫ 𝑒−𝑠𝑡∞

0
𝑧(𝑡)𝑑𝑡 

Definition 4.The Laplace transform in term of convolution is given by 

Ł [z1∗ z2] = Ł [z1(t)] ∗Ł [z2(t)] 

Here z1∗ z2 is convolution between z1 and z2 

(z1∗ z2) t = ∫ 𝑧1
𝛾

0
(𝑥)𝑧2(𝑡 − 𝛾)𝑑𝑡 

Laplace transform of fractional derivative of a function z(t) is given by  

Ł [𝐷𝑡
𝛼𝑧(𝑡)] = 𝑠𝛼𝑍(𝑠) − ∑ 𝑠𝛼−1−1𝑧𝑘𝑛−1

𝑘=0 (0) ,   𝑛 − 1 <  𝛼 < 𝑛 

Where Z(s) is the Laplace transform of z(t). 

Definition 5:- The Mittag–Leffler function, F𝛼 (p) for 𝛼 > 0 is given as  

𝐹𝛼 (p) = ∑
𝑝𝑛

𝛼𝑛+1
∞
𝑛=0  ,𝛼 > 0 , p 𝜖∁. 

 

3. FRACTIONAL LAPLACE-ADOMIAN DECOMPOSITION METHOD 

To start with we apply Laplace-Adomian Decomposition Method (FADM) to Fractional 

Advection-Dispersion Equation (FADE) with initial conditions; 

𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼  = 𝑘
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 + 𝑣
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
+ 𝑔(𝑥, 𝑡), 𝑥 > 0 , 𝑡 > 0 , 𝑚 − 1 < 𝛼 < 𝑚                (1)              

Where 𝑔(𝑥, 𝑡), is a source function, subject to the conditions: 

𝑢(𝑥, 0) = ℎ1   (2)                                                                                                           

𝑢′(𝑥, 0) = ℎ2𝑥 
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𝑢′′(𝑥, 0) = ℎ3𝑥 …..                     

𝑢𝑛(𝑥, 0) = ℎ𝑛+1𝑥                                                             (3)                                                                                                       

Applying Laplace transform on both sides of Eq. 1, we get 

Ł [
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼 ] = Ł [𝑘
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2   + 𝑣
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
+ 𝑔(𝑥, 𝑡) ]                           (4)                                                          

𝑠𝛼𝑢(𝑥, 𝑡) −  𝑠𝛼−1𝑢(𝑥, 0) − 𝑠𝛼−2𝑢′(𝑥, 0) − ⋯ −  𝑠𝛼−1−(𝑛−1)𝑢𝛼−1(𝑥, 𝑡)

=  Ł [𝑘
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
  +  𝑣

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
+ 𝑔(𝑥, 𝑡) ], 

Ł𝑢(𝑥, 𝑡) =  
ℎ1(𝑥)

𝑠
+ 

ℎ2(𝑥)

𝑠2 + ⋯ +  
ℎ𝑛−1(𝑥)

𝑠−1−(𝑛−1) +  
1

𝑠𝛼Ł [𝑘
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2   + 𝑣
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
+ 𝑔(𝑥, 𝑡) ],        (5) 

The LADM solution of 𝑢(𝑥, 𝑡) is represented by infinite series  

𝑢(𝑥, 𝑡) =  ∑ 𝑢𝑗(𝑥, 𝑡)∞
𝑗=0                    (6) 

And other nonlinear terms are expressed by infinite series of adomian polynomial 

𝑁 𝑢(𝑥, 𝑡) =  ∑ 𝐵𝑗

∞

𝑗=0

 

𝐵𝑗 =  
1

𝛤(𝑗+1)
 [ 

𝑑𝑗

𝑑𝜆𝑗  [ 𝑁 ∑ 𝜆𝑗∞
𝑗=0 𝑢𝑗]]𝜆=0, 𝑗 = 0,1,2, …  

Substituting Eq. 5 and Eq. 6 in Eq. 4 

Ł [∑ 𝑢𝑗(𝑥, 𝑡)∞
𝑗=0 ] = 

ℎ1(𝑥)

𝑠
+ … +  

ℎ𝑛−1(𝑥)

𝑠−1−(𝑛−1) +  
1

𝑠𝛼Ł [𝑘
𝜕2𝑢𝑗(𝑥,𝑡)

𝜕𝑥2   + 𝑣
𝜕𝑢𝑗(𝑥,𝑡)

𝜕𝑥
] +

1

𝑠𝛼 Ł[𝑔(𝑥, 𝑡) ] 

Ł [𝑢𝑗+1(𝑥, 𝑡)] = 
1

𝑠𝛼Ł [𝑘
𝜕2𝑢𝑗(𝑥,𝑡)

𝜕𝑥2   + 𝑣
𝜕𝑢𝑗(𝑥,𝑡)

𝜕𝑥
] +

1

𝑠𝛼 Ł[𝑔(𝑥, 𝑡) ] 

Now applying inverse Laplace transform, we have 

𝑢𝑗+1(𝑥, 𝑡) = Ł-1[
1

𝑠𝛼
Ł (𝑘

𝜕2𝑢𝑗(𝑥,𝑡)

𝜕𝑥2
  + 𝑣

𝜕𝑢𝑗(𝑥,𝑡)

𝜕𝑥
)] + Ł-1[

1

𝑠𝛼
Ł[𝑔(𝑥, 𝑡) ]] 

 

4. RESULTS  

Example 1: 

 Consider the FADE 
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼
 = 𝑘

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
  - 𝑣

𝜕𝑢(𝑥,𝑡)

𝜕𝑥
  , 𝑡 > 0, 0 < 𝛼 < 1,                         (7) 

With the initial conditions  𝑢(𝑥, 0) =  𝑒−𝑥 

Taking Laplace transform of Eq. 7 
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Ł [
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼
] = Ł [𝑘

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
  - 𝑣

𝜕𝑢(𝑥,𝑡)

𝜕𝑥
]   

𝑠𝛼 Ł [𝑢(𝑥, 𝑡)]- 𝑠𝛼−1𝑢(𝑥, 0) = Ł [𝑘
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2   - 𝑣
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
] 

Ł [𝑢(𝑥, 𝑡)]= 
1

𝑠
 [𝑢(𝑥, 0)] + 

1

𝑠𝛼Ł [𝑘
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2   - 𝑣
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
] 

Taking inverse Laplace transform on both sides  

𝑢(𝑥, 𝑡)= 𝑒−𝑥 + Ł-1[
1

𝑠𝛼
Ł (𝑘

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
  - 𝑣

𝜕𝑢(𝑥,𝑡)

𝜕𝑥
)] 

Using ADM approach, we have  

∑ 𝑢𝑗(𝑥, 𝑡)∞
𝑗=0 = = 𝑒−𝑥 + Ł-1[

1

𝑠𝛼Ł (𝑘
𝜕2𝑢𝑗(𝑥,𝑡)

𝜕𝑥2   - 𝑣
𝜕𝑢𝑗(𝑥,𝑡)

𝜕𝑥
)] 

𝑢𝑗+1(𝑥, 𝑡) = Ł-1[
1

𝑠𝛼Ł (𝑘
𝜕2𝑢𝑗(𝑥,𝑡)

𝜕𝑥2   - 𝑣
𝜕𝑢𝑗(𝑥,𝑡)

𝜕𝑥
)] 

Now for j = 0,1,2 … we have  

𝑢1(𝑥, 𝑡) = Ł-1[
1

𝑠𝛼Ł (𝑘
𝜕2𝑢0(𝑥,𝑡)

𝜕𝑥2   - 𝑣
𝜕𝑢0(𝑥,𝑡)

𝜕𝑥
)] 

𝑢1(𝑥, 𝑡)=  
𝑒−𝑥 (𝑘+𝑣)𝑡𝛼

𝛤(𝛼+1)
 

𝑢2(𝑥, 𝑡) = Ł-1[
1

𝑠𝛼Ł (𝑘
𝜕2𝑢1(𝑥,𝑡)

𝜕𝑥2   - 𝑣
𝜕𝑢1(𝑥,𝑡)

𝜕𝑥
)] 

𝑢2(𝑥, 𝑡) = Ł-1[
1

𝑠2𝛼+1[𝑒−𝑥(𝑘2 + 𝑣2)] 

𝑢2(𝑥, 𝑡)= 
𝑒−𝑥(𝑘2+𝑣2)𝑡2𝛼

𝛤(2𝛼+1)
 

The LADM solution is given by  

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) +..., 

𝑢(𝑥, 𝑡)= 𝑒−𝑥 + 
𝑒−𝑥 (𝑘+𝑣)𝑡𝛼

𝛤(𝛼+1)
 + 

𝑒−𝑥(𝑘2+𝑣2)𝑡2𝛼

𝛤(2𝛼+1)
+ … 

The solution obtained here is same as the solution obtained in [15], where the solutions are 

expressed as Mittag-Leffler function when taken n up to infinity; same can be obtained in this 

example as well.  

Example 2:- 

Consider another FADE 
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼  + 𝜔
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2   +𝛽 
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
 = 0, 𝑡 > 0,       1 < 𝛼 < 2          (8) 

With the initial conditions 𝑢(𝑥, 0) = 𝑠𝑖𝑛𝑥 ,     
𝑑𝑢(𝑥,0)

𝑑𝑥
= 𝑒−𝑥 
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Taking Laplace transform on both sides  

Ł [
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼  ] = - Ł[ 𝜔
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2   +𝛽 
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
] 

𝑠𝛼 Ł [𝑢(𝑥, 𝑡)]- 𝑠𝛼−1[(𝑥, 0)]- 𝑠𝛼−2[
𝜕𝑢(𝑥,0)

𝜕𝑥
] = - Ł[ 𝜔

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2   +𝛽 
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
] 

Ł [𝑢(𝑥, 𝑡)] =  
sin 𝑥

𝑠
 + 

𝑒−𝑥

𝑠2  - 
1

𝑠𝛼 Ł[ 𝜔
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2   +𝛽 
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
] 

Taking inverse on both sides  

𝑢(𝑥, 𝑡)= Ł-1 [
sin 𝑥

𝑠
+ 

𝑒−𝑥

𝑠2
 ] - Ł-1 [

1

𝑠𝛼
 Ł[ 𝜔

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
  +𝛽 

𝜕𝑢(𝑥,𝑡)

𝜕𝑥
]] 

𝑢(𝑥, 𝑡) = sin 𝑥 + 𝑡 𝑒−𝑥 - Ł-1 [
1

𝑠𝛼
 Ł[ 𝜔

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
  +𝛽 

𝜕𝑢(𝑥,𝑡)

𝜕𝑥
]] 

Applying adomian decomposition method we have  

∑ 𝑢𝑗(𝑥, 𝑡)∞
𝑗=0  = sin 𝑥 + 𝑡 𝑒−𝑥 - Ł-1 [

1

𝑠𝛼 Ł[ 𝜔
𝜕2𝑢𝑗(𝑥,𝑡)

𝜕𝑥2   +𝛽 
𝜕𝑢𝑗(𝑥,𝑡)

𝜕𝑥
]] 

𝑢0(𝑥, 𝑡) = sin 𝑥 + 𝑡 𝑒−𝑥 

𝑢1(𝑥, 𝑡) = - Ł-1 [
1

𝑠𝛼 Ł[ 𝜔
𝜕2𝑢0(𝑥,𝑡)

𝜕𝑥2   +𝛽 
𝜕𝑢0(𝑥,𝑡)

𝜕𝑥
]] 

𝑢1(𝑥, 𝑡)= - Ł-1 [
1

𝑠𝛼 [−𝜔 𝑠𝑖𝑛𝑥 + 𝛽𝑐𝑜𝑠𝑥 + (𝜔 − 𝛽)𝑡 𝑒−𝑥] 

𝑢1(𝑥, 𝑡) = [𝜔 𝑠𝑖𝑛𝑥 − 𝛽𝑐𝑜𝑠𝑥 − (𝜔 − 𝛽)𝑡 𝑒−𝑥]
𝑡𝛼

𝛤(𝛼+1)
 

𝑢1(𝑥, 𝑡) = [𝜔 𝑡𝛼 sin 𝑥 −  𝛽 𝑡𝛼  𝑐𝑜𝑠𝑥 − (𝜔 − 𝛽)𝑡𝛼+1𝑒−𝑥]
1

𝛤(𝛼+1)
 

𝑢2(𝑥, 𝑡) = - Ł-1 [
1

𝑠𝛼 Ł[ 𝜔
𝜕2𝑢1(𝑥,𝑡)

𝜕𝑥2   +𝛽 
𝜕𝑢1(𝑥,𝑡)

𝜕𝑥
]] 

𝑢2(𝑥, 𝑡) = [𝑠𝑖𝑛𝑥 𝑡3𝛼(𝛽2 + 𝜔2) + 2 𝜔𝛽 𝑡 3𝛼 𝑐𝑜𝑠𝑥 −    𝑡 3𝛼+1𝑒−𝑥(𝛽 + 𝜔)2] 
1

𝛤(2𝛼+1)
 

𝑢3(𝑥, 𝑡) = - Ł-1 [
1

𝑠𝛼 Ł[ 𝜔
𝜕2𝑢2(𝑥,𝑡)

𝜕𝑥2   +𝛽 
𝜕𝑢2(𝑥,𝑡)

𝜕𝑥
]]; 

𝑢3(𝑥, 𝑡) = [𝑠𝑖𝑛𝑥 𝑡6𝛼(𝛽3 + 3𝜔𝛽2) + 𝑐𝑜𝑠𝑥 𝑡6𝛼(𝛽3 + 3𝛽𝜔2) +  𝑡 6𝛼+1𝑒−𝑥(𝛽 + 𝜔)3] 
1

𝛤(3𝛼+1)
 

The LADM solution is given by  

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) +..., 

u(x, t) = 𝑠𝑖𝑛 𝑥 + 𝑡 𝑒−𝑥 + [𝜔 𝑡𝛼 sin
𝑥 −  𝛽 𝑡𝛼  𝑐𝑜𝑠𝑥 − (𝜔 − 𝛽

)𝑡𝛼+1𝑒−𝑥]
1

𝛤(𝛼+1)
 

     + [ 𝑠𝑖𝑛𝑥 𝑡3𝛼(𝛽2 + 𝜔2) + 2 𝜔𝛽 𝑡 3𝛼  𝑐𝑜𝑠𝑥 −   𝑡 3𝛼+1𝑒−𝑥(𝛽 + 𝜔)2] 
1

𝛤(2𝛼+1)
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     +  [ 𝑠𝑖𝑛𝑥 𝑡6𝛼(𝛽3 + 3𝜔𝛽2) + 𝑐𝑜𝑠𝑥 𝑡6𝛼(𝛽3 + 3𝛽𝜔2) +  𝑡 6𝛼+1𝑒−𝑥(𝛽 + 𝜔)3] 
1

𝛤(3𝛼+1)
….. 

The solution obtained is in the form of adomian polynomial. 

 

5. CONCLUSION 

The fundamental aim of this paper was to obtain efficient results and much more convenient. 

Previously the results were obtained fractional iterative method in which domain was confined to 

only 0 < 𝛼 <1, but by this method we can generalize to higher fractional order. This method is 

more fully appropriate to physical problem. 
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